first batch of changes after review

This commit is contained in:
1-rafael-1 2025-05-02 23:51:28 +02:00
parent a33e7172f6
commit 3441e80507
4 changed files with 133 additions and 230 deletions

View File

@ -9,9 +9,8 @@
//!
//! For most users, these functions provide an easy way to configure clocks:
//!
//! - `ClockConfig::crystal(12_000_000)` - Default configuration with 12MHz crystal giving 125MHz system clock
//! - `ClockConfig::at_sys_frequency_mhz(200)` - Set system clock to a specific frequency with automatic voltage scaling
//! - `ClockConfig::with_external_crystal(16_000_000)` - Configure with a non-standard crystal frequency
//! - `ClockConfig::crystal(12_000_000)` - Default configuration with 12MHz crystal giving 125MHz system clock
//!
//! ## Manual Configuration
//!
@ -34,19 +33,9 @@
//! });
//!
//! // Set voltage for overclocking
//! config.voltage_scale = Some(VoltageScale::V1_15);
//! config.core_voltage = CoreVoltage::V1_15;
//! ```
//!
//! ## Voltage Scaling for Overclocking (RP2040 only)
//!
//! When overclocking beyond 133MHz, higher core voltages are needed:
//!
//! - Up to 133MHz: `VoltageScale::V1_10` (default)
//! - 133-200MHz: `VoltageScale::V1_15`
//! - Above 200MHz: `VoltageScale::V1_20` or higher
//!
//! The `at_sys_frequency_mhz()` function automatically sets appropriate voltages.
//!
//! ## Examples
//!
//! ### Standard 125MHz configuration
@ -61,16 +50,16 @@
//!
//! ### Overclock to 200MHz
//! ```rust,ignore
//! let config = ClockConfig::at_sys_frequency_mhz(200);
//! let config = ClockConfig::crystal_freq(200_000_000);
//! ```
//!
//! ### Manual configuration for advanced scenarios
//! ```rust,ignore
//! use embassy_rp::clocks::{ClockConfig, XoscConfig, PllConfig, VoltageScale};
//! use embassy_rp::clocks::{ClockConfig, XoscConfig, PllConfig, CoreVoltage};
//!
//! // Start with defaults and customize
//! let mut config = ClockConfig::default();
//! config.voltage_scale = Some(VoltageScale::V1_15);
//! config.core_voltage = CoreVoltage::V1_15;
//! // Set other parameters as needed...
//! ```
@ -144,14 +133,16 @@ pub enum PeriClkSrc {
// Gpin1 = ClkPeriCtrlAuxsrc::CLKSRC_GPIN1 as _ ,
}
/// Core voltage scaling options for RP2040.
/// Core voltage regulator settings for RP2040.
///
/// The RP2040 voltage regulator can be configured for different output voltages.
/// Higher voltages allow for higher clock frequencies but increase power consumption and heat.
#[cfg(feature = "rp2040")]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[repr(u8)]
pub enum VoltageScale {
pub enum CoreVoltage {
/// 0.80V - Suitable for lower frequencies
V0_80 = 0b0000,
/// 0.85V
V0_85 = 0b0110,
/// 0.90V
@ -162,11 +153,11 @@ pub enum VoltageScale {
V1_00 = 0b1001,
/// 1.05V
V1_05 = 0b1010,
/// 1.10V
/// 1.10V - Default voltage level
V1_10 = 0b1011,
/// 1.15V
/// 1.15V - Required for overclocking to 133-200MHz
V1_15 = 0b1100,
/// 1.20V
/// 1.20V - Required for overclocking above 200MHz
V1_20 = 0b1101,
/// 1.25V
V1_25 = 0b1110,
@ -175,21 +166,22 @@ pub enum VoltageScale {
}
#[cfg(feature = "rp2040")]
impl VoltageScale {
impl CoreVoltage {
/// Get the recommended Brown-Out Detection (BOD) setting for this voltage.
