1097 lines
36 KiB
Rust

//! OCTOSPI Serial Peripheral Interface
//!
#![macro_use]
pub mod enums;
use core::marker::PhantomData;
use embassy_embedded_hal::{GetConfig, SetConfig};
use embassy_hal_internal::{into_ref, PeripheralRef};
pub use enums::*;
use stm32_metapac::octospi::vals::{PhaseMode, SizeInBits};
use crate::dma::{word, ChannelAndRequest};
use crate::gpio::{AFType, AnyPin, Pull, SealedPin as _, Speed};
use crate::mode::{Async, Blocking, Mode as PeriMode};
use crate::pac::octospi::{vals, Octospi as Regs};
use crate::rcc::{self, RccPeripheral};
use crate::{peripherals, Peripheral};
/// OPSI driver config.
#[derive(Clone, Copy)]
pub struct Config {
/// Fifo threshold used by the peripheral to generate the interrupt indicating data
/// or space is available in the FIFO
pub fifo_threshold: FIFOThresholdLevel,
/// Indicates the type of external device connected
pub memory_type: MemoryType, // Need to add an additional enum to provide this public interface
/// Defines the size of the external device connected to the OSPI corresponding
/// to the number of address bits required to access the device
pub device_size: MemorySize,
/// Sets the minimum number of clock cycles that the chip select signal must be held high
/// between commands
pub chip_select_high_time: ChipSelectHighTime,
/// Enables the free running clock
pub free_running_clock: bool,
/// Sets the clock level when the device is not selected
pub clock_mode: bool,
/// Indicates the wrap size corresponding to the external device configuration
pub wrap_size: WrapSize,
/// Specified the prescaler factor used for generating the external clock based
/// on the AHB clock
pub clock_prescaler: u8,
/// Allows the delay of 1/2 cycle the data sampling to account for external
/// signal delays
pub sample_shifting: bool,
/// Allows hold to 1/4 cycle the data
pub delay_hold_quarter_cycle: bool,
/// Enables the transaction boundary feature and defines the boundary to release
/// the chip select
pub chip_select_boundary: u8,
/// Enbales the delay block bypass so the sampling is not affected by the delay block
pub delay_block_bypass: bool,
/// Enables communication regulation feature. Chip select is released when the other
/// OctoSpi requests access to the bus
pub max_transfer: u8,
/// Enables the refresh feature, chip select is released every refresh + 1 clock cycles
pub refresh: u32,
}
impl Default for Config {
fn default() -> Self {
Self {
fifo_threshold: FIFOThresholdLevel::_16Bytes, // 32 bytes FIFO, half capacity
memory_type: MemoryType::Micron,
device_size: MemorySize::Other(0),
chip_select_high_time: ChipSelectHighTime::_5Cycle,
free_running_clock: false,
clock_mode: false,
wrap_size: WrapSize::None,
clock_prescaler: 0,
sample_shifting: false,
delay_hold_quarter_cycle: false,
chip_select_boundary: 0, // Acceptable range 0 to 31
delay_block_bypass: true,
max_transfer: 0,
refresh: 0,
}
}
}
/// OSPI transfer configuration.
pub struct TransferConfig {
/// Instruction width (IMODE)
pub iwidth: OspiWidth,
/// Instruction Id
pub instruction: Option<u32>,
/// Number of Instruction Bytes
pub isize: AddressSize,
/// Instruction Double Transfer rate enable
pub idtr: bool,
/// Address width (ADMODE)
pub adwidth: OspiWidth,
/// Device memory address
pub address: Option<u32>,
/// Number of Address Bytes
pub adsize: AddressSize,
/// Address Double Transfer rate enable
pub addtr: bool,
/// Alternate bytes width (ABMODE)
pub abwidth: OspiWidth,
/// Alternate Bytes
pub alternate_bytes: Option<u32>,
/// Number of Alternate Bytes
pub absize: AddressSize,
/// Alternate Bytes Double Transfer rate enable
pub abdtr: bool,
/// Data width (DMODE)
pub dwidth: OspiWidth,
/// Data buffer
pub ddtr: bool,
/// Number of dummy cycles (DCYC)
pub dummy: DummyCycles,
}
impl Default for TransferConfig {
fn default() -> Self {
Self {
iwidth: OspiWidth::NONE,
instruction: None,
isize: AddressSize::_8Bit,
idtr: false,
adwidth: OspiWidth::NONE,
address: None,
adsize: AddressSize::_8Bit,
addtr: false,
abwidth: OspiWidth::NONE,
alternate_bytes: None,
absize: AddressSize::_8Bit,
abdtr: false,
dwidth: OspiWidth::NONE,
ddtr: false,
dummy: DummyCycles::_0,
}
}
}
/// Error used for Octospi implementation
#[derive(Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum OspiError {
/// Peripheral configuration is invalid
InvalidConfiguration,
/// Operation configuration is invalid
InvalidCommand,
/// Size zero buffer passed to instruction
EmptyBuffer,
}
/// OSPI driver.
