951 lines
32 KiB
Rust

//! I2C-compatible Two Wire Interface in master mode (TWIM) driver.
#![macro_use]
use core::future::{poll_fn, Future};
use core::marker::PhantomData;
use core::mem::MaybeUninit;
use core::sync::atomic::compiler_fence;
use core::sync::atomic::Ordering::SeqCst;
use core::task::Poll;
use embassy_embedded_hal::SetConfig;
use embassy_hal_internal::{into_ref, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker;
#[cfg(feature = "time")]
use embassy_time::{Duration, Instant};
use embedded_hal_1::i2c::Operation;
pub use pac::twim::vals::Frequency;
use crate::chip::{EASY_DMA_SIZE, FORCE_COPY_BUFFER_SIZE};
use crate::gpio::Pin as GpioPin;
use crate::interrupt::typelevel::Interrupt;
use crate::pac::gpio::vals as gpiovals;
use crate::pac::twim::vals;
use crate::util::slice_in_ram;
use crate::{gpio, interrupt, pac, Peripheral};
/// TWIM config.
#[non_exhaustive]
pub struct Config {
/// Frequency
pub frequency: Frequency,
/// Enable high drive for the SDA line.
pub sda_high_drive: bool,
/// Enable internal pullup for the SDA line.
///
/// Note that using external pullups is recommended for I2C, and
/// most boards already have them.
pub sda_pullup: bool,
/// Enable high drive for the SCL line.
pub scl_high_drive: bool,
/// Enable internal pullup for the SCL line.
///
/// Note that using external pullups is recommended for I2C, and
/// most boards already have them.
pub scl_pullup: bool,
}
impl Default for Config {
fn default() -> Self {
Self {
frequency: Frequency::K100,
scl_high_drive: false,
sda_pullup: false,
sda_high_drive: false,
scl_pullup: false,
}
}
}
/// TWI error.
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub enum Error {
/// TX buffer was too long.
TxBufferTooLong,
/// RX buffer was too long.
RxBufferTooLong,
/// Data transmit failed.
Transmit,
/// Data reception failed.
Receive,
/// The buffer is not in data RAM. It's most likely in flash, and nRF's DMA cannot access flash.
BufferNotInRAM,
/// Didn't receive an ACK bit after the address byte. Address might be wrong, or the i2c device chip might not be connected properly.
AddressNack,
/// Didn't receive an ACK bit after a data byte.
DataNack,
/// Overrun error.
Overrun,
/// Timeout error.
Timeout,
/// Bus error.
Bus,
}
/// Interrupt handler.
pub struct InterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
unsafe fn on_interrupt() {
let r = T::regs();
let s = T::state();
if r.events_suspended().read() != 0 {
s.end_waker.wake();
r.intenclr().write(|w| w.set_suspended(true));
}
if r.events_stopped().read() != 0 {
s.end_waker.wake();
r.intenclr().write(|w| w.set_stopped(true));
}
if r.events_error().read() != 0 {
s.end_waker.wake();
r.intenclr().write(|w| w.set_error(true));
}
}
}
/// TWI driver.
pub struct Twim<'d, T: Instance> {
_p: PeripheralRef<'d, T>,
}
impl<'d, T: Instance> Twim<'d, T> {
/// Create a new TWI driver.
pub fn new(
twim: impl Peripheral<P = T> + 'd,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
sda: impl Peripheral<P = impl GpioPin> + 'd,
scl: impl Peripheral<P = impl GpioPin> + 'd,
config: Config,
) -> Self {
into_ref!(twim, sda, scl);
let r = T::regs();
// Configure pins
sda.conf().write(|w| {
w.set_dir(gpiovals::Dir::OUTPUT);
w.set_input(gpiovals::Input::CONNECT);
w.set_drive(match config.sda_high_drive {
true => gpiovals::Drive::H0D1,
false => gpiovals::Drive::S0D1,
});
if config.sda_pullup {
w.set_pull(gpiovals::Pull::PULLUP);
}
});
scl.conf().write(|w| {
w.set_dir(gpiovals::Dir::OUTPUT);
w.set_input(gpiovals::Input::CONNECT);
w.set_drive(match config.scl_high_drive {
true => gpiovals::Drive::H0D1,
false => gpiovals::Drive::S0D1,
});
if config.sda_pullup {
w.set_pull(gpiovals::Pull::PULLUP);
}
});
// Select pins.
