Merge pull request #4045 from mkj/dev/matt/xspi

stm32h7rs xspi
This commit is contained in:
Dario Nieuwenhuis 2025-04-06 20:35:48 +00:00 committed by GitHub
commit bdeeb388ff
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 2349 additions and 3 deletions

View File

@ -73,7 +73,7 @@ rand_core = "0.6.3"
sdio-host = "0.5.0"
critical-section = "1.1"
#stm32-metapac = { version = "16" }
stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-4a964af03b298de30ff9f84fcfa890bcab4ce609" }
stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-a7a30c9d54e7415709c463a537501691784672db" }
vcell = "0.1.3"
nb = "1.0.0"
@ -102,7 +102,7 @@ proc-macro2 = "1.0.36"
quote = "1.0.15"
#stm32-metapac = { version = "16", default-features = false, features = ["metadata"]}
stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-4a964af03b298de30ff9f84fcfa890bcab4ce609", default-features = false, features = ["metadata"] }
stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-a7a30c9d54e7415709c463a537501691784672db", default-features = false, features = ["metadata"] }
[features]
default = ["rt"]

View File

@ -62,7 +62,13 @@ fn main() {
// generate one singleton per peripheral (with many exceptions...)
for p in METADATA.peripherals {
if let Some(r) = &p.registers {
if r.kind == "adccommon" || r.kind == "sai" || r.kind == "ucpd" || r.kind == "otg" || r.kind == "octospi" {
if r.kind == "adccommon"
|| r.kind == "sai"
|| r.kind == "ucpd"
|| r.kind == "otg"
|| r.kind == "octospi"
|| r.kind == "xspi"
{
// TODO: should we emit this for all peripherals? if so, we will need a list of all
// possible peripherals across all chips, so that we can declare the configs
// (replacing the hard-coded list of `peri_*` cfgs below)
@ -116,6 +122,7 @@ fn main() {
"peri_usb_otg_fs",
"peri_usb_otg_hs",
"peri_octospi2",
"peri_xspi2",
]);
cfgs.declare_all(&["mco", "mco1", "mco2"]);
@ -1098,6 +1105,72 @@ fn main() {
(("octospim", "P2_NCS"), quote!(crate::ospi::NSSPin)),
(("octospim", "P2_CLK"), quote!(crate::ospi::SckPin)),
(("octospim", "P2_NCLK"), quote!(crate::ospi::NckPin)),
(("xspi", "IO0"), quote!(crate::xspi::D0Pin)),
(("xspi", "IO1"), quote!(crate::xspi::D1Pin)),
(("xspi", "IO2"), quote!(crate::xspi::D2Pin)),
(("xspi", "IO3"), quote!(crate::xspi::D3Pin)),
(("xspi", "IO4"), quote!(crate::xspi::D4Pin)),
(("xspi", "IO5"), quote!(crate::xspi::D5Pin)),
(("xspi", "IO6"), quote!(crate::xspi::D6Pin)),
(("xspi", "IO7"), quote!(crate::xspi::D7Pin)),
(("xspi", "IO8"), quote!(crate::xspi::D8Pin)),
(("xspi", "IO9"), quote!(crate::xspi::D9Pin)),
(("xspi", "IO10"), quote!(crate::xspi::D10Pin)),
(("xspi", "IO11"), quote!(crate::xspi::D11Pin)),
(("xspi", "IO12"), quote!(crate::xspi::D12Pin)),
(("xspi", "IO13"), quote!(crate::xspi::D13Pin)),
(("xspi", "IO14"), quote!(crate::xspi::D14Pin)),
(("xspi", "IO15"), quote!(crate::xspi::D15Pin)),
(("xspi", "DQS0"), quote!(crate::xspi::DQS0Pin)),
(("xspi", "DQS1"), quote!(crate::xspi::DQS1Pin)),
(("xspi", "NCS1"), quote!(crate::xspi::NCSPin)),
(("xspi", "NCS2"), quote!(crate::xspi::NCSPin)),
(("xspi", "CLK"), quote!(crate::xspi::CLKPin)),
(("xspi", "NCLK"), quote!(crate::xspi::NCLKPin)),
(("xspim", "P1_IO0"), quote!(crate::xspi::D0Pin)),
(("xspim", "P1_IO1"), quote!(crate::xspi::D1Pin)),
