Merge pull request #3688 from klownfish/u5_adc

STM32U5: Add ADC drivers
This commit is contained in:
Dario Nieuwenhuis 2024-12-31 11:33:35 +01:00 committed by GitHub
commit 18773c377a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 686 additions and 22 deletions

View File

@ -73,7 +73,7 @@ rand_core = "0.6.3"
sdio-host = "0.5.0"
critical-section = "1.1"
#stm32-metapac = { version = "15" }
stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-ddb0e7abab14bf3e1399875767b8834442382988" }
stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-392e41259ffc5ffbfd79169ee80451114fb367fe" }
vcell = "0.1.3"
nb = "1.0.0"
@ -102,7 +102,7 @@ proc-macro2 = "1.0.36"
quote = "1.0.15"
#stm32-metapac = { version = "15", default-features = false, features = ["metadata"]}
stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-ddb0e7abab14bf3e1399875767b8834442382988", default-features = false, features = ["metadata"] }
stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-392e41259ffc5ffbfd79169ee80451114fb367fe", default-features = false, features = ["metadata"] }
[features]
default = ["rt"]

View File

@ -1238,13 +1238,12 @@ fn main() {
// ========
// Generate dma_trait_impl!
let signals: HashMap<_, _> = [
let mut signals: HashMap<_, _> = [
// (kind, signal) => trait
(("adc", "ADC"), quote!(crate::adc::RxDma)),
(("adc", "ADC1"), quote!(crate::adc::RxDma)),
(("adc", "ADC2"), quote!(crate::adc::RxDma)),
(("adc", "ADC3"), quote!(crate::adc::RxDma)),
(("adc", "ADC4"), quote!(crate::adc::RxDma)),
(("ucpd", "RX"), quote!(crate::ucpd::RxDma)),
(("ucpd", "TX"), quote!(crate::ucpd::TxDma)),
(("usart", "RX"), quote!(crate::usart::RxDma)),
@ -1279,6 +1278,12 @@ fn main() {
]
.into();
if chip_name.starts_with("stm32u5") {
signals.insert(("adc", "ADC4"), quote!(crate::adc::RxDma4));
} else {
signals.insert(("adc", "ADC4"), quote!(crate::adc::RxDma));
}
for p in METADATA.peripherals {
if let Some(regs) = &p.registers {
// FIXME: stm32u5a crash on Cordic driver