r.psel().sda().write_value(sda.psel_bits());
r.psel().scl().write_value(scl.psel_bits());
// Enable TWIM instance.
r.enable().write(|w| w.set_enable(vals::Enable::ENABLED));
let mut twim = Self { _p: twim };
// Apply runtime peripheral configuration
Self::set_config(&mut twim, &config).unwrap();
// Disable all events interrupts
r.intenclr().write(|w| w.0 = 0xFFFF_FFFF);
T::Interrupt::unpend();
unsafe { T::Interrupt::enable() };
twim
}
/// Set TX buffer, checking that it is in RAM and has suitable length.
unsafe fn set_tx_buffer(
&mut self,
buffer: &[u8],
ram_buffer: Option<&mut [MaybeUninit<u8>; FORCE_COPY_BUFFER_SIZE]>,
) -> Result<(), Error> {
let buffer = if slice_in_ram(buffer) {
buffer
} else {
let ram_buffer = ram_buffer.ok_or(Error::BufferNotInRAM)?;
trace!("Copying TWIM tx buffer into RAM for DMA");
let ram_buffer = &mut ram_buffer[..buffer.len()];
// Inline implementation of the nightly API MaybeUninit::copy_from_slice(ram_buffer, buffer)
let uninit_src: &[MaybeUninit<u8>] = unsafe { core::mem::transmute(buffer) };
ram_buffer.copy_from_slice(uninit_src);
unsafe { &*(ram_buffer as *const [MaybeUninit<u8>] as *const [u8]) }
};
if buffer.len() > EASY_DMA_SIZE {
return Err(Error::TxBufferTooLong);
}
let r = T::regs();
// We're giving the register a pointer to the stack. Since we're
// waiting for the I2C transaction to end before this stack pointer
// becomes invalid, there's nothing wrong here.
r.txd().ptr().write_value(buffer.as_ptr() as u32);
r.txd().maxcnt().write(|w|
// We're giving it the length of the buffer, so no danger of
// accessing invalid memory. We have verified that the length of the
// buffer fits in an `u8`, so the cast to `u8` is also fine.
//
// The MAXCNT field is 8 bits wide and accepts the full range of
// values.
w.set_maxcnt(buffer.len() as _));
Ok(())
}
/// Set RX buffer, checking that it has suitable length.
unsafe fn set_rx_buffer(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
// NOTE: RAM slice check is not necessary, as a mutable
// slice can only be built from data located in RAM.
if buffer.len() > EASY_DMA_SIZE {
return Err(Error::RxBufferTooLong);
}
let r = T::regs();
// We're giving the register a pointer to the stack. Since we're
// waiting for the I2C transaction to end before this stack pointer
// becomes invalid, there's nothing wrong here.
r.rxd().ptr().write_value(buffer.as_mut_ptr() as u32);
r.rxd().maxcnt().write(|w|
// We're giving it the length of the buffer, so no danger of
// accessing invalid memory. We have verified that the length of the
// buffer fits in an `u8`, so the cast to the type of maxcnt
// is also fine.
//
// Note that that nrf52840 maxcnt is a wider
// type than a u8, so we use a `_` cast rather than a `u8` cast.
// The MAXCNT field is thus at least 8 bits wide and accepts the
// full range of values that fit in a `u8`.
w.set_maxcnt(buffer.len() as _));
Ok(())
}
fn clear_errorsrc(&mut self) {
let r = T::regs();
r.errorsrc().write(|w| {
w.set_anack(true);
w.set_dnack(true);
w.set_overrun(true);
});
}
/// Get Error instance, if any occurred.