(("xspim", "P1_IO2"), quote!(crate::xspi::D2Pin)),
(("xspim", "P1_IO3"), quote!(crate::xspi::D3Pin)),
(("xspim", "P1_IO4"), quote!(crate::xspi::D4Pin)),
(("xspim", "P1_IO5"), quote!(crate::xspi::D5Pin)),
(("xspim", "P1_IO6"), quote!(crate::xspi::D6Pin)),
(("xspim", "P1_IO7"), quote!(crate::xspi::D7Pin)),
(("xspim", "P1_IO8"), quote!(crate::xspi::D8Pin)),
(("xspim", "P1_IO9"), quote!(crate::xspi::D9Pin)),
(("xspim", "P1_IO10"), quote!(crate::xspi::D10Pin)),
(("xspim", "P1_IO11"), quote!(crate::xspi::D11Pin)),
(("xspim", "P1_IO12"), quote!(crate::xspi::D12Pin)),
(("xspim", "P1_IO13"), quote!(crate::xspi::D13Pin)),
(("xspim", "P1_IO14"), quote!(crate::xspi::D14Pin)),
(("xspim", "P1_IO15"), quote!(crate::xspi::D15Pin)),
(("xspim", "P1_DQS0"), quote!(crate::xspi::DQS0Pin)),
(("xspim", "P1_DQS1"), quote!(crate::xspi::DQS1Pin)),
(("xspim", "P1_NCS1"), quote!(crate::xspi::NCSPin)),
(("xspim", "P1_NCS2"), quote!(crate::xspi::NCSPin)),
(("xspim", "P1_CLK"), quote!(crate::xspi::CLKPin)),
(("xspim", "P1_NCLK"), quote!(crate::xspi::NCLKPin)),
(("xspim", "P2_IO0"), quote!(crate::xspi::D0Pin)),
(("xspim", "P2_IO1"), quote!(crate::xspi::D1Pin)),
(("xspim", "P2_IO2"), quote!(crate::xspi::D2Pin)),
(("xspim", "P2_IO3"), quote!(crate::xspi::D3Pin)),
(("xspim", "P2_IO4"), quote!(crate::xspi::D4Pin)),
(("xspim", "P2_IO5"), quote!(crate::xspi::D5Pin)),
(("xspim", "P2_IO6"), quote!(crate::xspi::D6Pin)),
(("xspim", "P2_IO7"), quote!(crate::xspi::D7Pin)),
(("xspim", "P2_IO8"), quote!(crate::xspi::D8Pin)),
(("xspim", "P2_IO9"), quote!(crate::xspi::D9Pin)),
(("xspim", "P2_IO10"), quote!(crate::xspi::D10Pin)),
(("xspim", "P2_IO11"), quote!(crate::xspi::D11Pin)),
(("xspim", "P2_IO12"), quote!(crate::xspi::D12Pin)),
(("xspim", "P2_IO13"), quote!(crate::xspi::D13Pin)),
(("xspim", "P2_IO14"), quote!(crate::xspi::D14Pin)),
(("xspim", "P2_IO15"), quote!(crate::xspi::D15Pin)),
(("xspim", "P2_DQS0"), quote!(crate::xspi::DQS0Pin)),
(("xspim", "P2_DQS1"), quote!(crate::xspi::DQS1Pin)),
(("xspim", "P2_NCS1"), quote!(crate::xspi::NCSPin)),
(("xspim", "P2_NCS2"), quote!(crate::xspi::NCSPin)),
(("xspim", "P2_CLK"), quote!(crate::xspi::CLKPin)),
(("xspim", "P2_NCLK"), quote!(crate::xspi::NCLKPin)),
(("hspi", "IO0"), quote!(crate::hspi::D0Pin)),
(("hspi", "IO1"), quote!(crate::hspi::D1Pin)),
(("hspi", "IO2"), quote!(crate::hspi::D2Pin)),
@ -1190,6 +1263,29 @@ fn main() {
peri = format_ident!("{}", "OCTOSPI1");
}
// XSPIM is special
if p.name == "XSPIM" {
if pin.signal.starts_with("P1") {
peri = format_ident!("{}", "XSPI1");
} else if pin.signal.starts_with("P2") {
peri = format_ident!("{}", "XSPI2");
} else {
panic! {"malformed XSPIM pin: {:?}", pin}
}
}
// XSPI NCS pin to CSSEL mapping
if pin.signal.ends_with("NCS1") {
g.extend(quote! {
sel_trait_impl!(crate::xspi::NCSEither, #peri, #pin_name, 0);
})
}
if pin.signal.ends_with("NCS2") {
g.extend(quote! {
sel_trait_impl!(crate::xspi::NCSEither, #peri, #pin_name, 1);
})
}
g.extend(quote! {
pin_trait_impl!(#tr, #peri, #pin_name, #af);
})

View File

@ -127,6 +127,8 @@ pub mod usart;
pub mod usb;
#[cfg(iwdg)]
pub mod wdg;
#[cfg(xspi)]
pub mod xspi;
// This must go last, so that it sees all the impl_foo! macros defined earlier.