pub struct Ospi<'d, T: Instance, M: PeriMode> {
_peri: PeripheralRef<'d, T>,
sck: Option<PeripheralRef<'d, AnyPin>>,
d0: Option<PeripheralRef<'d, AnyPin>>,
d1: Option<PeripheralRef<'d, AnyPin>>,
d2: Option<PeripheralRef<'d, AnyPin>>,
d3: Option<PeripheralRef<'d, AnyPin>>,
d4: Option<PeripheralRef<'d, AnyPin>>,
d5: Option<PeripheralRef<'d, AnyPin>>,
d6: Option<PeripheralRef<'d, AnyPin>>,
d7: Option<PeripheralRef<'d, AnyPin>>,
nss: Option<PeripheralRef<'d, AnyPin>>,
dqs: Option<PeripheralRef<'d, AnyPin>>,
dma: Option<ChannelAndRequest<'d>>,
_phantom: PhantomData<M>,
config: Config,
width: OspiWidth,
}
impl<'d, T: Instance, M: PeriMode> Ospi<'d, T, M> {
fn new_inner(
peri: impl Peripheral<P = T> + 'd,
d0: Option<PeripheralRef<'d, AnyPin>>,
d1: Option<PeripheralRef<'d, AnyPin>>,
d2: Option<PeripheralRef<'d, AnyPin>>,
d3: Option<PeripheralRef<'d, AnyPin>>,
d4: Option<PeripheralRef<'d, AnyPin>>,
d5: Option<PeripheralRef<'d, AnyPin>>,
d6: Option<PeripheralRef<'d, AnyPin>>,
d7: Option<PeripheralRef<'d, AnyPin>>,
sck: Option<PeripheralRef<'d, AnyPin>>,
nss: Option<PeripheralRef<'d, AnyPin>>,
dqs: Option<PeripheralRef<'d, AnyPin>>,
dma: Option<ChannelAndRequest<'d>>,
config: Config,
width: OspiWidth,
dual_quad: bool,
) -> Self {
into_ref!(peri);
// System configuration
rcc::enable_and_reset::<T>();
while T::REGS.sr().read().busy() {}
// Device configuration
T::REGS.dcr1().modify(|w| {
w.set_devsize(config.device_size.into());
w.set_mtyp(vals::MemType::from_bits(config.memory_type.into()));
w.set_csht(config.chip_select_high_time.into());
w.set_dlybyp(config.delay_block_bypass);
w.set_frck(false);
w.set_ckmode(config.clock_mode);
});
T::REGS.dcr2().modify(|w| {
w.set_wrapsize(config.wrap_size.into());
});
T::REGS.dcr3().modify(|w| {
w.set_csbound(config.chip_select_boundary);
#[cfg(octospi_v1)]
{
w.set_maxtran(config.max_transfer);
}
});
T::REGS.dcr4().modify(|w| {
w.set_refresh(config.refresh);
});
T::REGS.cr().modify(|w| {
w.set_fthres(vals::Threshold(config.fifo_threshold.into()));
});
// Wait for busy flag to clear
while T::REGS.sr().read().busy() {}
T::REGS.dcr2().modify(|w| {
w.set_prescaler(config.clock_prescaler);
});
T::REGS.cr().modify(|w| {
w.set_dmm(dual_quad);
});
T::REGS.tcr().modify(|w| {
w.set_sshift(match config.sample_shifting {
true => vals::SampleShift::HALFCYCLE,
false => vals::SampleShift::NONE,
});
w.set_dhqc(config.delay_hold_quarter_cycle);
});
// Enable peripheral
T::REGS.cr().modify(|w| {
w.set_en(true);
});
// Free running clock needs to be set after peripheral enable
if config.free_running_clock {
T::REGS.dcr1().modify(|w| {
w.set_frck(config.free_running_clock);
});
}
Self {
_peri: peri,
sck,
d0,
d1,
d2,
d3,
d4,
d5,
d6,
d7,
nss,
dqs,
dma,
_phantom: PhantomData,
config,
width,
}
}
// Function to configure the peripheral for the requested command
fn configure_command(&mut self, command: &TransferConfig, data_len: Option<usize>) -> Result<(), OspiError> {
// Check that transaction doesn't use more than hardware initialized pins
if <enums::OspiWidth as Into<u8>>::into(command.iwidth) > <enums::OspiWidth as Into<u8>>::into(self.width)
|| <enums::OspiWidth as Into<u8>>::into(command.adwidth) > <enums::OspiWidth as Into<u8>>::into(self.width)
|| <enums::OspiWidth as Into<u8>>::into(command.abwidth) > <enums::OspiWidth as Into<u8>>::into(self.width)
|| <enums::OspiWidth as Into<u8>>::into(command.dwidth) > <enums::OspiWidth as Into<u8>>::into(self.width)
{
return Err(OspiError::InvalidCommand);