/// Sets the BOD threshold to approximately 90% of the core voltage.
fn recommended_bod(self) -> u8 {
match self {
VoltageScale::V0_85 => 0b0111, // 0.774V (~91% of 0.85V)
VoltageScale::V0_90 => 0b1000, // 0.817V (~91% of 0.90V)
VoltageScale::V0_95 => 0b1001, // 0.860V (~91% of 0.95V)
VoltageScale::V1_00 => 0b1010, // 0.903V (~90% of 1.00V)
VoltageScale::V1_05 => 0b1011, // 0.946V (~90% of 1.05V)
VoltageScale::V1_10 => 0b1100, // 0.989V (~90% of 1.10V)
VoltageScale::V1_15 => 0b1101, // 1.032V (~90% of 1.15V)
VoltageScale::V1_20 => 0b1110, // 1.075V (~90% of 1.20V)
VoltageScale::V1_25 => 0b1111, // 1.118V (~89% of 1.25V)
VoltageScale::V1_30 => 0b1111, // 1.118V (~86% of 1.30V) - using max available threshold
CoreVoltage::V0_80 => 0b0110, // 0.720V (~90% of 0.80V)
CoreVoltage::V0_85 => 0b0111, // 0.774V (~91% of 0.85V)
CoreVoltage::V0_90 => 0b1000, // 0.817V (~91% of 0.90V)
CoreVoltage::V0_95 => 0b1001, // 0.860V (~91% of 0.95V)
CoreVoltage::V1_00 => 0b1010, // 0.903V (~90% of 1.00V)
CoreVoltage::V1_05 => 0b1011, // 0.946V (~90% of 1.05V)
CoreVoltage::V1_10 => 0b1100, // 0.989V (~90% of 1.10V)
CoreVoltage::V1_15 => 0b1101, // 1.032V (~90% of 1.15V)
CoreVoltage::V1_20 => 0b1110, // 1.075V (~90% of 1.20V)
CoreVoltage::V1_25 => 0b1111, // 1.118V (~89% of 1.25V)
CoreVoltage::V1_30 => 0b1111, // 1.118V (~86% of 1.30V) - using max available threshold
}
}
}
@ -214,9 +206,9 @@ pub struct ClockConfig {
/// RTC clock configuration.
#[cfg(feature = "rp2040")]
pub rtc_clk: Option<RtcClkConfig>,
/// Core voltage scaling (RP2040 only). Defaults to 1.10V if None.
/// Core voltage scaling (RP2040 only). Defaults to 1.10V.
#[cfg(feature = "rp2040")]
pub voltage_scale: Option<VoltageScale>,
pub core_voltage: CoreVoltage,
/// Voltage stabilization delay in microseconds.
/// If not set, defaults will be used based on voltage level.
#[cfg(feature = "rp2040")]
@ -255,7 +247,7 @@ impl Default for ClockConfig {
#[cfg(feature = "rp2040")]
rtc_clk: None,
#[cfg(feature = "rp2040")]
voltage_scale: None,
core_voltage: CoreVoltage::V1_10,
#[cfg(feature = "rp2040")]
voltage_stabilization_delay_us: None,
// gpin0: None,
@ -327,7 +319,7 @@ impl ClockConfig {
phase: 0,
}),
#[cfg(feature = "rp2040")]
voltage_scale: None, // Use hardware default (1.10V)
core_voltage: CoreVoltage::V1_10, // Use hardware default (1.10V)
#[cfg(feature = "rp2040")]
voltage_stabilization_delay_us: None,
// gpin0: None,
@ -371,7 +363,7 @@ impl ClockConfig {
phase: 0,
}),
#[cfg(feature = "rp2040")]
voltage_scale: None, // Use hardware default (1.10V)
core_voltage: CoreVoltage::V1_10, // Use hardware default (1.10V)
#[cfg(feature = "rp2040")]
voltage_stabilization_delay_us: None,
// gpin0: None,
@ -379,146 +371,59 @@ impl ClockConfig {
}
}
/// Configure the system clock to a specific frequency in MHz.
///
/// This is a user-friendly way to configure the system clock, similar to
/// the Pico SDK's approach. It automatically handles voltage scaling based on the
/// requested frequency and uses the standard 12MHz crystal found on most RP2040 boards.
///
/// # Arguments
///
/// * `sys_freq_mhz` - The target system clock frequency in MHz
///
/// # Example
///
/// ```rust,ignore
/// // Overclock to 200MHz
/// let config = ClockConfig::at_sys_frequency_mhz(200);
/// ```
#[cfg(feature = "rp2040")]
pub fn at_sys_frequency_mhz(sys_freq_mhz: u32) -> Self {
// For 125MHz, use exactly the same config as the default to avoid any differences
if sys_freq_mhz == 125 {
return Self::crystal(12_000_000);
}
// For other frequencies, provide appropriate voltage scaling and PLL configuration
// Standard crystal on Raspberry Pi Pico boards is 12MHz
const DEFAULT_CRYSTAL_HZ: u32 = 12_000_000;
let sys_freq_hz = sys_freq_mhz * 1_000_000;
let config = Self::crystal_freq(DEFAULT_CRYSTAL_HZ, sys_freq_hz);
config
}
/// Configure the system clock to a specific frequency in Hz, using a custom crystal frequency.