pub(crate) mod _generated {

View File

@ -60,6 +60,17 @@ macro_rules! pin_trait_impl {
};
}
#[allow(unused_macros)]
macro_rules! sel_trait_impl {
(crate::$mod:ident::$trait:ident$(<$mode:ident>)?, $instance:ident, $pin:ident, $sel:expr) => {
impl crate::$mod::$trait<crate::peripherals::$instance $(, crate::$mod::$mode)?> for crate::peripherals::$pin {
fn sel(&self) -> u8 {
$sel
}
}
};
}
// ====================
macro_rules! dma_trait {

View File

@ -0,0 +1,364 @@
//! Enums used in Xspi configuration.
#[derive(Copy, Clone)]
pub(crate) enum XspiMode {
IndirectWrite,
IndirectRead,
#[expect(dead_code)]
AutoPolling,
#[expect(dead_code)]
MemoryMapped,
}
impl Into<u8> for XspiMode {
fn into(self) -> u8 {
match self {
XspiMode::IndirectWrite => 0b00,
XspiMode::IndirectRead => 0b01,
XspiMode::AutoPolling => 0b10,
XspiMode::MemoryMapped => 0b11,
}
}
}
/// Xspi lane width
#[derive(Copy, Clone)]
pub enum XspiWidth {
/// None
NONE,
/// Single lane
SING,
/// Dual lanes
DUAL,
/// Quad lanes
QUAD,
/// Eight lanes
OCTO,
}
impl Into<u8> for XspiWidth {
fn into(self) -> u8 {
match self {
XspiWidth::NONE => 0b00,
XspiWidth::SING => 0b01,
XspiWidth::DUAL => 0b10,
XspiWidth::QUAD => 0b11,
XspiWidth::OCTO => 0b100,
}
}
}
/// Wrap Size
#[allow(missing_docs)]
#[derive(Copy, Clone)]
pub enum WrapSize {
None,
_16Bytes,
_32Bytes,
_64Bytes,
_128Bytes,
}
impl Into<u8> for WrapSize {
fn into(self) -> u8 {
match self {
WrapSize::None => 0x00,
WrapSize::_16Bytes => 0x02,
WrapSize::_32Bytes => 0x03,
WrapSize::_64Bytes => 0x04,
WrapSize::_128Bytes => 0x05,
}
}
}
/// Memory Type
#[allow(missing_docs)]
#[derive(Copy, Clone)]
pub enum MemoryType {
Micron,
Macronix,
Standard,
MacronixRam,
HyperBusMemory,
HyperBusRegister,
}
impl Into<u8> for MemoryType {
fn into(self) -> u8 {
match self {
MemoryType::Micron => 0x00,
MemoryType::Macronix => 0x01,
MemoryType::Standard => 0x02,
MemoryType::MacronixRam => 0x03,
MemoryType::HyperBusMemory => 0x04,
MemoryType::HyperBusRegister => 0x04,
}
}
}
/// Xspi memory size.