}
T::REGS.cr().modify(|w| {
w.set_fmode(0.into());
});
// Configure alternate bytes
if let Some(ab) = command.alternate_bytes {
T::REGS.abr().write(|v| v.set_alternate(ab));
T::REGS.ccr().modify(|w| {
w.set_abmode(PhaseMode::from_bits(command.abwidth.into()));
w.set_abdtr(command.abdtr);
w.set_absize(SizeInBits::from_bits(command.absize.into()));
})
}
// Configure dummy cycles
T::REGS.tcr().modify(|w| {
w.set_dcyc(command.dummy.into());
});
// Configure data
if let Some(data_length) = data_len {
T::REGS.dlr().write(|v| {
v.set_dl((data_length - 1) as u32);
})
} else {
T::REGS.dlr().write(|v| {
v.set_dl((0) as u32);
})
}
// Configure instruction/address/data modes
T::REGS.ccr().modify(|w| {
w.set_imode(PhaseMode::from_bits(command.iwidth.into()));
w.set_idtr(command.idtr);
w.set_isize(SizeInBits::from_bits(command.isize.into()));
w.set_admode(PhaseMode::from_bits(command.adwidth.into()));
w.set_addtr(command.idtr);
w.set_adsize(SizeInBits::from_bits(command.adsize.into()));
w.set_dmode(PhaseMode::from_bits(command.dwidth.into()));
w.set_ddtr(command.ddtr);
});
// Set informationrequired to initiate transaction
if let Some(instruction) = command.instruction {
if let Some(address) = command.address {
T::REGS.ir().write(|v| {
v.set_instruction(instruction);
});
T::REGS.ar().write(|v| {
v.set_address(address);
});
} else {
// Double check requirements for delay hold and sample shifting
// if let None = command.data_len {
// if self.config.delay_hold_quarter_cycle && command.idtr {
// T::REGS.ccr().modify(|w| {
// w.set_ddtr(true);
// });
// }
// }
T::REGS.ir().write(|v| {
v.set_instruction(instruction);
});
}
} else {
if let Some(address) = command.address {
T::REGS.ar().write(|v| {
v.set_address(address);
});
} else {
// The only single phase transaction supported is instruction only
return Err(OspiError::InvalidCommand);
}
}
Ok(())
}
/// Function used to control or configure the target device without data transfer
pub async fn command(&mut self, command: &TransferConfig) -> Result<(), OspiError> {
// Wait for peripheral to be free
while T::REGS.sr().read().busy() {}
// Need additional validation that command configuration doesn't have data set
self.configure_command(command, None)?;
// Transaction initiated by setting final configuration, i.e the instruction register
while !T::REGS.sr().read().tcf() {}
T::REGS.fcr().write(|w| {
w.set_ctcf(true);
});
Ok(())
}
/// Blocking read with byte by byte data transfer
pub fn blocking_read<W: Word>(&mut self, buf: &mut [W], transaction: TransferConfig) -> Result<(), OspiError> {
if buf.is_empty() {
return Err(OspiError::EmptyBuffer);
}
// Wait for peripheral to be free
while T::REGS.sr().read().busy() {}
// Ensure DMA is not enabled for this transaction
T::REGS.cr().modify(|w| {
w.set_dmaen(false);
});
self.configure_command(&transaction, Some(buf.len()))?;
let current_address = T::REGS.ar().read().address();
let current_instruction = T::REGS.ir().read().instruction();
// For a indirect read transaction, the transaction begins when the instruction/address is set
T::REGS.cr().modify(|v| v.set_fmode(vals::FunctionalMode::INDIRECTREAD));
if T::REGS.ccr().read().admode() == vals::PhaseMode::NONE {
T::REGS.ir().write(|v| v.set_instruction(current_instruction));
} else {
T::REGS.ar().write(|v| v.set_address(current_address));
}
for idx in 0..buf.len() {
while !T::REGS.sr().read().tcf() && !T::REGS.sr().read().ftf() {}
buf[idx] = unsafe { (T::REGS.dr().as_ptr() as *mut W).read_volatile() };
