use cfg_if::cfg_if; use embassy_hal_internal::into_ref; use super::blocking_delay_us; use crate::adc::{Adc, AdcPin, Instance, Resolution, SampleTime}; use crate::Peripheral; /// Default VREF voltage used for sample conversion to millivolts. pub const VREF_DEFAULT_MV: u32 = 3300; /// VREF voltage used for factory calibration of VREFINTCAL register. pub const VREF_CALIB_MV: u32 = 3000; pub struct VrefInt; impl AdcPin for VrefInt {} impl super::SealedAdcPin for VrefInt { fn channel(&self) -> u8 { cfg_if! { if #[cfg(adc_g0)] { let val = 13; } else if #[cfg(adc_h5)] { let val = 17; } else if #[cfg(adc_u0)] { let val = 12; } else { let val = 0; } } val } } pub struct Temperature; impl AdcPin for Temperature {} impl super::SealedAdcPin for Temperature { fn channel(&self) -> u8 { cfg_if! { if #[cfg(adc_g0)] { let val = 12; } else if #[cfg(adc_h5)] { let val = 16; } else if #[cfg(adc_u0)] { let val = 11; } else { let val = 17; } } val } } pub struct Vbat; impl AdcPin for Vbat {} impl super::SealedAdcPin for Vbat { fn channel(&self) -> u8 { cfg_if! { if #[cfg(adc_g0)] { let val = 14; } else if #[cfg(adc_h5)] { let val = 2; } else if #[cfg(adc_h5)] { let val = 13; } else { let val = 18; } } val } } cfg_if! { if #[cfg(adc_h5)] { pub struct VddCore; impl AdcPin for VddCore {} impl super::SealedAdcPin for VddCore { fn channel(&self) -> u8 { 6 } } } } cfg_if! { if #[cfg(adc_u0)] { pub struct DacOut; impl AdcPin for DacOut {} impl super::SealedAdcPin for DacOut { fn channel(&self) -> u8 { 19 } } } } impl<'d, T: Instance> Adc<'d, T> { pub fn new(adc: impl Peripheral

+ 'd) -> Self { into_ref!(adc); T::enable_and_reset(); T::regs().cr().modify(|reg| { #[cfg(not(any(adc_g0, adc_u0)))] reg.set_deeppwd(false); reg.set_advregen(true); }); #[cfg(any(adc_g0, adc_u0))] T::regs().cfgr1().modify(|reg| { reg.set_chselrmod(false); }); blocking_delay_us(20); T::regs().cr().modify(|reg| { reg.set_adcal(true); }); while T::regs().cr().read().adcal() { // spin } blocking_delay_us(1); Self { adc, sample_time: SampleTime::from_bits(0), } } pub fn enable_vrefint(&self) -> VrefInt { #[cfg(not(any(adc_g0, adc_u0)))] T::common_regs().ccr().modify(|reg| { reg.set_vrefen(true); }); #[cfg(any(adc_g0, adc_u0))] T::regs().ccr().modify(|reg| { reg.set_vrefen(true); }); // "Table 24. Embedded internal voltage reference" states that it takes a maximum of 12 us // to stabilize the internal voltage reference. blocking_delay_us(15); VrefInt {} } pub fn enable_temperature(&self) -> Temperature { cfg_if! { if #[cfg(any(adc_g0, adc_u0))] { T::regs().ccr().modify(|reg| { reg.set_tsen(true); }); } else if #[cfg(adc_h5)] { T::common_regs().ccr().modify(|reg| { reg.set_tsen(true); }); } else { T::common_regs().ccr().modify(|reg| { reg.set_ch17sel(true); }); } } Temperature {} } pub fn enable_vbat(&self) -> Vbat { cfg_if! { if #[cfg(any(adc_g0, adc_u0))] { T::regs().ccr().modify(|reg| { reg.set_vbaten(true); }); } else if #[cfg(adc_h5)] { T::common_regs().ccr().modify(|reg| { reg.set_vbaten(true); }); } else { T::common_regs().ccr().modify(|reg| { reg.set_ch18sel(true); }); } } Vbat {} } pub fn set_sample_time(&mut self, sample_time: SampleTime) { self.sample_time = sample_time; } pub fn set_resolution(&mut self, resolution: Resolution) { #[cfg(not(any(adc_g0, adc_u0)))] T::regs().cfgr().modify(|reg| reg.set_res(resolution.into())); #[cfg(any(adc_g0, adc_u0))] T::regs().cfgr1().modify(|reg| reg.set_res(resolution.into())); } /* /// Convert a raw sample from the `Temperature` to deg C pub fn to_degrees_centigrade(sample: u16) -> f32 { (130.0 - 30.0) / (VtempCal130::get().read() as f32 - VtempCal30::get().read() as f32) * (sample as f32 - VtempCal30::get().read() as f32) + 30.0 } */ /// Perform a single conversion. fn convert(&mut self) -> u16 { T::regs().isr().modify(|reg| { reg.set_eos(true); reg.set_eoc(true); }); // Start conversion T::regs().cr().modify(|reg| { reg.set_adstart(true); }); while !T::regs().isr().read().eos() { // spin } T::regs().dr().read().0 as u16 } pub fn read(&mut self, pin: &mut impl AdcPin) -> u16 { // Make sure bits are off while T::regs().cr().read().addis() { // spin } // Enable ADC T::regs().isr().modify(|reg| { reg.set_adrdy(true); }); T::regs().cr().modify(|reg| { reg.set_aden(true); }); while !T::regs().isr().read().adrdy() { // spin } // RM0492, RM0481, etc. // "This option bit must be set to 1 when ADCx_INP0 or ADCx_INN1 channel is selected." #[cfg(adc_h5)] if pin.channel() == 0 { T::regs().or().modify(|reg| reg.set_op0(true)); } // Configure channel Self::set_channel_sample_time(pin.channel(), self.sample_time); // Select channel #[cfg(not(any(adc_g0, adc_u0)))] T::regs().sqr1().write(|reg| reg.set_sq(0, pin.channel())); #[cfg(any(adc_g0, adc_u0))] T::regs().chselr().write(|reg| reg.set_chsel(1 << pin.channel())); // Some models are affected by an erratum: // If we perform conversions slower than 1 kHz, the first read ADC value can be // corrupted, so we discard it and measure again. // // STM32L471xx: Section 2.7.3 // STM32G4: Section 2.7.3 #[cfg(any(rcc_l4, rcc_g4))] let _ = self.convert(); let val = self.convert(); T::regs().cr().modify(|reg| reg.set_addis(true)); // RM0492, RM0481, etc. // "This option bit must be set to 1 when ADCx_INP0 or ADCx_INN1 channel is selected." #[cfg(adc_h5)] if pin.channel() == 0 { T::regs().or().modify(|reg| reg.set_op0(false)); } val } fn set_channel_sample_time(_ch: u8, sample_time: SampleTime) { cfg_if! { if #[cfg(any(adc_g0, adc_u0))] { T::regs().smpr().modify(|reg| reg.set_smp1(sample_time.into())); } else if #[cfg(adc_h5)] { match _ch { 0..=9 => T::regs().smpr1().modify(|w| w.set_smp(_ch as usize % 10, sample_time.into())), _ => T::regs().smpr2().modify(|w| w.set_smp(_ch as usize % 10, sample_time.into())), } } else { let sample_time = sample_time.into(); T::regs() .smpr(_ch as usize / 10) .modify(|reg| reg.set_smp(_ch as usize % 10, sample_time)); } } } }