#[allow(missing_docs)]
#[derive(Copy, Clone)]
pub enum MemorySize {
_1KiB,
_2KiB,
_4KiB,
_8KiB,
_16KiB,
_32KiB,
_64KiB,
_128KiB,
_256KiB,
_512KiB,
_1MiB,
_2MiB,
_4MiB,
_8MiB,
_16MiB,
_32MiB,
_64MiB,
_128MiB,
_256MiB,
_512MiB,
_1GiB,
_2GiB,
_4GiB,
Other(u8),
}
impl Into<u8> for MemorySize {
fn into(self) -> u8 {
match self {
MemorySize::_1KiB => 9,
MemorySize::_2KiB => 10,
MemorySize::_4KiB => 11,
MemorySize::_8KiB => 12,
MemorySize::_16KiB => 13,
MemorySize::_32KiB => 14,
MemorySize::_64KiB => 15,
MemorySize::_128KiB => 16,
MemorySize::_256KiB => 17,
MemorySize::_512KiB => 18,
MemorySize::_1MiB => 19,
MemorySize::_2MiB => 20,
MemorySize::_4MiB => 21,
MemorySize::_8MiB => 22,
MemorySize::_16MiB => 23,
MemorySize::_32MiB => 24,
MemorySize::_64MiB => 25,
MemorySize::_128MiB => 26,
MemorySize::_256MiB => 27,
MemorySize::_512MiB => 28,
MemorySize::_1GiB => 29,
MemorySize::_2GiB => 30,
MemorySize::_4GiB => 31,
MemorySize::Other(val) => val,
}
}
}
/// Xspi Address size
#[derive(Copy, Clone)]
pub enum AddressSize {
/// 8-bit address
_8bit,
/// 16-bit address
_16bit,
/// 24-bit address
_24bit,
/// 32-bit address
_32bit,
}
impl Into<u8> for AddressSize {
fn into(self) -> u8 {
match self {
AddressSize::_8bit => 0b00,
AddressSize::_16bit => 0b01,
AddressSize::_24bit => 0b10,
AddressSize::_32bit => 0b11,
}
}
}
/// Time the Chip Select line stays high.
#[allow(missing_docs)]
#[derive(Copy, Clone)]
pub enum ChipSelectHighTime {
_1Cycle,
_2Cycle,
_3Cycle,
_4Cycle,
_5Cycle,
_6Cycle,
_7Cycle,
_8Cycle,
}
impl Into<u8> for ChipSelectHighTime {
fn into(self) -> u8 {
match self {
ChipSelectHighTime::_1Cycle => 0,
ChipSelectHighTime::_2Cycle => 1,
ChipSelectHighTime::_3Cycle => 2,
ChipSelectHighTime::_4Cycle => 3,
ChipSelectHighTime::_5Cycle => 4,
ChipSelectHighTime::_6Cycle => 5,
ChipSelectHighTime::_7Cycle => 6,
ChipSelectHighTime::_8Cycle => 7,
}
}
}
/// FIFO threshold.
#[allow(missing_docs)]
#[derive(Copy, Clone)]
pub enum FIFOThresholdLevel {
_1Bytes,
_2Bytes,
_3Bytes,
_4Bytes,
_5Bytes,
_6Bytes,
_7Bytes,
_8Bytes,
_9Bytes,
_10Bytes,
_11Bytes,
_12Bytes,
_13Bytes,
_14Bytes,
_15Bytes,
_16Bytes,
_17Bytes,
_18Bytes,
_19Bytes,
_20Bytes,
_21Bytes,
_22Bytes,
_23Bytes,
_24Bytes,
_25Bytes,
_26Bytes,
_27Bytes,
_28Bytes,
_29Bytes,
_30Bytes,
_31Bytes,
_32Bytes,
}
impl Into<u8> for FIFOThresholdLevel {
fn into(self) -> u8 {
match self {
FIFOThresholdLevel::_1Bytes => 0,
FIFOThresholdLevel::_2Bytes => 1,
FIFOThresholdLevel::_3Bytes => 2,
FIFOThresholdLevel::_4Bytes => 3,
FIFOThresholdLevel::_5Bytes => 4,
FIFOThresholdLevel::_6Bytes => 5,
FIFOThresholdLevel::_7Bytes => 6,
FIFOThresholdLevel::_8Bytes => 7,
FIFOThresholdLevel::_9Bytes => 8,
FIFOThresholdLevel::_10Bytes => 9,
FIFOThresholdLevel::_11Bytes => 10,
FIFOThresholdLevel::_12Bytes => 11,
FIFOThresholdLevel::_13Bytes => 12,
FIFOThresholdLevel::_14Bytes => 13,
FIFOThresholdLevel::_15Bytes => 14,
FIFOThresholdLevel::_16Bytes => 15,
FIFOThresholdLevel::_17Bytes => 16,
FIFOThresholdLevel::_18Bytes => 17,
FIFOThresholdLevel::_19Bytes => 18,
FIFOThresholdLevel::_20Bytes => 19,
FIFOThresholdLevel::_21Bytes => 20,
FIFOThresholdLevel::_22Bytes => 21,
FIFOThresholdLevel::_23Bytes => 22,
FIFOThresholdLevel::_24Bytes => 23,
FIFOThresholdLevel::_25Bytes => 24,