}
while !T::REGS.sr().read().tcf() {}
T::REGS.fcr().write(|v| v.set_ctcf(true));
Ok(())
}
/// Blocking write with byte by byte data transfer
pub fn blocking_write<W: Word>(&mut self, buf: &[W], transaction: TransferConfig) -> Result<(), OspiError> {
if buf.is_empty() {
return Err(OspiError::EmptyBuffer);
}
// Wait for peripheral to be free
while T::REGS.sr().read().busy() {}
T::REGS.cr().modify(|w| {
w.set_dmaen(false);
});
self.configure_command(&transaction, Some(buf.len()))?;
T::REGS
.cr()
.modify(|v| v.set_fmode(vals::FunctionalMode::INDIRECTWRITE));
for idx in 0..buf.len() {
while !T::REGS.sr().read().ftf() {}
unsafe { (T::REGS.dr().as_ptr() as *mut W).write_volatile(buf[idx]) };
}
while !T::REGS.sr().read().tcf() {}
T::REGS.fcr().write(|v| v.set_ctcf(true));
Ok(())
}
/// Set new bus configuration
pub fn set_config(&mut self, config: &Config) {
// Wait for busy flag to clear
while T::REGS.sr().read().busy() {}
// Disable DMA channel while configuring the peripheral
T::REGS.cr().modify(|w| {
w.set_dmaen(false);
});
// Device configuration
T::REGS.dcr1().modify(|w| {
w.set_devsize(config.device_size.into());
w.set_mtyp(vals::MemType::from_bits(config.memory_type.into()));
w.set_csht(config.chip_select_high_time.into());
w.set_dlybyp(config.delay_block_bypass);
w.set_frck(false);
w.set_ckmode(config.clock_mode);
});
T::REGS.dcr2().modify(|w| {
w.set_wrapsize(config.wrap_size.into());
});
T::REGS.dcr3().modify(|w| {
w.set_csbound(config.chip_select_boundary);
#[cfg(octospi_v1)]
{
w.set_maxtran(config.max_transfer);
}
});
T::REGS.dcr4().modify(|w| {
w.set_refresh(config.refresh);
});
T::REGS.cr().modify(|w| {
w.set_fthres(vals::Threshold(config.fifo_threshold.into()));
});
// Wait for busy flag to clear
while T::REGS.sr().read().busy() {}
T::REGS.dcr2().modify(|w| {
w.set_prescaler(config.clock_prescaler);
});
T::REGS.tcr().modify(|w| {
w.set_sshift(match config.sample_shifting {
true => vals::SampleShift::HALFCYCLE,
false => vals::SampleShift::NONE,
});
w.set_dhqc(config.delay_hold_quarter_cycle);
});
// Enable peripheral
T::REGS.cr().modify(|w| {
w.set_en(true);
});
// Free running clock needs to be set after peripheral enable
if config.free_running_clock {
T::REGS.dcr1().modify(|w| {
w.set_frck(config.free_running_clock);
});
}
self.config = *config;
}
/// Get current configuration
pub fn get_config(&self) -> Config {
self.config
}
}
impl<'d, T: Instance> Ospi<'d, T, Blocking> {
/// Create new blocking OSPI driver for a single spi external chip
pub fn new_blocking_singlespi(
peri: impl Peripheral<P = T> + 'd,
sck: impl Peripheral<P = impl SckPin<T>> + 'd,
d0: impl Peripheral<P = impl D0Pin<T>> + 'd,
d1: impl Peripheral<P = impl D1Pin<T>> + 'd,
nss: impl Peripheral<P = impl NSSPin<T>> + 'd,
config: Config,
) -> Self {
Self::new_inner(
peri,
new_pin!(d0, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d1, AFType::Input, Speed::VeryHigh),
None,
None,
None,
None,
None,
None,
new_pin!(sck, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(nss, AFType::OutputPushPull, Speed::VeryHigh, Pull::Up),
None,
None,
config,
OspiWidth::SING,
false,
)
}
/// Create new blocking OSPI driver for a dualspi external chip
pub fn new_blocking_dualspi(
peri: impl Peripheral<P = T> + 'd,
sck: impl Peripheral<P = impl SckPin<T>> + 'd,
d0: impl Peripheral<P = impl D0Pin<T>> + 'd,
d1: impl Peripheral<P = impl D1Pin<T>> + 'd,
nss: impl Peripheral<P = impl NSSPin<T>> + 'd,
config: Config,