View File

@ -4,7 +4,7 @@
#![allow(missing_docs)] // TODO
#![cfg_attr(adc_f3_v2, allow(unused))]
#[cfg(not(any(adc_f3_v2, adc_u5)))]
#[cfg(not(any(adc_f3_v2)))]
#[cfg_attr(adc_f1, path = "f1.rs")]
#[cfg_attr(adc_f3, path = "f3.rs")]
#[cfg_attr(adc_f3_v1_1, path = "f3_v1_1.rs")]
@ -12,33 +12,37 @@
#[cfg_attr(adc_l0, path = "v1.rs")]
#[cfg_attr(adc_v2, path = "v2.rs")]
#[cfg_attr(any(adc_v3, adc_g0, adc_h5, adc_u0), path = "v3.rs")]
#[cfg_attr(adc_v4, path = "v4.rs")]
#[cfg_attr(any(adc_v4, adc_u5), path = "v4.rs")]
#[cfg_attr(adc_g4, path = "g4.rs")]
mod _version;
use core::marker::PhantomData;
#[allow(unused)]
#[cfg(not(any(adc_f3_v2, adc_u5)))]
#[cfg(not(any(adc_f3_v2)))]
pub use _version::*;
#[cfg(any(adc_f1, adc_f3, adc_v1, adc_l0, adc_f3_v1_1))]
use embassy_sync::waitqueue::AtomicWaker;
#[cfg(not(any(adc_u5)))]
#[cfg(adc_u5)]
#[path = "u5_adc4.rs"]
pub mod adc4;
pub use crate::pac::adc::vals;
#[cfg(not(any(adc_f1, adc_f3_v2, adc_u5)))]
#[cfg(not(any(adc_f1, adc_f3_v2)))]
pub use crate::pac::adc::vals::Res as Resolution;
#[cfg(not(any(adc_u5)))]
pub use crate::pac::adc::vals::SampleTime;
use crate::peripherals;
dma_trait!(RxDma, Instance);
#[cfg(adc_u5)]
dma_trait!(RxDma4, adc4::Instance);
/// Analog to Digital driver.
pub struct Adc<'d, T: Instance> {
#[allow(unused)]
adc: crate::PeripheralRef<'d, T>,
#[cfg(not(any(adc_f3_v2, adc_f3_v1_1, adc_u5)))]
#[cfg(not(any(adc_f3_v2, adc_f3_v1_1)))]
sample_time: SampleTime,
}
@ -59,7 +63,7 @@ impl State {
trait SealedInstance {
#[allow(unused)]
fn regs() -> crate::pac::adc::Adc;
#[cfg(not(any(adc_f1, adc_v1, adc_l0, adc_f3_v2, adc_f3_v1_1, adc_g0, adc_u5)))]
#[cfg(not(any(adc_f1, adc_v1, adc_l0, adc_f3_v2, adc_f3_v1_1, adc_g0)))]
#[allow(unused)]
fn common_regs() -> crate::pac::adccommon::AdcCommon;
#[cfg(any(adc_f1, adc_f3, adc_v1, adc_l0, adc_f3_v1_1))]
@ -67,7 +71,7 @@ trait SealedInstance {
}
pub(crate) trait SealedAdcChannel<T> {
#[cfg(any(adc_v1, adc_l0, adc_v2, adc_g4, adc_v4))]
#[cfg(any(adc_v1, adc_l0, adc_v2, adc_g4, adc_v4, adc_u5))]
fn setup(&mut self) {}
#[allow(unused)]
@ -101,7 +105,8 @@ pub(crate) fn blocking_delay_us(us: u32) {
adc_f3_v1_1,
adc_g0,
adc_u0,
adc_h5
adc_h5,
adc_u5
)))]
#[allow(private_bounds)]
pub trait Instance: SealedInstance + crate::Peripheral<P = Self> {
@ -120,7 +125,8 @@ pub trait Instance: SealedInstance + crate::Peripheral<P = Self> {
adc_f3_v1_1,
adc_g0,
adc_u0,
adc_h5
adc_h5,
adc_u5
))]
#[allow(private_bounds)]
pub trait Instance: SealedInstance + crate::Peripheral<P = Self> + crate::rcc::RccPeripheral {