fn check_errorsrc(&self) -> Result<(), Error> {
let r = T::regs();
let err = r.errorsrc().read();
if err.anack() {
return Err(Error::AddressNack);
}
if err.dnack() {
return Err(Error::DataNack);
}
if err.overrun() {
return Err(Error::Overrun);
}
Ok(())
}
fn check_rx(&self, len: usize) -> Result<(), Error> {
let r = T::regs();
if r.rxd().amount().read().0 != len as u32 {
Err(Error::Receive)
} else {
Ok(())
}
}
fn check_tx(&self, len: usize) -> Result<(), Error> {
let r = T::regs();
if r.txd().amount().read().0 != len as u32 {
Err(Error::Transmit)
} else {
Ok(())
}
}
/// Wait for stop or error
fn blocking_wait(&mut self) {
let r = T::regs();
loop {
if r.events_suspended().read() != 0 || r.events_stopped().read() != 0 {
r.events_suspended().write_value(0);
r.events_stopped().write_value(0);
break;
}
if r.events_error().read() != 0 {
r.events_error().write_value(0);
r.tasks_stop().write_value(1);
}
}
}
/// Wait for stop or error
#[cfg(feature = "time")]
fn blocking_wait_timeout(&mut self, timeout: Duration) -> Result<(), Error> {
let r = T::regs();
let deadline = Instant::now() + timeout;
loop {
if r.events_suspended().read() != 0 || r.events_stopped().read() != 0 {
r.events_stopped().write_value(0);
break;
}
if r.events_error().read() != 0 {
r.events_error().write_value(0);
r.tasks_stop().write_value(1);
}
if Instant::now() > deadline {
r.tasks_stop().write_value(1);
return Err(Error::Timeout);
}
}
Ok(())
}
/// Wait for stop or error
fn async_wait(&mut self) -> impl Future<Output = Result<(), Error>> {
poll_fn(move |cx| {
let r = T::regs();
let s = T::state();
s.end_waker.register(cx.waker());
if r.events_suspended().read() != 0 || r.events_stopped().read() != 0 {
r.events_stopped().write_value(0);
return Poll::Ready(Ok(()));
}
// stop if an error occurred
if r.events_error().read() != 0 {
r.events_error().write_value(0);
r.tasks_stop().write_value(1);
if let Err(e) = self.check_errorsrc() {
return Poll::Ready(Err(e));
} else {
return Poll::Ready(Err(Error::Bus));
}
}
Poll::Pending
})
}
fn setup_operations(
&mut self,
address: u8,
operations: &mut [Operation<'_>],
tx_ram_buffer: Option<&mut [MaybeUninit<u8>; FORCE_COPY_BUFFER_SIZE]>,
last_op: Option<&Operation<'_>>,
inten: bool,
) -> Result<usize, Error> {
let r = T::regs();
compiler_fence(SeqCst);
r.address().write(|w| w.set_address(address));
r.events_suspended().write_value(0);
r.events_stopped().write_value(0);
r.events_error().write_value(0);
self.clear_errorsrc();
if inten {
r.intenset().write(|w| {
w.set_suspended(true);
w.set_stopped(true);
w.set_error(true);
});
} else {
r.intenclr().write(|w| {
w.set_suspended(true);
w.set_stopped(true);
w.set_error(true);
});
}
assert!(!operations.is_empty());
match operations {
[Operation::Read(_), Operation::Read(_), ..] => {
panic!("Consecutive read operations are not supported!")
}
[Operation::Read(rd_buffer), Operation::Write(wr_buffer), rest @ ..] => {
let stop = rest.is_empty();
// Set up DMA buffers.
unsafe {
self.set_tx_buffer(wr_buffer, tx_ram_buffer)?;
self.set_rx_buffer(rd_buffer)?;
}
r.shorts().write(|w| {
w.set_lastrx_starttx(true);
if stop {
w.set_lasttx_stop(true);
} else {
w.set_lasttx_suspend(true);
}
});
// Start read+write operation.
r.tasks_startrx().write_value(1);
if last_op.is_some() {
r.tasks_resume().write_value(1);
}
// TODO: Handle empty write buffer
if rd_buffer.is_empty() {
// With a zero-length buffer, LASTRX doesn't fire (because there's no last byte!), so do the STARTTX ourselves.
r.tasks_starttx().write_value(1);
}
Ok(2)
}
[Operation::Read(buffer)] => {
// Set up DMA buffers.
unsafe {
self.set_rx_buffer(buffer)?;
}
r.shorts().write(|w| w.set_lastrx_stop(true));
// Start read operation.
r.tasks_startrx().write_value(1);
if last_op.is_some() {
r.tasks_resume().write_value(1);
}
if buffer.is_empty() {
// With a zero-length buffer, LASTRX doesn't fire (because there's no last byte!), so do the STOP ourselves.