///
/// This more flexible version allows specifying both the crystal frequency and target
/// system frequency for boards with non-standard crystals.
///
/// # Arguments
///
/// * `crystal_hz` - The frequency of the external crystal in Hz
/// * `sys_freq_hz` - The target system clock frequency in Hz
///
/// # Example
///
/// ```rust,ignore
/// // Use a non-standard 16MHz crystal to achieve 250MHz
/// let config = ClockConfig::with_custom_crystal(16_000_000, 250_000_000);
/// ```
#[cfg(feature = "rp2040")]
pub fn with_custom_crystal(crystal_hz: u32, sys_freq_hz: u32) -> Self {
Self::crystal_freq(crystal_hz, sys_freq_hz)
}
/// Configure clocks derived from an external crystal with specific system frequency.
///
/// This function calculates optimal PLL parameters to achieve the requested system
/// frequency from the given crystal frequency. It's used internally by higher-level
/// configuration functions.
/// frequency. This only works for the usual 12MHz crystal. In case a different crystal is used,
/// You will have to set the PLL parameters manually.
///
/// # Arguments
///
/// * `crystal_hz` - The frequency of the external crystal in Hz
/// * `sys_freq_hz` - The desired system clock frequency in Hz
///
/// # Returns
///
/// A ClockConfig configured to achieve the requested system frequency using the
/// specified crystal, or panic if no valid parameters can be found.
/// the usual 12Mhz crystal, or panic if no valid parameters can be found.
///
/// # Note on core voltage:
/// To date the only officially documented core voltages (see Datasheet section 2.15.3.1. Instances) are:
/// - Up to 133MHz: V1_10 (default)
/// - Above 133MHz: V1_15, but in the context of the datasheet covering reaching up to 200Mhz
/// That way all other frequencies below 133MHz or above 200MHz are not explicitly documented and not covered here.
/// In case You want to go below 133MHz or above 200MHz and want a different voltage, You will have to set that manually and with caution.
#[cfg(feature = "rp2040")]
fn crystal_freq(crystal_hz: u32, sys_freq_hz: u32) -> Self {
pub fn crystal_freq(sys_freq_hz: u32) -> Self {
// Start with the standard configuration from crystal()
const DEFAULT_CRYSTAL_HZ: u32 = 12_000_000;
let mut config = Self::crystal(DEFAULT_CRYSTAL_HZ);
// No need to modify anything if target frequency is already 125MHz
// (which is what crystal() configures by default)
if sys_freq_hz == 125_000_000 {
return config;
}
// Find optimal PLL parameters for the requested frequency
let sys_pll_params = find_pll_params(crystal_hz, sys_freq_hz)
let sys_pll_params = find_pll_params(DEFAULT_CRYSTAL_HZ, sys_freq_hz)
.unwrap_or_else(|| panic!("Could not find valid PLL parameters for system clock"));
// Replace the sys_pll configuration with our custom parameters
if let Some(xosc) = &mut config.xosc {
xosc.sys_pll = Some(sys_pll_params);
}
// Set the voltage scale based on the target frequency
// Higher frequencies require higher voltage
let voltage_scale = match sys_freq_hz {
freq if freq > 200_000_000 => Some(VoltageScale::V1_20),
freq if freq > 133_000_000 => Some(VoltageScale::V1_15),
_ => None, // Use default voltage (V1_10)
};
// For USB PLL, we always want 48MHz for USB
let usb_pll_params = if crystal_hz == 12_000_000 {
// For standard 12MHz crystal, use the default parameters
PllConfig {
refdiv: 1,