@ -132,7 +138,7 @@ pub trait Instance: SealedInstance + crate::Peripheral<P = Self> + crate::rcc::R
pub trait AdcChannel<T>: SealedAdcChannel<T> + Sized {
#[allow(unused_mut)]
fn degrade_adc(mut self) -> AnyAdcChannel<T> {
#[cfg(any(adc_v1, adc_l0, adc_v2, adc_g4, adc_v4))]
#[cfg(any(adc_v1, adc_l0, adc_v2, adc_g4, adc_v4, adc_u5))]
self.setup();
AnyAdcChannel {
@ -158,6 +164,38 @@ impl<T: Instance> SealedAdcChannel<T> for AnyAdcChannel<T> {
}
}
#[cfg(adc_u5)]
foreach_adc!(
(ADC4, $common_inst:ident, $clock:ident) => {
impl crate::adc::adc4::SealedInstance for peripherals::ADC4 {
fn regs() -> crate::pac::adc::Adc4 {
crate::pac::ADC4
}
}
impl crate::adc::adc4::Instance for peripherals::ADC4 {
type Interrupt = crate::_generated::peripheral_interrupts::ADC4::GLOBAL;
}
};
($inst:ident, $common_inst:ident, $clock:ident) => {
impl crate::adc::SealedInstance for peripherals::$inst {
fn regs() -> crate::pac::adc::Adc {
crate::pac::$inst
}
fn common_regs() -> crate::pac::adccommon::AdcCommon {
return crate::pac::$common_inst
}
}
impl crate::adc::Instance for peripherals::$inst {
type Interrupt = crate::_generated::peripheral_interrupts::$inst::GLOBAL;
}
};
);
#[cfg(not(adc_u5))]
foreach_adc!(
($inst:ident, $common_inst:ident, $clock:ident) => {
impl crate::adc::SealedInstance for peripherals::$inst {
@ -165,7 +203,7 @@ foreach_adc!(
crate::pac::$inst
}
#[cfg(not(any(adc_f1, adc_v1, adc_l0, adc_f3_v2, adc_f3_v1_1, adc_g0, adc_u5)))]
#[cfg(not(any(adc_f1, adc_v1, adc_l0, adc_f3_v2, adc_f3_v1_1, adc_g0)))]
fn common_regs() -> crate::pac::adccommon::AdcCommon {
return crate::pac::$common_inst
}
@ -187,7 +225,7 @@ macro_rules! impl_adc_pin {
($inst:ident, $pin:ident, $ch:expr) => {
impl crate::adc::AdcChannel<peripherals::$inst> for crate::peripherals::$pin {}
impl crate::adc::SealedAdcChannel<peripherals::$inst> for crate::peripherals::$pin {
#[cfg(any(adc_v1, adc_l0, adc_v2, adc_g4, adc_v4))]
#[cfg(any(adc_v1, adc_l0, adc_v2, adc_g4, adc_v4, adc_u5))]
fn setup(&mut self) {
<Self as crate::gpio::SealedPin>::set_as_analog(self);
}
@ -202,12 +240,12 @@ macro_rules! impl_adc_pin {
/// Get the maximum reading value for this resolution.
///
/// This is `2**n - 1`.
#[cfg(not(any(adc_f1, adc_f3_v2, adc_u5)))]
#[cfg(not(any(adc_f1, adc_f3_v2)))]
pub const fn resolution_to_max_count(res: Resolution) -> u32 {
match res {
#[cfg(adc_v4)]
Resolution::BITS16 => (1 << 16) - 1,
#[cfg(adc_v4)]
#[cfg(any(adc_v4, adc_u5))]
Resolution::BITS14 => (1 << 14) - 1,
#[cfg(adc_v4)]
Resolution::BITS14V => (1 << 14) - 1,