FIFOThresholdLevel::_26Bytes => 25,
FIFOThresholdLevel::_27Bytes => 26,
FIFOThresholdLevel::_28Bytes => 27,
FIFOThresholdLevel::_29Bytes => 28,
FIFOThresholdLevel::_30Bytes => 29,
FIFOThresholdLevel::_31Bytes => 30,
FIFOThresholdLevel::_32Bytes => 31,
}
}
}
/// Dummy cycle count
#[allow(missing_docs)]
#[derive(Copy, Clone)]
pub enum DummyCycles {
_0,
_1,
_2,
_3,
_4,
_5,
_6,
_7,
_8,
_9,
_10,
_11,
_12,
_13,
_14,
_15,
_16,
_17,
_18,
_19,
_20,
_21,
_22,
_23,
_24,
_25,
_26,
_27,
_28,
_29,
_30,
_31,
}
impl Into<u8> for DummyCycles {
fn into(self) -> u8 {
match self {
DummyCycles::_0 => 0,
DummyCycles::_1 => 1,
DummyCycles::_2 => 2,
DummyCycles::_3 => 3,
DummyCycles::_4 => 4,
DummyCycles::_5 => 5,
DummyCycles::_6 => 6,
DummyCycles::_7 => 7,
DummyCycles::_8 => 8,
DummyCycles::_9 => 9,
DummyCycles::_10 => 10,
DummyCycles::_11 => 11,
DummyCycles::_12 => 12,
DummyCycles::_13 => 13,
DummyCycles::_14 => 14,
DummyCycles::_15 => 15,
DummyCycles::_16 => 16,
DummyCycles::_17 => 17,
DummyCycles::_18 => 18,
DummyCycles::_19 => 19,
DummyCycles::_20 => 20,
DummyCycles::_21 => 21,
DummyCycles::_22 => 22,
DummyCycles::_23 => 23,
DummyCycles::_24 => 24,
DummyCycles::_25 => 25,
DummyCycles::_26 => 26,
DummyCycles::_27 => 27,
DummyCycles::_28 => 28,
DummyCycles::_29 => 29,
DummyCycles::_30 => 30,
DummyCycles::_31 => 31,
}
}
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,448 @@
#![no_main]
#![no_std]
//! For Nucleo STM32H7S3L8 MB1737, has MX25UW25645GXDI00
//!
//! TODO: Currently this only uses single SPI, pending flash chip documentation for octo SPI.
use defmt::info;
use embassy_executor::Spawner;
use embassy_stm32::gpio::{Level, Output, Speed};
use embassy_stm32::mode::Blocking;
use embassy_stm32::time::Hertz;
use embassy_stm32::xspi::{
AddressSize, ChipSelectHighTime, DummyCycles, FIFOThresholdLevel, Instance, MemorySize, MemoryType, TransferConfig,
WrapSize, Xspi, XspiWidth,
};
use embassy_stm32::Config;
use embassy_time::Timer;
use {defmt_rtt as _, panic_probe as _};
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
// RCC config
let mut config = Config::default();
{
use embassy_stm32::rcc::*;
config.rcc.hse = Some(Hse {
freq: Hertz(24_000_000),
mode: HseMode::Oscillator,
});
config.rcc.pll1 = Some(Pll {
source: PllSource::HSE,
prediv: PllPreDiv::DIV3,
mul: PllMul::MUL150,
divp: Some(PllDiv::DIV2),
divq: None,
divr: None,
});
config.rcc.sys = Sysclk::PLL1_P; // 600 Mhz
config.rcc.ahb_pre = AHBPrescaler::DIV2; // 300 Mhz
config.rcc.apb1_pre = APBPrescaler::DIV2; // 150 Mhz
config.rcc.apb2_pre = APBPrescaler::DIV2; // 150 Mhz
config.rcc.apb4_pre = APBPrescaler::DIV2; // 150 Mhz
config.rcc.apb5_pre = APBPrescaler::DIV2; // 150 Mhz
config.rcc.voltage_scale = VoltageScale::HIGH;
}
// Initialize peripherals
let p = embassy_stm32::init(config);
let spi_config = embassy_stm32::xspi::Config {
fifo_threshold: FIFOThresholdLevel::_4Bytes,
memory_type: MemoryType::Macronix,
delay_hold_quarter_cycle: true,
// memory_type: MemoryType::Micron,
// delay_hold_quarter_cycle: false,
device_size: MemorySize::_32MiB,
chip_select_high_time: ChipSelectHighTime::_2Cycle,
free_running_clock: false,
clock_mode: false,
wrap_size: WrapSize::None,
// 300mhz / (4+1) = 60mhz. Unsure the limit, need to find a MX25UW25645GXDI00 datasheet.