fbdiv: 120,
post_div1: 6,
post_div2: 5,
}
} else {
// For other crystals, calculate parameters to get 48MHz
find_pll_params(crystal_hz, 48_000_000)
.unwrap_or_else(|| panic!("Could not find valid PLL parameters for USB clock"))
};
Self {
rosc: Some(RoscConfig {
hz: 6_500_000,
range: RoscRange::Medium,
drive_strength: [0; 8],
div: 16,
}),
xosc: Some(XoscConfig {
hz: crystal_hz,
sys_pll: Some(sys_pll_params),
usb_pll: Some(usb_pll_params),
delay_multiplier: 128,
}),
ref_clk: RefClkConfig {
src: RefClkSrc::Xosc,
div: 1,
},
sys_clk: SysClkConfig {
src: SysClkSrc::PllSys,
div_int: 1,
div_frac: 0,
},
peri_clk_src: Some(PeriClkSrc::Sys),
usb_clk: Some(UsbClkConfig {
src: UsbClkSrc::PllUsb,
div: 1,
phase: 0,
}),
adc_clk: Some(AdcClkConfig {
src: AdcClkSrc::PllUsb,
div: 1,
phase: 0,
}),
rtc_clk: Some(RtcClkConfig {
src: RtcClkSrc::PllUsb,
div_int: 1024,
div_frac: 0,
phase: 0,
}),
voltage_scale,
voltage_stabilization_delay_us: None,
#[cfg(feature = "rp2040")]
{
config.core_voltage = match sys_freq_hz {
freq if freq > 133_000_000 => CoreVoltage::V1_15,
_ => CoreVoltage::V1_10, // Use default voltage (V1_10)
};
}
config
}
/// Configure with manual PLL settings for full control over system clock
@ -530,7 +435,7 @@ impl ClockConfig {
///
/// * `xosc_hz` - The frequency of the external crystal in Hz
/// * `pll_config` - The PLL configuration parameters to achieve desired frequency
/// * `voltage_scale` - Optional voltage scaling for overclocking (required for >133MHz)
/// * `core_voltage` - Voltage scaling for overclocking (required for >133MHz)
///
/// # Returns
///
@ -549,11 +454,11 @@ impl ClockConfig {
/// post_div1: 3, // First post divider (1200 MHz / 3 = 400 MHz)
/// post_div2: 2, // Second post divider (400 MHz / 2 = 200 MHz)
/// },
/// Some(VoltageScale::V1_15)
/// CoreVoltage::V1_15
/// );
/// ```
#[cfg(feature = "rp2040")]
pub fn manual_pll(xosc_hz: u32, pll_config: PllConfig, voltage_scale: Option<VoltageScale>) -> Self {
pub fn manual_pll(xosc_hz: u32, pll_config: PllConfig, core_voltage: CoreVoltage) -> Self {
// Calculate the actual output frequency for documentation
// let ref_freq = xosc_hz / pll_config.refdiv as u32;
// let vco_freq = ref_freq * pll_config.fbdiv as u32;
@ -587,7 +492,7 @@ impl ClockConfig {
div_frac: 0,
};
config.voltage_scale = voltage_scale;
config.core_voltage = core_voltage;
config.peri_clk_src = Some(PeriClkSrc::Sys);
// Set reasonable defaults for other clocks
@ -865,7 +770,7 @@ pub struct RtcClkConfig {
///
/// # Parameters
///
/// * `input_hz`: The input frequency in Hz (typically the crystal frequency, e.g. 12MHz)
/// * `input_hz`: The input frequency in Hz (typically the crystal frequency, e.g. 12MHz for th most common one used on rp2040 boards)
/// * `target_hz`: The desired output frequency in Hz (e.g. 125MHz for standard RP2040 operation)
///
/// # Returns
@ -990,7 +895,8 @@ pub(crate) unsafe fn init(config: ClockConfig) {
// Set Core Voltage (RP2040 only), if we have config for it and we're not using the default
#[cfg(feature = "rp2040")]
if let Some(voltage) = config.voltage_scale {
{
let voltage = config.core_voltage;
let vreg = pac::VREG_AND_CHIP_RESET;
let current_vsel = vreg.vreg().read().vsel();
let target_vsel = voltage as u8;
@ -1002,9 +908,9 @@ pub(crate) unsafe fn init(config: ClockConfig) {
// Wait for the voltage to stabilize. Use the provided delay or default based on voltage