View File

@ -0,0 +1,479 @@
#[allow(unused)]
use pac::adc::vals::{Adc4Dmacfg, Adc4Exten, Adc4OversamplingRatio};
use super::{blocking_delay_us, AdcChannel, AnyAdcChannel, RxDma4, SealedAdcChannel};
use crate::dma::Transfer;
pub use crate::pac::adc::regs::Adc4Chselrmod0;
pub use crate::pac::adc::vals::{Adc4Presc as Presc, Adc4Res as Resolution, Adc4SampleTime as SampleTime};
use crate::time::Hertz;
use crate::{pac, rcc, Peripheral};
const MAX_ADC_CLK_FREQ: Hertz = Hertz::mhz(55);
/// Default VREF voltage used for sample conversion to millivolts.
pub const VREF_DEFAULT_MV: u32 = 3300;
/// VREF voltage used for factory calibration of VREFINTCAL register.
pub const VREF_CALIB_MV: u32 = 3300;
const VREF_CHANNEL: u8 = 0;
const VCORE_CHANNEL: u8 = 12;
const TEMP_CHANNEL: u8 = 13;
const VBAT_CHANNEL: u8 = 14;
const DAC_CHANNEL: u8 = 21;
// NOTE: Vrefint/Temperature/Vbat are not available on all ADCs, this currently cannot be modeled with stm32-data, so these are available from the software on all ADCs
/// Internal voltage reference channel.
pub struct VrefInt;
impl<T: Instance> AdcChannel<T> for VrefInt {}
impl<T: Instance> SealedAdcChannel<T> for VrefInt {
fn channel(&self) -> u8 {
VREF_CHANNEL
}
}
/// Internal temperature channel.
pub struct Temperature;
impl<T: Instance> AdcChannel<T> for Temperature {}
impl<T: Instance> SealedAdcChannel<T> for Temperature {
fn channel(&self) -> u8 {
TEMP_CHANNEL
}
}
/// Internal battery voltage channel.
pub struct Vbat;
impl<T: Instance> AdcChannel<T> for Vbat {}
impl<T: Instance> SealedAdcChannel<T> for Vbat {
fn channel(&self) -> u8 {
VBAT_CHANNEL
}
}
/// Internal DAC channel.
pub struct Dac;
impl<T: Instance> AdcChannel<T> for Dac {}
impl<T: Instance> SealedAdcChannel<T> for Dac {
fn channel(&self) -> u8 {
DAC_CHANNEL
}
}
/// Internal Vcore channel.
pub struct Vcore;
impl<T: Instance> AdcChannel<T> for Vcore {}
impl<T: Instance> SealedAdcChannel<T> for Vcore {
fn channel(&self) -> u8 {
VCORE_CHANNEL
}
}
pub enum DacChannel {
OUT1,
OUT2,
}
/// Number of samples used for averaging.
pub enum Averaging {
Disabled,
Samples2,
Samples4,
Samples8,
Samples16,
Samples32,
Samples64,
Samples128,
Samples256,
}
pub const fn resolution_to_max_count(res: Resolution) -> u32 {
match res {
Resolution::BITS12 => (1 << 12) - 1,
Resolution::BITS10 => (1 << 10) - 1,
Resolution::BITS8 => (1 << 8) - 1,
Resolution::BITS6 => (1 << 6) - 1,
#[allow(unreachable_patterns)]
_ => core::unreachable!(),
}
}
// NOTE (unused): The prescaler enum closely copies the hardware capabilities,
// but high prescaling doesn't make a lot of sense in the current implementation and is ommited.
#[allow(unused)]
enum Prescaler {
NotDivided,
DividedBy2,
DividedBy4,
DividedBy6,
DividedBy8,
DividedBy10,
DividedBy12,
DividedBy16,
DividedBy32,
DividedBy64,
DividedBy128,
DividedBy256,
}
impl Prescaler {
fn from_ker_ck(frequency: Hertz) -> Self {
let raw_prescaler = frequency.0 / MAX_ADC_CLK_FREQ.0;
match raw_prescaler {
0 => Self::NotDivided,
1 => Self::DividedBy2,
2..=3 => Self::DividedBy4,
4..=5 => Self::DividedBy6,
6..=7 => Self::DividedBy8,
8..=9 => Self::DividedBy10,
10..=11 => Self::DividedBy12,
_ => unimplemented!(),
}
}
fn divisor(&self) -> u32 {
match self {
Prescaler::NotDivided => 1,
Prescaler::DividedBy2 => 2,
Prescaler::DividedBy4 => 4,
Prescaler::DividedBy6 => 6,
Prescaler::DividedBy8 => 8,
Prescaler::DividedBy10 => 10,
Prescaler::DividedBy12 => 12,
Prescaler::DividedBy16 => 16,
Prescaler::DividedBy32 => 32,
Prescaler::DividedBy64 => 64,
Prescaler::DividedBy128 => 128,
Prescaler::DividedBy256 => 256,
}
}
fn presc(&self) -> Presc {
match self {
Prescaler::NotDivided => Presc::DIV1,
Prescaler::DividedBy2 => Presc::DIV2,
Prescaler::DividedBy4 => Presc::DIV4,
Prescaler::DividedBy6 => Presc::DIV6,