) -> Self {
Self::new_inner(
peri,
new_pin!(d0, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d1, AFType::OutputPushPull, Speed::VeryHigh),
None,
None,
None,
None,
None,
None,
new_pin!(sck, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(nss, AFType::OutputPushPull, Speed::VeryHigh, Pull::Up),
None,
None,
config,
OspiWidth::DUAL,
false,
)
}
/// Create new blocking OSPI driver for a quadspi external chip
pub fn new_blocking_quadspi(
peri: impl Peripheral<P = T> + 'd,
sck: impl Peripheral<P = impl SckPin<T>> + 'd,
d0: impl Peripheral<P = impl D0Pin<T>> + 'd,
d1: impl Peripheral<P = impl D1Pin<T>> + 'd,
d2: impl Peripheral<P = impl D2Pin<T>> + 'd,
d3: impl Peripheral<P = impl D3Pin<T>> + 'd,
nss: impl Peripheral<P = impl NSSPin<T>> + 'd,
config: Config,
) -> Self {
Self::new_inner(
peri,
new_pin!(d0, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d1, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d2, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d3, AFType::OutputPushPull, Speed::VeryHigh),
None,
None,
None,
None,
new_pin!(sck, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(nss, AFType::OutputPushPull, Speed::VeryHigh, Pull::Up),
None,
None,
config,
OspiWidth::QUAD,
false,
)
}
/// Create new blocking OSPI driver for two quadspi external chips
pub fn new_blocking_dualquadspi(
peri: impl Peripheral<P = T> + 'd,
sck: impl Peripheral<P = impl SckPin<T>> + 'd,
d0: impl Peripheral<P = impl D0Pin<T>> + 'd,
d1: impl Peripheral<P = impl D1Pin<T>> + 'd,
d2: impl Peripheral<P = impl D2Pin<T>> + 'd,
d3: impl Peripheral<P = impl D3Pin<T>> + 'd,
d4: impl Peripheral<P = impl D4Pin<T>> + 'd,
d5: impl Peripheral<P = impl D5Pin<T>> + 'd,
d6: impl Peripheral<P = impl D6Pin<T>> + 'd,
d7: impl Peripheral<P = impl D7Pin<T>> + 'd,
nss: impl Peripheral<P = impl NSSPin<T>> + 'd,
config: Config,
) -> Self {
Self::new_inner(
peri,
new_pin!(d0, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d1, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d2, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d3, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d4, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d5, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d6, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d7, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(sck, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(nss, AFType::OutputPushPull, Speed::VeryHigh, Pull::Up),
None,
None,
config,
OspiWidth::QUAD,
true,
)
}
/// Create new blocking OSPI driver for octospi external chips
pub fn new_blocking_octospi(
peri: impl Peripheral<P = T> + 'd,
sck: impl Peripheral<P = impl SckPin<T>> + 'd,
d0: impl Peripheral<P = impl D0Pin<T>> + 'd,
d1: impl Peripheral<P = impl D1Pin<T>> + 'd,
d2: impl Peripheral<P = impl D2Pin<T>> + 'd,
d3: impl Peripheral<P = impl D3Pin<T>> + 'd,
d4: impl Peripheral<P = impl D4Pin<T>> + 'd,
d5: impl Peripheral<P = impl D5Pin<T>> + 'd,
d6: impl Peripheral<P = impl D6Pin<T>> + 'd,
d7: impl Peripheral<P = impl D7Pin<T>> + 'd,
nss: impl Peripheral<P = impl NSSPin<T>> + 'd,
config: Config,
) -> Self {
Self::new_inner(
peri,
new_pin!(d0, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d1, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d2, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d3, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d4, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d5, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d6, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d7, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(sck, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(nss, AFType::OutputPushPull, Speed::VeryHigh, Pull::Up),