r.tasks_stop().write_value(1);
}
Ok(1)
}
[Operation::Write(wr_buffer), Operation::Read(rd_buffer)]
if !wr_buffer.is_empty() && !rd_buffer.is_empty() =>
{
// Set up DMA buffers.
unsafe {
self.set_tx_buffer(wr_buffer, tx_ram_buffer)?;
self.set_rx_buffer(rd_buffer)?;
}
// Start write+read operation.
r.shorts().write(|w| {
w.set_lasttx_startrx(true);
w.set_lastrx_stop(true);
});
r.tasks_starttx().write_value(1);
if last_op.is_some() {
r.tasks_resume().write_value(1);
}
Ok(2)
}
[Operation::Write(buffer), rest @ ..] => {
let stop = rest.is_empty();
// Set up DMA buffers.
unsafe {
self.set_tx_buffer(buffer, tx_ram_buffer)?;
}
// Start write operation.
r.shorts().write(|w| {
if stop {
w.set_lasttx_stop(true);
} else {
w.set_lasttx_suspend(true);
}
});
r.tasks_starttx().write_value(1);
if last_op.is_some() {
r.tasks_resume().write_value(1);
}
if buffer.is_empty() {
// With a zero-length buffer, LASTTX doesn't fire (because there's no last byte!), so do the STOP/SUSPEND ourselves.
if stop {
r.tasks_stop().write_value(1);
} else {
r.tasks_suspend().write_value(1);
}
}
Ok(1)
}
[] => unreachable!(),
}
}
fn check_operations(&mut self, operations: &[Operation<'_>]) -> Result<(), Error> {
compiler_fence(SeqCst);
self.check_errorsrc()?;
assert!(operations.len() == 1 || operations.len() == 2);
match operations {
[Operation::Read(rd_buffer), Operation::Write(wr_buffer)]
| [Operation::Write(wr_buffer), Operation::Read(rd_buffer)] => {
self.check_rx(rd_buffer.len())?;
self.check_tx(wr_buffer.len())?;
}
[Operation::Read(buffer)] => {
self.check_rx(buffer.len())?;
}
[Operation::Write(buffer), ..] => {
self.check_tx(buffer.len())?;
}
_ => unreachable!(),
}
Ok(())
}
// ===========================================
/// Execute the provided operations on the I2C bus.
///
/// Each buffer must have a length of at most 255 bytes on the nRF52832
/// and at most 65535 bytes on the nRF52840.
///
/// Consecutive `Operation::Read`s are not supported due to hardware
/// limitations.
///
/// An `Operation::Write` following an `Operation::Read` must have a
/// non-empty buffer.
pub fn blocking_transaction(&mut self, address: u8, mut operations: &mut [Operation<'_>]) -> Result<(), Error> {
let mut tx_ram_buffer = [MaybeUninit::uninit(); FORCE_COPY_BUFFER_SIZE];
let mut last_op = None;
while !operations.is_empty() {
let ops = self.setup_operations(address, operations, Some(&mut tx_ram_buffer), last_op, false)?;
let (in_progress, rest) = operations.split_at_mut(ops);
self.blocking_wait();
self.check_operations(in_progress)?;
last_op = in_progress.last();
operations = rest;
}
Ok(())
}
/// Same as [`blocking_transaction`](Twim::blocking_transaction) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
pub fn blocking_transaction_from_ram(
&mut self,
address: u8,
mut operations: &mut [Operation<'_>],
) -> Result<(), Error> {
let mut last_op = None;
while !operations.is_empty() {
let ops = self.setup_operations(address, operations, None, last_op, false)?;
let (in_progress, rest) = operations.split_at_mut(ops);
self.blocking_wait();
self.check_operations(in_progress)?;
last_op = in_progress.last();
operations = rest;
}
Ok(())
}
/// Execute the provided operations on the I2C bus with timeout.
///
/// See [`blocking_transaction`].