Prescaler::DividedBy8 => Presc::DIV8,
Prescaler::DividedBy10 => Presc::DIV10,
Prescaler::DividedBy12 => Presc::DIV12,
Prescaler::DividedBy16 => Presc::DIV16,
Prescaler::DividedBy32 => Presc::DIV32,
Prescaler::DividedBy64 => Presc::DIV64,
Prescaler::DividedBy128 => Presc::DIV128,
Prescaler::DividedBy256 => Presc::DIV256,
}
}
}
pub trait SealedInstance {
#[allow(unused)]
fn regs() -> crate::pac::adc::Adc4;
}
pub trait Instance: SealedInstance + crate::Peripheral<P = Self> + crate::rcc::RccPeripheral {
type Interrupt: crate::interrupt::typelevel::Interrupt;
}
pub struct Adc4<'d, T: Instance> {
#[allow(unused)]
adc: crate::PeripheralRef<'d, T>,
}
#[derive(Debug)]
pub enum Adc4Error {
InvalidSequence,
DMAError,
}
impl<'d, T: Instance> Adc4<'d, T> {
/// Create a new ADC driver.
pub fn new(adc: impl Peripheral<P = T> + 'd) -> Self {
embassy_hal_internal::into_ref!(adc);
rcc::enable_and_reset::<T>();
let prescaler = Prescaler::from_ker_ck(T::frequency());
T::regs().ccr().modify(|w| w.set_presc(prescaler.presc()));
let frequency = Hertz(T::frequency().0 / prescaler.divisor());
info!("ADC4 frequency set to {} Hz", frequency.0);
if frequency > MAX_ADC_CLK_FREQ {
panic!("Maximal allowed frequency for ADC4 is {} MHz and it varies with different packages, refer to ST docs for more information.", MAX_ADC_CLK_FREQ.0 / 1_000_000 );
}
let mut s = Self { adc };
s.power_up();
s.calibrate();
blocking_delay_us(1);
s.enable();
s.configure();
s
}
fn power_up(&mut self) {
T::regs().isr().modify(|w| {
w.set_ldordy(true);
});
T::regs().cr().modify(|w| {
w.set_advregen(true);
});
while !T::regs().isr().read().ldordy() {}
T::regs().isr().modify(|w| {
w.set_ldordy(true);
});
}
fn calibrate(&mut self) {
T::regs().cr().modify(|w| w.set_adcal(true));
while T::regs().cr().read().adcal() {}
T::regs().isr().modify(|w| w.set_eocal(true));
}
fn enable(&mut self) {
T::regs().isr().write(|w| w.set_adrdy(true));
T::regs().cr().modify(|w| w.set_aden(true));
while !T::regs().isr().read().adrdy() {}
T::regs().isr().write(|w| w.set_adrdy(true));
}
fn configure(&mut self) {
// single conversion mode, software trigger
T::regs().cfgr1().modify(|w| {
w.set_cont(false);
w.set_discen(false);
w.set_exten(Adc4Exten::DISABLED);
w.set_chselrmod(false);
});
// only use one channel at the moment
T::regs().smpr().modify(|w| {
for i in 0..24 {
w.set_smpsel(i, false);
}
});
}
/// Enable reading the voltage reference internal channel.
pub fn enable_vrefint(&self) -> VrefInt {
T::regs().ccr().modify(|w| {
w.set_vrefen(true);
});
VrefInt {}
}
/// Enable reading the temperature internal channel.
pub fn enable_temperature(&self) -> Temperature {
T::regs().ccr().modify(|w| {
w.set_vsensesel(true);
});
Temperature {}
}
/// Enable reading the vbat internal channel.
pub fn enable_vbat(&self) -> Vbat {
T::regs().ccr().modify(|w| {
w.set_vbaten(true);
});
Vbat {}
}
/// Enable reading the vbat internal channel.
pub fn enable_vcore(&self) -> Vcore {
Vcore {}
}
/// Enable reading the vbat internal channel.
pub fn enable_dac_channel(&self, dac: DacChannel) -> Dac {
let mux;
match dac {
DacChannel::OUT1 => mux = false,
DacChannel::OUT2 => mux = true,
}
T::regs().or().modify(|w| w.set_chn21sel(mux));
Dac {}
}
/// Set the ADC sample time.
pub fn set_sample_time(&mut self, sample_time: SampleTime) {
T::regs().smpr().modify(|w| {
w.set_smp(0, sample_time);
});
}
/// Get the ADC sample time.
pub fn sample_time(&self) -> SampleTime {
T::regs().smpr().read().smp(0)
}
/// Set the ADC resolution.
pub fn set_resolution(&mut self, resolution: Resolution) {
T::regs().cfgr1().modify(|w| w.set_res(resolution.into()));
}
/// Set hardware averaging.
pub fn set_averaging(&mut self, averaging: Averaging) {
let (enable, samples, right_shift) = match averaging {