let settling_time_us = config.voltage_stabilization_delay_us.unwrap_or_else(|| {
match voltage {
VoltageScale::V1_15 => 1000, // 1ms for 1.15V
VoltageScale::V1_20 | VoltageScale::V1_25 | VoltageScale::V1_30 => 2000, // 2ms for higher voltages
_ => 0, // no delay for all others
CoreVoltage::V1_15 => 1000, // 1ms for 1.15V
CoreVoltage::V1_20 | CoreVoltage::V1_25 | CoreVoltage::V1_30 => 2000, // 2ms for higher voltages
_ => 0, // no delay for all others
}
});
@ -1042,9 +948,8 @@ pub(crate) unsafe fn init(config: ClockConfig) {
};
CLOCKS.xosc.store(xosc_freq, Ordering::Relaxed);
// SETUP TEMPORARY STABLE CLOCKS FIRST
// Setup temporary stable clocks first
// Configure USB PLL for our stable temporary clock
// This follows the SDK's approach of using USB PLL as a stable intermediate clock
let pll_usb_freq = match &config.xosc {
Some(config) => match &config.usb_pll {
Some(pll_usb_config) => {
@ -1055,7 +960,13 @@ pub(crate) unsafe fn init(config: ClockConfig) {
reset::unreset_wait(peris);
// Configure the USB PLL - this should give us 48MHz
let usb_pll_freq = configure_pll(pac::PLL_USB, xosc_freq, *pll_usb_config);
let usb_pll_freq = match configure_pll(pac::PLL_USB, xosc_freq, *pll_usb_config) {
Ok(freq) => freq,
Err(_) => {
panic!("Failed to configure USB PLL");
}
};
CLOCKS.pll_usb.store(usb_pll_freq, Ordering::Relaxed);
usb_pll_freq
}
@ -1074,7 +985,7 @@ pub(crate) unsafe fn init(config: ClockConfig) {
while c.clk_ref_selected().read() != pac::clocks::regs::ClkRefSelected(1 << ClkRefCtrlSrc::XOSC_CLKSRC as u32) {}
// First switch the system clock to a stable source (USB PLL at 48MHz)
// This follows the Pico SDK's approach to ensure stability during reconfiguration
// This follows the official Pico SDK's approach to ensure stability during reconfiguration
c.clk_sys_ctrl().write(|w| {
w.set_auxsrc(ClkSysCtrlAuxsrc::CLKSRC_PLL_USB);
w.set_src(ClkSysCtrlSrc::CLKSRC_CLK_SYS_AUX);
@ -1101,7 +1012,12 @@ pub(crate) unsafe fn init(config: ClockConfig) {
reset::unreset_wait(peris);
// Configure the SYS PLL
let pll_sys_freq = configure_pll(pac::PLL_SYS, xosc_freq, *sys_pll_config);
let pll_sys_freq = match configure_pll(pac::PLL_SYS, xosc_freq, *sys_pll_config) {
Ok(freq) => freq,
Err(_) => {
panic!("Failed to configure system PLL");
}
};
// Ensure PLL is locked and stable
cortex_m::asm::delay(100);
@ -1411,7 +1327,7 @@ fn start_xosc(crystal_hz: u32, delay_multiplier: u32) {
/// PLL (Phase-Locked Loop) configuration
#[inline(always)]
fn configure_pll(p: pac::pll::Pll, input_freq: u32, config: PllConfig) -> u32 {
fn configure_pll(p: pac::pll::Pll, input_freq: u32, config: PllConfig) -> Result<u32, &'static str> {
// Calculate reference frequency
let ref_freq = input_freq / config.refdiv as u32;
@ -1482,7 +1398,7 @@ fn configure_pll(p: pac::pll::Pll, input_freq: u32, config: PllConfig) -> u32 {
timeout -= 1;
if timeout == 0 {
// PLL failed to lock, return 0 to indicate failure
return 0;
return Err("PLL failed to lock");
}
}
@ -1502,7 +1418,7 @@ fn configure_pll(p: pac::pll::Pll, input_freq: u32, config: PllConfig) -> u32 {
cortex_m::asm::delay(100);
// Calculate and return actual output frequency
vco_freq / ((config.post_div1 * config.post_div2) as u32)
Ok(vco_freq / ((config.post_div1 * config.post_div2) as u32))
}
/// General purpose input clock pin.