None,
None,
config,
OspiWidth::OCTO,
false,
)
}
}
impl<'d, T: Instance> Ospi<'d, T, Async> {
/// Create new blocking OSPI driver for a single spi external chip
pub fn new_singlespi(
peri: impl Peripheral<P = T> + 'd,
sck: impl Peripheral<P = impl SckPin<T>> + 'd,
d0: impl Peripheral<P = impl D0Pin<T>> + 'd,
d1: impl Peripheral<P = impl D1Pin<T>> + 'd,
nss: impl Peripheral<P = impl NSSPin<T>> + 'd,
dma: impl Peripheral<P = impl OctoDma<T>> + 'd,
config: Config,
) -> Self {
Self::new_inner(
peri,
new_pin!(d0, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d1, AFType::Input, Speed::VeryHigh),
None,
None,
None,
None,
None,
None,
new_pin!(sck, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(nss, AFType::OutputPushPull, Speed::VeryHigh, Pull::Up),
None,
new_dma!(dma),
config,
OspiWidth::SING,
false,
)
}
/// Create new blocking OSPI driver for a dualspi external chip
pub fn new_dualspi(
peri: impl Peripheral<P = T> + 'd,
sck: impl Peripheral<P = impl SckPin<T>> + 'd,
d0: impl Peripheral<P = impl D0Pin<T>> + 'd,
d1: impl Peripheral<P = impl D1Pin<T>> + 'd,
nss: impl Peripheral<P = impl NSSPin<T>> + 'd,
dma: impl Peripheral<P = impl OctoDma<T>> + 'd,
config: Config,
) -> Self {
Self::new_inner(
peri,
new_pin!(d0, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d1, AFType::OutputPushPull, Speed::VeryHigh),
None,
None,
None,
None,
None,
None,
new_pin!(sck, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(nss, AFType::OutputPushPull, Speed::VeryHigh, Pull::Up),
None,
new_dma!(dma),
config,
OspiWidth::DUAL,
false,
)
}
/// Create new blocking OSPI driver for a quadspi external chip
pub fn new_quadspi(
peri: impl Peripheral<P = T> + 'd,
sck: impl Peripheral<P = impl SckPin<T>> + 'd,
d0: impl Peripheral<P = impl D0Pin<T>> + 'd,
d1: impl Peripheral<P = impl D1Pin<T>> + 'd,
d2: impl Peripheral<P = impl D2Pin<T>> + 'd,
d3: impl Peripheral<P = impl D3Pin<T>> + 'd,
nss: impl Peripheral<P = impl NSSPin<T>> + 'd,
dma: impl Peripheral<P = impl OctoDma<T>> + 'd,
config: Config,
) -> Self {
Self::new_inner(
peri,
new_pin!(d0, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d1, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d2, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d3, AFType::OutputPushPull, Speed::VeryHigh),
None,
None,
None,
None,
new_pin!(sck, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(nss, AFType::OutputPushPull, Speed::VeryHigh, Pull::Up),
None,
new_dma!(dma),
config,
OspiWidth::QUAD,
false,
)
}
/// Create new blocking OSPI driver for two quadspi external chips
pub fn new_dualquadspi(
peri: impl Peripheral<P = T> + 'd,
sck: impl Peripheral<P = impl SckPin<T>> + 'd,
d0: impl Peripheral<P = impl D0Pin<T>> + 'd,
d1: impl Peripheral<P = impl D1Pin<T>> + 'd,
d2: impl Peripheral<P = impl D2Pin<T>> + 'd,
d3: impl Peripheral<P = impl D3Pin<T>> + 'd,
d4: impl Peripheral<P = impl D4Pin<T>> + 'd,
d5: impl Peripheral<P = impl D5Pin<T>> + 'd,
d6: impl Peripheral<P = impl D6Pin<T>> + 'd,
d7: impl Peripheral<P = impl D7Pin<T>> + 'd,
nss: impl Peripheral<P = impl NSSPin<T>> + 'd,
dma: impl Peripheral<P = impl OctoDma<T>> + 'd,
config: Config,
) -> Self {
Self::new_inner(
peri,