Averaging::Disabled => (false, Adc4OversamplingRatio::OVERSAMPLE2X, 0),
Averaging::Samples2 => (true, Adc4OversamplingRatio::OVERSAMPLE2X, 1),
Averaging::Samples4 => (true, Adc4OversamplingRatio::OVERSAMPLE4X, 2),
Averaging::Samples8 => (true, Adc4OversamplingRatio::OVERSAMPLE8X, 3),
Averaging::Samples16 => (true, Adc4OversamplingRatio::OVERSAMPLE16X, 4),
Averaging::Samples32 => (true, Adc4OversamplingRatio::OVERSAMPLE32X, 5),
Averaging::Samples64 => (true, Adc4OversamplingRatio::OVERSAMPLE64X, 6),
Averaging::Samples128 => (true, Adc4OversamplingRatio::OVERSAMPLE128X, 7),
Averaging::Samples256 => (true, Adc4OversamplingRatio::OVERSAMPLE256X, 8),
};
T::regs().cfgr2().modify(|w| {
w.set_ovsr(samples);
w.set_ovss(right_shift);
w.set_ovse(enable)
})
}
/// Read an ADC channel.
pub fn blocking_read(&mut self, channel: &mut impl AdcChannel<T>) -> u16 {
channel.setup();
// Select channel
T::regs().chselrmod0().write_value(Adc4Chselrmod0(0_u32));
T::regs().chselrmod0().modify(|w| {
w.set_chsel(channel.channel() as usize, true);
});
// Reset interrupts
T::regs().isr().modify(|reg| {
reg.set_eos(true);
reg.set_eoc(true);
});
// Start conversion
T::regs().cr().modify(|reg| {
reg.set_adstart(true);
});
while !T::regs().isr().read().eos() {
// spin
}
T::regs().dr().read().0 as u16
}
/// Read one or multiple ADC channels using DMA.
///
/// `sequence` iterator and `readings` must have the same length.
/// The channels in `sequence` must be in ascending order.
///
/// Example
/// ```rust,ignore
/// use embassy_stm32::adc::adc4;
/// use embassy_stm32::adc::AdcChannel;
///
/// let mut adc4 = adc4::Adc4::new(p.ADC4);
/// let mut adc4_pin1 = p.PC1;
/// let mut adc4_pin2 = p.PC0;
/// let mut degraded41 = adc4_pin1.degrade_adc();
/// let mut degraded42 = adc4_pin2.degrade_adc();
/// let mut measurements = [0u16; 2];
/// // not that the channels must be in ascending order
/// adc4.read(
/// &mut p.GPDMA1_CH1,
/// [
/// &mut degraded42,
/// &mut degraded41,
/// ]
/// .into_iter(),
/// &mut measurements,
/// ).await.unwrap();
/// ```
pub async fn read(
&mut self,
rx_dma: &mut impl RxDma4<T>,
sequence: impl ExactSizeIterator<Item = &mut AnyAdcChannel<T>>,
readings: &mut [u16],
) -> Result<(), Adc4Error> {
assert!(sequence.len() != 0, "Asynchronous read sequence cannot be empty");
assert!(
sequence.len() == readings.len(),
"Sequence length must be equal to readings length"
);
// Ensure no conversions are ongoing
Self::cancel_conversions();
T::regs().isr().modify(|reg| {
reg.set_ovr(true);
reg.set_eos(true);
reg.set_eoc(true);
});
T::regs().cfgr1().modify(|reg| {
reg.set_dmaen(true);
reg.set_dmacfg(Adc4Dmacfg::ONESHOT);
reg.set_chselrmod(false);
});
// Verify and activate sequence
let mut prev_channel: i16 = -1;
T::regs().chselrmod0().write_value(Adc4Chselrmod0(0_u32));
for channel in sequence {
let channel_num = channel.channel;
if channel_num as i16 <= prev_channel {
return Err(Adc4Error::InvalidSequence);
};
prev_channel = channel_num as i16;
T::regs().chselrmod0().modify(|w| {
w.set_chsel(channel.channel as usize, true);
});
}
let request = rx_dma.request();
let transfer = unsafe {
Transfer::new_read(
rx_dma,
request,
T::regs().dr().as_ptr() as *mut u16,
readings,
Default::default(),
)
};
// Start conversion
T::regs().cr().modify(|reg| {
reg.set_adstart(true);
});
transfer.await;
// Ensure conversions are finished.
Self::cancel_conversions();
// Reset configuration.
T::regs().cfgr1().modify(|reg| {
reg.set_dmaen(false);
});
if T::regs().isr().read().ovr() {
Err(Adc4Error::DMAError)
} else {
Ok(())
}
}
fn cancel_conversions() {
if T::regs().cr().read().adstart() && !T::regs().cr().read().addis() {
T::regs().cr().modify(|reg| {
reg.set_adstp(true);
});
while T::regs().cr().read().adstart() {}
}
}
}