clock_prescaler: 3,
sample_shifting: false,
chip_select_boundary: 0,
max_transfer: 0,
refresh: 0,
};
let mut cor = cortex_m::Peripherals::take().unwrap();
// Not necessary, but recommended if using XIP
cor.SCB.enable_icache();
cor.SCB.enable_dcache(&mut cor.CPUID);
let xspi = embassy_stm32::xspi::Xspi::new_blocking_xspi(
p.XSPI2, p.PN6, p.PN2, p.PN3, p.PN4, p.PN5, p.PN8, p.PN9, p.PN10, p.PN11, p.PN1, spi_config,
);
let mut flash = FlashMemory::new(xspi).await;
let flash_id = flash.read_id();
info!("FLASH ID: {=[u8]:x}", flash_id);
let mut wr_buf = [0u8; 8];
for i in 0..8 {
wr_buf[i] = 0x90 + i as u8;
}
let mut rd_buf = [0u8; 8];
flash.erase_sector(0).await;
flash.write_memory(0, &wr_buf, true).await;
flash.read_memory(0, &mut rd_buf, true);
info!("WRITE BUF: {=[u8]:#X}", wr_buf);
info!("READ BUF: {=[u8]:#X}", rd_buf);
flash.enable_mm().await;
info!("Enabled memory mapped mode");
let first_u32 = unsafe { *(0x70000000 as *const u32) };
assert_eq!(first_u32, 0x93929190);
info!("first_u32 {:08x}", first_u32);
let second_u32 = unsafe { *(0x70000004 as *const u32) };
assert_eq!(second_u32, 0x97969594);
info!("second_u32 {:08x}", first_u32);
flash.disable_mm().await;
info!("Disabled memory mapped mode");
info!("DONE");
// Output pin PE3
let mut led = Output::new(p.PE3, Level::Low, Speed::Low);
loop {
led.toggle();
Timer::after_millis(1000).await;
}
}
const MEMORY_PAGE_SIZE: usize = 8;
const CMD_READ: u8 = 0x0B;
const _CMD_QUAD_READ: u8 = 0x6B;
const CMD_WRITE_PG: u8 = 0x02;
const _CMD_QUAD_WRITE_PG: u8 = 0x32;
const CMD_READ_ID: u8 = 0x9F;
const CMD_READ_ID_OCTO: u16 = 0x9F60;
const CMD_ENABLE_RESET: u8 = 0x66;
const CMD_RESET: u8 = 0x99;
const CMD_WRITE_ENABLE: u8 = 0x06;
const CMD_CHIP_ERASE: u8 = 0xC7;
const CMD_SECTOR_ERASE: u8 = 0x20;
const CMD_BLOCK_ERASE_32K: u8 = 0x52;
const CMD_BLOCK_ERASE_64K: u8 = 0xD8;
const CMD_READ_SR: u8 = 0x05;
const CMD_READ_CR: u8 = 0x35;
const CMD_WRITE_SR: u8 = 0x01;
const CMD_WRITE_CR: u8 = 0x31;
/// Implementation of access to flash chip.
///
/// Chip commands are hardcoded as it depends on used chip.
/// This targets a MX25UW25645GXDI00.