#[cfg(feature = "time")]
pub fn blocking_transaction_timeout(
&mut self,
address: u8,
mut operations: &mut [Operation<'_>],
timeout: Duration,
) -> Result<(), Error> {
let mut tx_ram_buffer = [MaybeUninit::uninit(); FORCE_COPY_BUFFER_SIZE];
let mut last_op = None;
while !operations.is_empty() {
let ops = self.setup_operations(address, operations, Some(&mut tx_ram_buffer), last_op, false)?;
let (in_progress, rest) = operations.split_at_mut(ops);
self.blocking_wait_timeout(timeout)?;
self.check_operations(in_progress)?;
last_op = in_progress.last();
operations = rest;
}
Ok(())
}
/// Same as [`blocking_transaction_timeout`](Twim::blocking_transaction_timeout) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
#[cfg(feature = "time")]
pub fn blocking_transaction_from_ram_timeout(
&mut self,
address: u8,
mut operations: &mut [Operation<'_>],
timeout: Duration,
) -> Result<(), Error> {
let mut last_op = None;
while !operations.is_empty() {
let ops = self.setup_operations(address, operations, None, last_op, false)?;
let (in_progress, rest) = operations.split_at_mut(ops);
self.blocking_wait_timeout(timeout)?;
self.check_operations(in_progress)?;
last_op = in_progress.last();
operations = rest;
}
Ok(())
}
/// Execute the provided operations on the I2C bus.
///
/// Each buffer must have a length of at most 255 bytes on the nRF52832
/// and at most 65535 bytes on the nRF52840.
///
/// Consecutive `Operation::Read`s are not supported due to hardware
/// limitations.
///
/// An `Operation::Write` following an `Operation::Read` must have a
/// non-empty buffer.
pub async fn transaction(&mut self, address: u8, mut operations: &mut [Operation<'_>]) -> Result<(), Error> {
let mut tx_ram_buffer = [MaybeUninit::uninit(); FORCE_COPY_BUFFER_SIZE];
let mut last_op = None;
while !operations.is_empty() {
let ops = self.setup_operations(address, operations, Some(&mut tx_ram_buffer), last_op, true)?;
let (in_progress, rest) = operations.split_at_mut(ops);
self.async_wait().await?;
self.check_operations(in_progress)?;
last_op = in_progress.last();
operations = rest;
}
Ok(())
}
/// Same as [`transaction`](Twim::transaction) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
pub async fn transaction_from_ram(
&mut self,
address: u8,
mut operations: &mut [Operation<'_>],
) -> Result<(), Error> {
let mut last_op = None;
while !operations.is_empty() {
let ops = self.setup_operations(address, operations, None, last_op, true)?;
let (in_progress, rest) = operations.split_at_mut(ops);
self.async_wait().await?;
self.check_operations(in_progress)?;
last_op = in_progress.last();
operations = rest;
}
Ok(())
}
// ===========================================
/// Write to an I2C slave.
///
/// The buffer must have a length of at most 255 bytes on the nRF52832
/// and at most 65535 bytes on the nRF52840.
pub fn blocking_write(&mut self, address: u8, buffer: &[u8]) -> Result<(), Error> {
self.blocking_transaction(address, &mut [Operation::Write(buffer)])
}
/// Same as [`blocking_write`](Twim::blocking_write) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
pub fn blocking_write_from_ram(&mut self, address: u8, buffer: &[u8]) -> Result<(), Error> {
self.blocking_transaction_from_ram(address, &mut [Operation::Write(buffer)])
}
/// Read from an I2C slave.
///
/// The buffer must have a length of at most 255 bytes on the nRF52832
/// and at most 65535 bytes on the nRF52840.
pub fn blocking_read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error> {
self.blocking_transaction(address, &mut [Operation::Read(buffer)])
}
/// Write data to an I2C slave, then read data from the slave without
/// triggering a stop condition between the two.
///
/// The buffers must have a length of at most 255 bytes on the nRF52832
/// and at most 65535 bytes on the nRF52840.
pub fn blocking_write_read(&mut self, address: u8, wr_buffer: &[u8], rd_buffer: &mut [u8]) -> Result<(), Error> {
self.blocking_transaction(address, &mut [Operation::Write(wr_buffer), Operation::Read(rd_buffer)])
}
/// Same as [`blocking_write_read`](Twim::blocking_write_read) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
pub fn blocking_write_read_from_ram(
&mut self,
address: u8,
wr_buffer: &[u8],
rd_buffer: &mut [u8],
) -> Result<(), Error> {
self.blocking_transaction_from_ram(address, &mut [Operation::Write(wr_buffer), Operation::Read(rd_buffer)])
}
// ===========================================
/// Write to an I2C slave with timeout.