new_pin!(d0, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d1, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d2, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d3, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d4, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d5, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d6, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d7, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(sck, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(nss, AFType::OutputPushPull, Speed::VeryHigh, Pull::Up),
None,
new_dma!(dma),
config,
OspiWidth::QUAD,
true,
)
}
/// Create new blocking OSPI driver for octospi external chips
pub fn new_octospi(
peri: impl Peripheral<P = T> + 'd,
sck: impl Peripheral<P = impl SckPin<T>> + 'd,
d0: impl Peripheral<P = impl D0Pin<T>> + 'd,
d1: impl Peripheral<P = impl D1Pin<T>> + 'd,
d2: impl Peripheral<P = impl D2Pin<T>> + 'd,
d3: impl Peripheral<P = impl D3Pin<T>> + 'd,
d4: impl Peripheral<P = impl D4Pin<T>> + 'd,
d5: impl Peripheral<P = impl D5Pin<T>> + 'd,
d6: impl Peripheral<P = impl D6Pin<T>> + 'd,
d7: impl Peripheral<P = impl D7Pin<T>> + 'd,
nss: impl Peripheral<P = impl NSSPin<T>> + 'd,
dma: impl Peripheral<P = impl OctoDma<T>> + 'd,
config: Config,
) -> Self {
Self::new_inner(
peri,
new_pin!(d0, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d1, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d2, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d3, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d4, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d5, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d6, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(d7, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(sck, AFType::OutputPushPull, Speed::VeryHigh),
new_pin!(nss, AFType::OutputPushPull, Speed::VeryHigh, Pull::Up),
None,
new_dma!(dma),
config,
OspiWidth::OCTO,
false,
)
}
/// Blocking read with DMA transfer
pub fn blocking_read_dma<W: Word>(&mut self, buf: &mut [W], transaction: TransferConfig) -> Result<(), OspiError> {
if buf.is_empty() {
return Err(OspiError::EmptyBuffer);
}
// Wait for peripheral to be free
while T::REGS.sr().read().busy() {}
self.configure_command(&transaction, Some(buf.len()))?;
let current_address = T::REGS.ar().read().address();
let current_instruction = T::REGS.ir().read().instruction();
// For a indirect read transaction, the transaction begins when the instruction/address is set
T::REGS.cr().modify(|v| v.set_fmode(vals::FunctionalMode::INDIRECTREAD));
if T::REGS.ccr().read().admode() == vals::PhaseMode::NONE {
T::REGS.ir().write(|v| v.set_instruction(current_instruction));
} else {
T::REGS.ar().write(|v| v.set_address(current_address));
}
let transfer = unsafe {
self.dma
.as_mut()
.unwrap()
.read(T::REGS.dr().as_ptr() as *mut W, buf, Default::default())
};
T::REGS.cr().modify(|w| w.set_dmaen(true));
transfer.blocking_wait();
finish_dma(T::REGS);
Ok(())
}
/// Blocking write with DMA transfer
pub fn blocking_write_dma<W: Word>(&mut self, buf: &[W], transaction: TransferConfig) -> Result<(), OspiError> {
if buf.is_empty() {
return Err(OspiError::EmptyBuffer);
}
// Wait for peripheral to be free
while T::REGS.sr().read().busy() {}
self.configure_command(&transaction, Some(buf.len()))?;
T::REGS
.cr()
.modify(|v| v.set_fmode(vals::FunctionalMode::INDIRECTWRITE));
let transfer = unsafe {
self.dma
.as_mut()
.unwrap()
.write(buf, T::REGS.dr().as_ptr() as *mut W, Default::default())
};
T::REGS.cr().modify(|w| w.set_dmaen(true));