pub struct FlashMemory<I: Instance> {
xspi: Xspi<'static, I, Blocking>,
}
impl<I: Instance> FlashMemory<I> {
pub async fn new(xspi: Xspi<'static, I, Blocking>) -> Self {
let mut memory = Self { xspi };
memory.reset_memory().await;
memory.enable_octo();
memory
}
async fn qpi_mode(&mut self) {
// Enter qpi mode
self.exec_command(0x38).await;
// Set read param
let transaction = TransferConfig {
iwidth: XspiWidth::QUAD,
dwidth: XspiWidth::QUAD,
instruction: Some(0xC0),
..Default::default()
};
self.enable_write().await;
self.xspi.blocking_write(&[0x30_u8], transaction).unwrap();
self.wait_write_finish();
}
pub async fn disable_mm(&mut self) {
self.xspi.disable_memory_mapped_mode();
}
pub async fn enable_mm(&mut self) {
self.qpi_mode().await;
let read_config = TransferConfig {
iwidth: XspiWidth::SING,
isize: AddressSize::_8bit,
adwidth: XspiWidth::SING,
adsize: AddressSize::_24bit,
dwidth: XspiWidth::SING,
instruction: Some(CMD_READ as u32),
dummy: DummyCycles::_8,
..Default::default()
};
let write_config = TransferConfig {
iwidth: XspiWidth::SING,
isize: AddressSize::_8bit,
adwidth: XspiWidth::SING,
adsize: AddressSize::_24bit,
dwidth: XspiWidth::SING,
instruction: Some(CMD_WRITE_PG as u32),
dummy: DummyCycles::_0,
..Default::default()
};
self.xspi.enable_memory_mapped_mode(read_config, write_config).unwrap();
}
fn enable_octo(&mut self) {
let cr = self.read_cr();
// info!("Read cr: {:x}", cr);
self.write_cr(cr | 0x02);
// info!("Read cr after writing: {:x}", cr);
}
pub fn disable_octo(&mut self) {
let cr = self.read_cr();
self.write_cr(cr & (!(0x02)));
}
async fn exec_command_4(&mut self, cmd: u8) {
let transaction = TransferConfig {
iwidth: XspiWidth::QUAD,
adwidth: XspiWidth::NONE,
// adsize: AddressSize::_24bit,
dwidth: XspiWidth::NONE,
instruction: Some(cmd as u32),
address: None,
dummy: DummyCycles::_0,
..Default::default()
};
self.xspi.blocking_command(&transaction).unwrap();
}
async fn exec_command(&mut self, cmd: u8) {
let transaction = TransferConfig {
iwidth: XspiWidth::SING,
adwidth: XspiWidth::NONE,
// adsize: AddressSize::_24bit,
dwidth: XspiWidth::NONE,
instruction: Some(cmd as u32),
address: None,
dummy: DummyCycles::_0,
..Default::default()
};
// info!("Excuting command: {:x}", transaction.instruction);
self.xspi.blocking_command(&transaction).unwrap();
}
pub async fn reset_memory(&mut self) {
self.exec_command_4(CMD_ENABLE_RESET).await;
self.exec_command_4(CMD_RESET).await;
self.exec_command(CMD_ENABLE_RESET).await;
self.exec_command(CMD_RESET).await;
self.wait_write_finish();
}
pub async fn enable_write(&mut self) {
self.exec_command(CMD_WRITE_ENABLE).await;
}
pub fn read_id(&mut self) -> [u8; 3] {
let mut buffer = [0; 3];
let transaction: TransferConfig = TransferConfig {
iwidth: XspiWidth::SING,
isize: AddressSize::_8bit,
adwidth: XspiWidth::NONE,
// adsize: AddressSize::_24bit,
dwidth: XspiWidth::SING,
instruction: Some(CMD_READ_ID as u32),
..Default::default()
};
// info!("Reading id: 0x{:X}", transaction.instruction);
self.xspi.blocking_read(&mut buffer, transaction).unwrap();
buffer
}
pub fn read_id_8(&mut self) -> [u8; 3] {
let mut buffer = [0; 3];
let transaction: TransferConfig = TransferConfig {
iwidth: XspiWidth::OCTO,
isize: AddressSize::_16bit,
adwidth: XspiWidth::OCTO,
address: Some(0),
adsize: AddressSize::_32bit,
dwidth: XspiWidth::OCTO,
instruction: Some(CMD_READ_ID_OCTO as u32),
dummy: DummyCycles::_4,
..Default::default()
};
info!("Reading id: {:#X}", transaction.instruction);
self.xspi.blocking_read(&mut buffer, transaction).unwrap();
buffer
}
pub fn read_memory(&mut self, addr: u32, buffer: &mut [u8], use_dma: bool) {
let transaction = TransferConfig {
iwidth: XspiWidth::SING,
adwidth: XspiWidth::SING,
adsize: AddressSize::_24bit,