@ -1883,25 +1799,6 @@ pub fn dormant_sleep() {
mod tests {
use super::*;
#[cfg(feature = "rp2040")]
#[test]
fn test_voltage_scale_bod_values() {
// Test that each voltage level maps to the correct BOD threshold (approx. 90% of VDD)
// This verifies our BOD settings match our documentation
{
assert_eq!(VoltageScale::V0_85.recommended_bod(), 0b0111); // ~0.774V (91% of 0.85V)
assert_eq!(VoltageScale::V0_90.recommended_bod(), 0b1000); // ~0.817V (91% of 0.90V)
assert_eq!(VoltageScale::V0_95.recommended_bod(), 0b1001); // ~0.860V (91% of 0.95V)
assert_eq!(VoltageScale::V1_00.recommended_bod(), 0b1010); // ~0.903V (90% of 1.00V)
assert_eq!(VoltageScale::V1_05.recommended_bod(), 0b1011); // ~0.946V (90% of 1.05V)
assert_eq!(VoltageScale::V1_10.recommended_bod(), 0b1100); // ~0.989V (90% of 1.10V)
assert_eq!(VoltageScale::V1_15.recommended_bod(), 0b1101); // ~1.032V (90% of 1.15V)
assert_eq!(VoltageScale::V1_20.recommended_bod(), 0b1110); // ~1.075V (90% of 1.20V)
assert_eq!(VoltageScale::V1_25.recommended_bod(), 0b1111); // ~1.118V (89% of 1.25V)
assert_eq!(VoltageScale::V1_30.recommended_bod(), 0b1111); // ~1.118V (86% of 1.30V) - using max available
}
}
#[cfg(feature = "rp2040")]
#[test]
fn test_find_pll_params() {
@ -1942,7 +1839,12 @@ mod tests {
let vco_freq = (16_000_000 / params.refdiv as u32) as u64 * params.fbdiv as u64;
let output_freq = (vco_freq / ((params.post_div1 * params.post_div2) as u64)) as u32;
// With a 16 MHz crystal, we might not get exactly 125 MHz
// Test non-standard crystal with 15 MHz
let params = find_pll_params(15_000_000, 125_000_000).unwrap();
let vco_freq = (15_000_000 / params.refdiv as u32) as u64 * params.fbdiv as u64;
let output_freq = (vco_freq / ((params.post_div1 * params.post_div2) as u64)) as u32;
// With a 15 MHz crystal, we might not get exactly 125 MHz
// Check that it's close enough (within 0.2% margin)
let freq_diff = if output_freq > 125_000_000 {
output_freq - 125_000_000
@ -2033,11 +1935,11 @@ mod tests {
post_div1: 3,
post_div2: 2,
},
Some(VoltageScale::V1_15),
CoreVoltage::V1_15,
);
// Check voltage scale was set correctly
assert_eq!(config.voltage_scale, Some(VoltageScale::V1_15));
assert_eq!(config.core_voltage, CoreVoltage::V1_15);
// Check PLL config was set correctly
assert_eq!(config.xosc.as_ref().unwrap().sys_pll.as_ref().unwrap().refdiv, 1);
@ -2065,19 +1967,23 @@ mod tests {
fn test_auto_voltage_scaling() {
{
// Test automatic voltage scaling based on frequency
// Under 133 MHz should use default voltage (None)
let config = ClockConfig::at_sys_frequency_mhz(125);
assert_eq!(config.voltage_scale, None);
// Under 133 MHz should use default voltage (V1_10)
let config = ClockConfig::crystal_freq(125_000_000);
assert_eq!(config.core_voltage, CoreVoltage::V1_10);
// 133-200 MHz should use V1_15
let config = ClockConfig::at_sys_frequency_mhz(150);
assert_eq!(config.voltage_scale, Some(VoltageScale::V1_15));
let config = ClockConfig::at_sys_frequency_mhz(200);
assert_eq!(config.voltage_scale, Some(VoltageScale::V1_15));
let config = ClockConfig::crystal_freq(150_000_000);
assert_eq!(config.core_voltage, CoreVoltage::V1_15);
let config = ClockConfig::crystal_freq(200_000_000);
assert_eq!(config.core_voltage, CoreVoltage::V1_15);
// Above 200 MHz should use V1_20
let config = ClockConfig::at_sys_frequency_mhz(250);
assert_eq!(config.voltage_scale, Some(VoltageScale::V1_20));
// Above 200 MHz should use V1_25
let config = ClockConfig::crystal_freq(250_000_000);
assert_eq!(config.core_voltage, CoreVoltage::V1_15);
// Below 125 MHz should use V1_10
let config = ClockConfig::crystal_freq(100_000_000);
assert_eq!(config.core_voltage, CoreVoltage::V1_10);
}
}
}

View File

@ -1,6 +1,6 @@
//! # Overclocking the RP2040 to 200 MHz
//!