///
/// See [`blocking_write`].
#[cfg(feature = "time")]
pub fn blocking_write_timeout(&mut self, address: u8, buffer: &[u8], timeout: Duration) -> Result<(), Error> {
self.blocking_transaction_timeout(address, &mut [Operation::Write(buffer)], timeout)
}
/// Same as [`blocking_write`](Twim::blocking_write) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
#[cfg(feature = "time")]
pub fn blocking_write_from_ram_timeout(
&mut self,
address: u8,
buffer: &[u8],
timeout: Duration,
) -> Result<(), Error> {
self.blocking_transaction_from_ram_timeout(address, &mut [Operation::Write(buffer)], timeout)
}
/// Read from an I2C slave.
///
/// The buffer must have a length of at most 255 bytes on the nRF52832
/// and at most 65535 bytes on the nRF52840.
#[cfg(feature = "time")]
pub fn blocking_read_timeout(&mut self, address: u8, buffer: &mut [u8], timeout: Duration) -> Result<(), Error> {
self.blocking_transaction_timeout(address, &mut [Operation::Read(buffer)], timeout)
}
/// Write data to an I2C slave, then read data from the slave without
/// triggering a stop condition between the two.
///
/// The buffers must have a length of at most 255 bytes on the nRF52832
/// and at most 65535 bytes on the nRF52840.
#[cfg(feature = "time")]
pub fn blocking_write_read_timeout(
&mut self,
address: u8,
wr_buffer: &[u8],
rd_buffer: &mut [u8],
timeout: Duration,
) -> Result<(), Error> {
self.blocking_transaction_timeout(
address,
&mut [Operation::Write(wr_buffer), Operation::Read(rd_buffer)],
timeout,
)
}
/// Same as [`blocking_write_read`](Twim::blocking_write_read) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
#[cfg(feature = "time")]
pub fn blocking_write_read_from_ram_timeout(
&mut self,
address: u8,
wr_buffer: &[u8],
rd_buffer: &mut [u8],
timeout: Duration,
) -> Result<(), Error> {
self.blocking_transaction_from_ram_timeout(
address,
&mut [Operation::Write(wr_buffer), Operation::Read(rd_buffer)],
timeout,
)
}
// ===========================================
/// Read from an I2C slave.
///
/// The buffer must have a length of at most 255 bytes on the nRF52832
/// and at most 65535 bytes on the nRF52840.
pub async fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error> {
self.transaction(address, &mut [Operation::Read(buffer)]).await
}
/// Write to an I2C slave.
///
/// The buffer must have a length of at most 255 bytes on the nRF52832
/// and at most 65535 bytes on the nRF52840.
pub async fn write(&mut self, address: u8, buffer: &[u8]) -> Result<(), Error> {
self.transaction(address, &mut [Operation::Write(buffer)]).await
}
/// Same as [`write`](Twim::write) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
pub async fn write_from_ram(&mut self, address: u8, buffer: &[u8]) -> Result<(), Error> {
self.transaction_from_ram(address, &mut [Operation::Write(buffer)])
.await
}
/// Write data to an I2C slave, then read data from the slave without
/// triggering a stop condition between the two.
///
/// The buffers must have a length of at most 255 bytes on the nRF52832
/// and at most 65535 bytes on the nRF52840.
pub async fn write_read(&mut self, address: u8, wr_buffer: &[u8], rd_buffer: &mut [u8]) -> Result<(), Error> {
self.transaction(address, &mut [Operation::Write(wr_buffer), Operation::Read(rd_buffer)])
.await
}
/// Same as [`write_read`](Twim::write_read) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
pub async fn write_read_from_ram(
&mut self,
address: u8,
wr_buffer: &[u8],
rd_buffer: &mut [u8],
) -> Result<(), Error> {
self.transaction_from_ram(address, &mut [Operation::Write(wr_buffer), Operation::Read(rd_buffer)])
.await
}
}
impl<'a, T: Instance> Drop for Twim<'a, T> {
fn drop(&mut self) {
trace!("twim drop");
// TODO: check for abort
// disable!
let r = T::regs();
r.enable().write(|w| w.set_enable(vals::Enable::DISABLED));
gpio::deconfigure_pin(r.psel().sda().read());
gpio::deconfigure_pin(r.psel().scl().read());
trace!("twim drop: done");
}
}
pub(crate) struct State {
end_waker: AtomicWaker,
}
impl State {
pub(crate) const fn new() -> Self {
Self {
end_waker: AtomicWaker::new(),
}
}
}
pub(crate) trait SealedInstance {
fn regs() -> pac::twim::Twim;
fn state() -> &'static State;
}
/// TWIM peripheral instance.