dwidth: XspiWidth::SING,
instruction: Some(CMD_READ as u32),
dummy: DummyCycles::_8,
// dwidth: XspiWidth::QUAD,
// instruction: Some(CMD_QUAD_READ as u32),
// dummy: DummyCycles::_8,
address: Some(addr),
..Default::default()
};
if use_dma {
self.xspi.blocking_read(buffer, transaction).unwrap();
} else {
self.xspi.blocking_read(buffer, transaction).unwrap();
}
}
fn wait_write_finish(&mut self) {
while (self.read_sr() & 0x01) != 0 {}
}
async fn perform_erase(&mut self, addr: u32, cmd: u8) {
let transaction = TransferConfig {
iwidth: XspiWidth::SING,
adwidth: XspiWidth::SING,
adsize: AddressSize::_24bit,
dwidth: XspiWidth::NONE,
instruction: Some(cmd as u32),
address: Some(addr),
dummy: DummyCycles::_0,
..Default::default()
};
self.enable_write().await;
self.xspi.blocking_command(&transaction).unwrap();
self.wait_write_finish();
}
pub async fn erase_sector(&mut self, addr: u32) {
self.perform_erase(addr, CMD_SECTOR_ERASE).await;
}
pub async fn erase_block_32k(&mut self, addr: u32) {
self.perform_erase(addr, CMD_BLOCK_ERASE_32K).await;
}
pub async fn erase_block_64k(&mut self, addr: u32) {
self.perform_erase(addr, CMD_BLOCK_ERASE_64K).await;
}
pub async fn erase_chip(&mut self) {
self.exec_command(CMD_CHIP_ERASE).await;
}
async fn write_page(&mut self, addr: u32, buffer: &[u8], len: usize, use_dma: bool) {
assert!(
(len as u32 + (addr & 0x000000ff)) <= MEMORY_PAGE_SIZE as u32,
"write_page(): page write length exceeds page boundary (len = {}, addr = {:X}",
len,
addr
);
let transaction = TransferConfig {
iwidth: XspiWidth::SING,
adsize: AddressSize::_24bit,
adwidth: XspiWidth::SING,
dwidth: XspiWidth::SING,
instruction: Some(CMD_WRITE_PG as u32),
// dwidth: XspiWidth::QUAD,
// instruction: Some(CMD_QUAD_WRITE_PG as u32),
address: Some(addr),
dummy: DummyCycles::_0,
..Default::default()
};
self.enable_write().await;
if use_dma {
self.xspi.blocking_write(buffer, transaction).unwrap();
} else {
self.xspi.blocking_write(buffer, transaction).unwrap();
}
self.wait_write_finish();
}
pub async fn write_memory(&mut self, addr: u32, buffer: &[u8], use_dma: bool) {
let mut left = buffer.len();
let mut place = addr;
let mut chunk_start = 0;
while left > 0 {
let max_chunk_size = MEMORY_PAGE_SIZE - (place & 0x000000ff) as usize;
let chunk_size = if left >= max_chunk_size { max_chunk_size } else { left };
let chunk = &buffer[chunk_start..(chunk_start + chunk_size)];
self.write_page(place, chunk, chunk_size, use_dma).await;
place += chunk_size as u32;
left -= chunk_size;
chunk_start += chunk_size;
}
}
fn read_register(&mut self, cmd: u8) -> u8 {
let mut buffer = [0; 1];
let transaction: TransferConfig = TransferConfig {
iwidth: XspiWidth::SING,
isize: AddressSize::_8bit,
adwidth: XspiWidth::NONE,
adsize: AddressSize::_24bit,
dwidth: XspiWidth::SING,
instruction: Some(cmd as u32),
address: None,
dummy: DummyCycles::_0,
..Default::default()
};
self.xspi.blocking_read(&mut buffer, transaction).unwrap();
// info!("Read w25q64 register: 0x{:x}", buffer[0]);
buffer[0]
}
fn write_register(&mut self, cmd: u8, value: u8) {
let buffer = [value; 1];
let transaction: TransferConfig = TransferConfig {
iwidth: XspiWidth::SING,
isize: AddressSize::_8bit,
instruction: Some(cmd as u32),
adsize: AddressSize::_24bit,
adwidth: XspiWidth::NONE,
dwidth: XspiWidth::SING,
address: None,
dummy: DummyCycles::_0,
..Default::default()
};
self.xspi.blocking_write(&buffer, transaction).unwrap();
}
pub fn read_sr(&mut self) -> u8 {
self.read_register(CMD_READ_SR)
}
pub fn read_cr(&mut self) -> u8 {
self.read_register(CMD_READ_CR)
}
pub fn write_sr(&mut self, value: u8) {
self.write_register(CMD_WRITE_SR, value);
}
pub fn write_cr(&mut self, value: u8) {
self.write_register(CMD_WRITE_CR, value);
}
}