//! This example demonstrates how to configure the RP2040 to run at 200 MHz using a higher level API.
//! This example demonstrates how to configure the RP2040 to run at 200 MHz.
#![no_std]
#![no_main]
@ -17,19 +17,18 @@ const COUNT_TO: i64 = 10_000_000;
#[embassy_executor::main]
async fn main(_spawner: Spawner) -> ! {
// Set up for clock frequency of 200 MHz
// This will set all the necessary defaults including slightly raised voltage
let config = Config::new(ClockConfig::at_sys_frequency_mhz(200));
// Set up for clock frequency of 200 MHz, setting all necessary defaults.
let config = Config::new(ClockConfig::crystal_freq(200_000_000));
// Show the voltage scale for verification
info!("System core voltage: {}", Debug2Format(&config.clocks.voltage_scale));
info!("System core voltage: {}", Debug2Format(&config.clocks.core_voltage));
// Initialize the peripherals
let p = embassy_rp::init(config);
// Show CPU frequency for verification
let sys_freq = clk_sys_freq();
info!("System clock frequency: {} Hz", sys_freq);
info!("System clock frequency: {} MHz", sys_freq / 1_000_000);
// LED to indicate the system is running
let mut led = Output::new(p.PIN_25, Level::Low);

View File

@ -8,7 +8,7 @@
use defmt::*;
use embassy_executor::Spawner;
use embassy_rp::clocks;
use embassy_rp::clocks::{ClockConfig, PllConfig, VoltageScale};
use embassy_rp::clocks::{ClockConfig, CoreVoltage, PllConfig};
use embassy_rp::config::Config;
use embassy_rp::gpio::{Level, Output};
use embassy_time::{Duration, Instant, Timer};
@ -16,23 +16,21 @@ use {defmt_rtt as _, panic_probe as _};
const COUNT_TO: i64 = 10_000_000;
/// Configure the RP2040 for 200 MHz operation by manually specifying
/// all the required parameters instead of using higher-level APIs.
/// Configure the RP2040 for 200 MHz operation by manually specifying the PLL settings.
fn configure_manual_overclock() -> Config {
// Set the PLL configuration manually, starting from default values
let mut config = Config::default();
// Set the system clock to 200 MHz using a PLL with a reference frequency of 12 MHz
// Set the system clock to 200 MHz
config.clocks = ClockConfig::manual_pll(
12_000_000,
12_000_000, // Crystal frequency, 12 MHz is common. If using custom, set to your value.
PllConfig {
refdiv: 1,
fbdiv: 100,
post_div1: 3,
post_div2: 2,
refdiv: 1, // Reference divider
fbdiv: 100, // Feedback divider
post_div1: 3, // Post divider 1
post_div2: 2, // Post divider 2
},
// For 200 MHz, we need a voltage scale of 1.15V
Some(VoltageScale::V1_15),
CoreVoltage::V1_15, // Core voltage, should be set to V1_15 for 200 MHz
);
config

View File

@ -14,7 +14,7 @@ use embassy_rp::clocks;
#[cfg(feature = "rp2040")]
use embassy_rp::clocks::ClockConfig;
#[cfg(feature = "rp2040")]
use embassy_rp::clocks::VoltageScale;
use embassy_rp::clocks::CoreVoltage;
use embassy_rp::config::Config;
use embassy_time::Instant;
use {defmt_rtt as _, panic_probe as _};
@ -31,15 +31,15 @@ async fn main(_spawner: Spawner) {
// Initialize with 200MHz clock configuration for RP2040, other chips will use default clock
#[cfg(feature = "rp2040")]
{
config.clocks = ClockConfig::at_sys_frequency_mhz(200);
let voltage = config.clocks.voltage_scale.unwrap();
assert!(matches!(voltage, VoltageScale::V1_15), "Expected voltage scale V1_15");
config.clocks = ClockConfig::crystal_freq(200_000_000);
let voltage = config.clocks.core_voltage;
assert!(matches!(voltage, CoreVoltage::V1_15), "Expected voltage scale V1_15");
}
let _p = embassy_rp::init(config);
// Test the system speed
let (time_elapsed, clk_sys_freq) = {
// Test the system speed
let mut counter = 0;
let start = Instant::now();
while counter < COUNT_TO {