View File

@ -1,5 +1,7 @@
#[cfg(not(stm32u5))]
use pac::adc::vals::{Adcaldif, Boost};
#[allow(unused)]
use pac::adc::vals::{Adcaldif, Adstp, Boost, Difsel, Dmngt, Exten, Pcsel};
use pac::adc::vals::{Adstp, Difsel, Dmngt, Exten, Pcsel};
use pac::adccommon::vals::Presc;
use super::{
@ -19,6 +21,8 @@ pub const VREF_CALIB_MV: u32 = 3300;
const MAX_ADC_CLK_FREQ: Hertz = Hertz::mhz(60);
#[cfg(stm32h7)]
const MAX_ADC_CLK_FREQ: Hertz = Hertz::mhz(50);
#[cfg(stm32u5)]
const MAX_ADC_CLK_FREQ: Hertz = Hertz::mhz(55);
#[cfg(stm32g4)]
const VREF_CHANNEL: u8 = 18;
@ -31,8 +35,16 @@ const VREF_CHANNEL: u8 = 19;
const TEMP_CHANNEL: u8 = 18;
// TODO this should be 14 for H7a/b/35
#[cfg(not(stm32u5))]
const VBAT_CHANNEL: u8 = 17;
#[cfg(stm32u5)]
const VREF_CHANNEL: u8 = 0;
#[cfg(stm32u5)]
const TEMP_CHANNEL: u8 = 19;
#[cfg(stm32u5)]
const VBAT_CHANNEL: u8 = 18;
// NOTE: Vrefint/Temperature/Vbat are not available on all ADCs, this currently cannot be modeled with stm32-data, so these are available from the software on all ADCs
/// Internal voltage reference channel.
pub struct VrefInt;
@ -209,6 +221,7 @@ impl<'d, T: Instance> Adc<'d, T> {
fn calibrate(&mut self) {
T::regs().cr().modify(|w| {
#[cfg(not(adc_u5))]
w.set_adcaldif(Adcaldif::SINGLEENDED);
w.set_adcallin(true);
});
@ -446,7 +459,7 @@ impl<'d, T: Instance> Adc<'d, T> {
Self::set_channel_sample_time(channel, sample_time);
#[cfg(stm32h7)]
#[cfg(any(stm32h7, stm32u5))]
{
T::regs().cfgr2().modify(|w| w.set_lshift(0));
T::regs()

View File

@ -238,6 +238,10 @@ pub struct Config {
#[cfg(any(stm32l4, stm32l5, stm32u5))]
pub enable_independent_io_supply: bool,
/// On the U5 series all analog peripherals are powered by a separate supply.
#[cfg(stm32u5)]
pub enable_independent_analog_supply: bool,
/// BDMA interrupt priority.
///
/// Defaults to P0 (highest).
@ -277,6 +281,8 @@ impl Default for Config {
enable_debug_during_sleep: true,
#[cfg(any(stm32l4, stm32l5, stm32u5))]
enable_independent_io_supply: true,
#[cfg(stm32u5)]
enable_independent_analog_supply: true,
#[cfg(bdma)]
bdma_interrupt_priority: Priority::P0,
#[cfg(dma)]
@ -527,6 +533,20 @@ fn init_hw(config: Config) -> Peripherals {
crate::pac::PWR.svmcr().modify(|w| {
w.set_io2sv(config.enable_independent_io_supply);
});
if config.enable_independent_analog_supply {
crate::pac::PWR.svmcr().modify(|w| {
w.set_avm1en(true);
});
while !crate::pac::PWR.svmsr().read().vdda1rdy() {}
crate::pac::PWR.svmcr().modify(|w| {
w.set_asv(true);
});
} else {
crate::pac::PWR.svmcr().modify(|w| {
w.set_avm1en(false);
w.set_avm2en(false);
});
}
}
// dead battery functionality is still present on these

