//! This example shows how to use the PIO module in the RP2040 chip to implement a duplex UART. //! The PIO module is a very powerful peripheral that can be used to implement many different //! protocols. It is a very flexible state machine that can be programmed to do almost anything. //! //! This example opens up a USB device that implements a CDC ACM serial port. It then uses the //! PIO module to implement a UART that is connected to the USB serial port. This allows you to //! communicate with a device connected to the RP2040 over USB serial. #![no_std] #![no_main] #![allow(async_fn_in_trait)] use defmt::{info, panic, trace}; use embassy_executor::Spawner; use embassy_futures::join::{join, join3}; use embassy_rp::peripherals::{PIO0, USB}; use embassy_rp::pio_programs::uart::{PioUartRx, PioUartRxProgram, PioUartTx, PioUartTxProgram}; use embassy_rp::usb::{Driver, Instance, InterruptHandler}; use embassy_rp::{bind_interrupts, pio}; use embassy_sync::blocking_mutex::raw::NoopRawMutex; use embassy_sync::pipe::Pipe; use embassy_usb::class::cdc_acm::{CdcAcmClass, Receiver, Sender, State}; use embassy_usb::driver::EndpointError; use embassy_usb::{Builder, Config}; use embedded_io_async::{Read, Write}; use {defmt_rtt as _, panic_probe as _}; //use crate::uart::PioUart; bind_interrupts!(struct Irqs { USBCTRL_IRQ => InterruptHandler; PIO0_IRQ_0 => pio::InterruptHandler; }); #[embassy_executor::main] async fn main(_spawner: Spawner) { info!("Hello there!"); let p = embassy_rp::init(Default::default()); // Create the driver, from the HAL. let driver = Driver::new(p.USB, Irqs); // Create embassy-usb Config let mut config = Config::new(0xc0de, 0xcafe); config.manufacturer = Some("Embassy"); config.product = Some("PIO UART example"); config.serial_number = Some("12345678"); config.max_power = 100; config.max_packet_size_0 = 64; // Create embassy-usb DeviceBuilder using the driver and config. // It needs some buffers for building the descriptors. let mut config_descriptor = [0; 256]; let mut bos_descriptor = [0; 256]; let mut control_buf = [0; 64]; let mut state = State::new(); let mut builder = Builder::new( driver, config, &mut config_descriptor, &mut bos_descriptor, &mut [], // no msos descriptors &mut control_buf, ); // Create classes on the builder. let class = CdcAcmClass::new(&mut builder, &mut state, 64); // Build the builder. let mut usb = builder.build(); // Run the USB device. let usb_fut = usb.run(); // PIO UART setup let pio::Pio { mut common, sm0, sm1, .. } = pio::Pio::new(p.PIO0, Irqs); let tx_program = PioUartTxProgram::new(&mut common); let mut uart_tx = PioUartTx::new(9600, &mut common, sm0, p.PIN_4, &tx_program); let rx_program = PioUartRxProgram::new(&mut common); let mut uart_rx = PioUartRx::new(9600, &mut common, sm1, p.PIN_5, &rx_program); // Pipe setup let mut usb_pipe: Pipe = Pipe::new(); let (mut usb_pipe_reader, mut usb_pipe_writer) = usb_pipe.split(); let mut uart_pipe: Pipe = Pipe::new(); let (mut uart_pipe_reader, mut uart_pipe_writer) = uart_pipe.split(); let (mut usb_tx, mut usb_rx) = class.split(); // Read + write from USB let usb_future = async { loop { info!("Wait for USB connection"); usb_rx.wait_connection().await; info!("Connected"); let _ = join( usb_read(&mut usb_rx, &mut uart_pipe_writer), usb_write(&mut usb_tx, &mut usb_pipe_reader), ) .await; info!("Disconnected"); } }; // Read + write from UART let uart_future = join( uart_read(&mut uart_rx, &mut usb_pipe_writer), uart_write(&mut uart_tx, &mut uart_pipe_reader), ); // Run everything concurrently. // If we had made everything `'static` above instead, we could do this using separate tasks instead. join3(usb_fut, usb_future, uart_future).await; } struct Disconnected {} impl From for Disconnected { fn from(val: EndpointError) -> Self { match val { EndpointError::BufferOverflow => panic!("Buffer overflow"), EndpointError::Disabled => Disconnected {}, } } } /// Read from the USB and write it to the UART TX pipe async fn usb_read<'d, T: Instance + 'd>( usb_rx: &mut Receiver<'d, Driver<'d, T>>, uart_pipe_writer: &mut embassy_sync::pipe::Writer<'_, NoopRawMutex, 20>, ) -> Result<(), Disconnected> { let mut buf = [0; 64]; loop { let n = usb_rx.read_packet(&mut buf).await?; let data = &buf[..n]; trace!("USB IN: {:x}", data); (*uart_pipe_writer).write(data).await; } } /// Read from the USB TX pipe and write it to the USB async fn usb_write<'d, T: Instance + 'd>( usb_tx: &mut Sender<'d, Driver<'d, T>>, usb_pipe_reader: &mut embassy_sync::pipe::Reader<'_, NoopRawMutex, 20>, ) -> Result<(), Disconnected> { let mut buf = [0; 64]; loop { let n = (*usb_pipe_reader).read(&mut buf).await; let data = &buf[..n]; trace!("USB OUT: {:x}", data); usb_tx.write_packet(&data).await?; } } /// Read from the UART and write it to the USB TX pipe async fn uart_read( uart_rx: &mut PioUartRx<'_, PIO, SM>, usb_pipe_writer: &mut embassy_sync::pipe::Writer<'_, NoopRawMutex, 20>, ) -> ! { let mut buf = [0; 64]; loop { let n = uart_rx.read(&mut buf).await.expect("UART read error"); if n == 0 { continue; } let data = &buf[..n]; trace!("UART IN: {:x}", buf); (*usb_pipe_writer).write(data).await; } } /// Read from the UART TX pipe and write it to the UART async fn uart_write( uart_tx: &mut PioUartTx<'_, PIO, SM>, uart_pipe_reader: &mut embassy_sync::pipe::Reader<'_, NoopRawMutex, 20>, ) -> ! { let mut buf = [0; 64]; loop { let n = (*uart_pipe_reader).read(&mut buf).await; let data = &buf[..n]; trace!("UART OUT: {:x}", data); let _ = uart_tx.write(&data).await; } }