#[allow(private_bounds)]
pub trait Instance: Peripheral<P = Self> + SealedInstance + 'static {
/// Interrupt for this peripheral.
type Interrupt: interrupt::typelevel::Interrupt;
}
macro_rules! impl_twim {
($type:ident, $pac_type:ident, $irq:ident) => {
impl crate::twim::SealedInstance for peripherals::$type {
fn regs() -> pac::twim::Twim {
pac::$pac_type
}
fn state() -> &'static crate::twim::State {
static STATE: crate::twim::State = crate::twim::State::new();
&STATE
}
}
impl crate::twim::Instance for peripherals::$type {
type Interrupt = crate::interrupt::typelevel::$irq;
}
};
}
// ====================
mod eh02 {
use super::*;
impl<'a, T: Instance> embedded_hal_02::blocking::i2c::Write for Twim<'a, T> {
type Error = Error;
fn write(&mut self, addr: u8, bytes: &[u8]) -> Result<(), Error> {
self.blocking_write(addr, bytes)
}
}
impl<'a, T: Instance> embedded_hal_02::blocking::i2c::Read for Twim<'a, T> {
type Error = Error;
fn read(&mut self, addr: u8, bytes: &mut [u8]) -> Result<(), Error> {
self.blocking_read(addr, bytes)
}
}
impl<'a, T: Instance> embedded_hal_02::blocking::i2c::WriteRead for Twim<'a, T> {
type Error = Error;
fn write_read<'w>(&mut self, addr: u8, bytes: &'w [u8], buffer: &'w mut [u8]) -> Result<(), Error> {
self.blocking_write_read(addr, bytes, buffer)
}
}
}
impl embedded_hal_1::i2c::Error for Error {
fn kind(&self) -> embedded_hal_1::i2c::ErrorKind {
match *self {
Self::TxBufferTooLong => embedded_hal_1::i2c::ErrorKind::Other,
Self::RxBufferTooLong => embedded_hal_1::i2c::ErrorKind::Other,
Self::Transmit => embedded_hal_1::i2c::ErrorKind::Other,
Self::Receive => embedded_hal_1::i2c::ErrorKind::Other,
Self::BufferNotInRAM => embedded_hal_1::i2c::ErrorKind::Other,
Self::AddressNack => {
embedded_hal_1::i2c::ErrorKind::NoAcknowledge(embedded_hal_1::i2c::NoAcknowledgeSource::Address)
}
Self::DataNack => {
embedded_hal_1::i2c::ErrorKind::NoAcknowledge(embedded_hal_1::i2c::NoAcknowledgeSource::Data)
}
Self::Overrun => embedded_hal_1::i2c::ErrorKind::Overrun,
Self::Timeout => embedded_hal_1::i2c::ErrorKind::Other,
Self::Bus => embedded_hal_1::i2c::ErrorKind::Other,
}
}
}
impl<'d, T: Instance> embedded_hal_1::i2c::ErrorType for Twim<'d, T> {
type Error = Error;
}
impl<'d, T: Instance> embedded_hal_1::i2c::I2c for Twim<'d, T> {
fn transaction(&mut self, address: u8, operations: &mut [Operation<'_>]) -> Result<(), Self::Error> {
self.blocking_transaction(address, operations)
}
}
impl<'d, T: Instance> embedded_hal_async::i2c::I2c for Twim<'d, T> {
async fn transaction(&mut self, address: u8, operations: &mut [Operation<'_>]) -> Result<(), Self::Error> {
self.transaction(address, operations).await
}
}
impl<'d, T: Instance> SetConfig for Twim<'d, T> {
type Config = Config;
type ConfigError = ();
fn set_config(&mut self, config: &Self::Config) -> Result<(), Self::ConfigError> {
let r = T::regs();
r.frequency().write(|w| w.set_frequency(config.frequency));
Ok(())
}
}