View File

@ -0,0 +1,109 @@
#![no_std]
#![no_main]
use defmt::*;
use embassy_stm32::adc;
use embassy_stm32::adc::{adc4, AdcChannel};
use {defmt_rtt as _, panic_probe as _};
#[embassy_executor::main]
async fn main(_spawner: embassy_executor::Spawner) {
let config = embassy_stm32::Config::default();
let mut p = embassy_stm32::init(config);
// **** ADC1 init ****
let mut adc1 = adc::Adc::new(p.ADC1);
let mut adc1_pin1 = p.PA3; // A0 on nucleo u5a5
let mut adc1_pin2 = p.PA2; // A1
adc1.set_resolution(adc::Resolution::BITS14);
adc1.set_averaging(adc::Averaging::Samples1024);
adc1.set_sample_time(adc::SampleTime::CYCLES160_5);
let max1 = adc::resolution_to_max_count(adc::Resolution::BITS14);
// **** ADC2 init ****
let mut adc2 = adc::Adc::new(p.ADC2);
let mut adc2_pin1 = p.PC3; // A2
let mut adc2_pin2 = p.PB0; // A3
adc2.set_resolution(adc::Resolution::BITS14);
adc2.set_averaging(adc::Averaging::Samples1024);
adc2.set_sample_time(adc::SampleTime::CYCLES160_5);
let max2 = adc::resolution_to_max_count(adc::Resolution::BITS14);
// **** ADC4 init ****
let mut adc4 = adc4::Adc4::new(p.ADC4);
let mut adc4_pin1 = p.PC1; // A4
let mut adc4_pin2 = p.PC0; // A5
adc4.set_resolution(adc4::Resolution::BITS12);
adc4.set_averaging(adc4::Averaging::Samples256);
adc4.set_sample_time(adc4::SampleTime::CYCLES1_5);
let max4 = adc4::resolution_to_max_count(adc4::Resolution::BITS12);
// **** ADC1 blocking read ****
let raw: u16 = adc1.blocking_read(&mut adc1_pin1);
let volt: f32 = 3.3 * raw as f32 / max1 as f32;
info!("Read adc1 pin 1 {}", volt);
let raw: u16 = adc1.blocking_read(&mut adc1_pin2);
let volt: f32 = 3.3 * raw as f32 / max1 as f32;
info!("Read adc1 pin 2 {}", volt);
// **** ADC2 blocking read ****
let raw: u16 = adc2.blocking_read(&mut adc2_pin1);
let volt: f32 = 3.3 * raw as f32 / max2 as f32;
info!("Read adc2 pin 1 {}", volt);
let raw: u16 = adc2.blocking_read(&mut adc2_pin2);
let volt: f32 = 3.3 * raw as f32 / max2 as f32;
info!("Read adc2 pin 2 {}", volt);
// **** ADC4 blocking read ****
let raw: u16 = adc4.blocking_read(&mut adc4_pin1);
let volt: f32 = 3.3 * raw as f32 / max4 as f32;
info!("Read adc4 pin 1 {}", volt);
let raw: u16 = adc4.blocking_read(&mut adc4_pin2);
let volt: f32 = 3.3 * raw as f32 / max4 as f32;
info!("Read adc4 pin 2 {}", volt);
// **** ADC1 async read ****
let mut degraded11 = adc1_pin1.degrade_adc();
let mut degraded12 = adc1_pin2.degrade_adc();
let mut measurements = [0u16; 2];
adc1.read(
&mut p.GPDMA1_CH0,
[
(&mut degraded11, adc::SampleTime::CYCLES160_5),
(&mut degraded12, adc::SampleTime::CYCLES160_5),
]
.into_iter(),
&mut measurements,
)
.await;
let volt1: f32 = 3.3 * measurements[0] as f32 / max1 as f32;
let volt2: f32 = 3.3 * measurements[1] as f32 / max1 as f32;
info!("Async read 1 pin 1 {}", volt1);
info!("Async read 1 pin 2 {}", volt2);
// **** ADC2 does not support async read ****
// **** ADC4 async read ****
let mut degraded41 = adc4_pin1.degrade_adc();
let mut degraded42 = adc4_pin2.degrade_adc();
let mut measurements = [0u16; 2];
// The channels must be in ascending order and can't repeat for ADC4
adc4.read(
&mut p.GPDMA1_CH1,
[&mut degraded42, &mut degraded41].into_iter(),
&mut measurements,
)
.await
.unwrap();
let volt2: f32 = 3.3 * measurements[0] as f32 / max4 as f32;
let volt1: f32 = 3.3 * measurements[1] as f32 / max4 as f32;
info!("Async read 4 pin 1 {}", volt1);
info!("Async read 4 pin 2 {}", volt2);
}