transfer.blocking_wait();
finish_dma(T::REGS);
Ok(())
}
/// Asynchronous read from external device
pub async fn read<W: Word>(&mut self, buf: &mut [W], transaction: TransferConfig) -> Result<(), OspiError> {
if buf.is_empty() {
return Err(OspiError::EmptyBuffer);
}
// Wait for peripheral to be free
while T::REGS.sr().read().busy() {}
self.configure_command(&transaction, Some(buf.len()))?;
let current_address = T::REGS.ar().read().address();
let current_instruction = T::REGS.ir().read().instruction();
// For a indirect read transaction, the transaction begins when the instruction/address is set
T::REGS.cr().modify(|v| v.set_fmode(vals::FunctionalMode::INDIRECTREAD));
if T::REGS.ccr().read().admode() == vals::PhaseMode::NONE {
T::REGS.ir().write(|v| v.set_instruction(current_instruction));
} else {
T::REGS.ar().write(|v| v.set_address(current_address));
}
let transfer = unsafe {
self.dma
.as_mut()
.unwrap()
.read(T::REGS.dr().as_ptr() as *mut W, buf, Default::default())
};
T::REGS.cr().modify(|w| w.set_dmaen(true));
transfer.await;
finish_dma(T::REGS);
Ok(())
}
/// Asynchronous write to external device
pub async fn write<W: Word>(&mut self, buf: &[W], transaction: TransferConfig) -> Result<(), OspiError> {
if buf.is_empty() {
return Err(OspiError::EmptyBuffer);
}
// Wait for peripheral to be free
while T::REGS.sr().read().busy() {}
self.configure_command(&transaction, Some(buf.len()))?;
T::REGS
.cr()
.modify(|v| v.set_fmode(vals::FunctionalMode::INDIRECTWRITE));
let transfer = unsafe {
self.dma
.as_mut()
.unwrap()
.write(buf, T::REGS.dr().as_ptr() as *mut W, Default::default())
};
T::REGS.cr().modify(|w| w.set_dmaen(true));
transfer.await;
finish_dma(T::REGS);
Ok(())
}
}
impl<'d, T: Instance, M: PeriMode> Drop for Ospi<'d, T, M> {
fn drop(&mut self) {
self.sck.as_ref().map(|x| x.set_as_disconnected());
self.d0.as_ref().map(|x| x.set_as_disconnected());
self.d1.as_ref().map(|x| x.set_as_disconnected());
self.d2.as_ref().map(|x| x.set_as_disconnected());
self.d3.as_ref().map(|x| x.set_as_disconnected());
self.d4.as_ref().map(|x| x.set_as_disconnected());
self.d5.as_ref().map(|x| x.set_as_disconnected());
self.d6.as_ref().map(|x| x.set_as_disconnected());
self.d7.as_ref().map(|x| x.set_as_disconnected());
self.nss.as_ref().map(|x| x.set_as_disconnected());
self.dqs.as_ref().map(|x| x.set_as_disconnected());
rcc::disable::<T>();
}
}
fn finish_dma(regs: Regs) {
while !regs.sr().read().tcf() {}
regs.fcr().write(|v| v.set_ctcf(true));
regs.cr().modify(|w| {
w.set_dmaen(false);
});
}
pub(crate) trait SealedInstance {
const REGS: Regs;
}
trait SealedWord {
const CONFIG: u8;
}
/// OSPI instance trait.
#[allow(private_bounds)]
pub trait Instance: Peripheral<P = Self> + SealedInstance + RccPeripheral {}
pin_trait!(SckPin, Instance);
pin_trait!(NckPin, Instance);
pin_trait!(D0Pin, Instance);
pin_trait!(D1Pin, Instance);
pin_trait!(D2Pin, Instance);
pin_trait!(D3Pin, Instance);
pin_trait!(D4Pin, Instance);
pin_trait!(D5Pin, Instance);
pin_trait!(D6Pin, Instance);
pin_trait!(D7Pin, Instance);
pin_trait!(DQSPin, Instance);
pin_trait!(NSSPin, Instance);
dma_trait!(OctoDma, Instance);
foreach_peripheral!(
(octospi, $inst:ident) => {
impl SealedInstance for peripherals::$inst {
const REGS: Regs = crate::pac::$inst;
}
impl Instance for peripherals::$inst {}
};
);
impl<'d, T: Instance, M: PeriMode> SetConfig for Ospi<'d, T, M> {
type Config = Config;
type ConfigError = ();
fn set_config(&mut self, config: &Self::Config) -> Result<(), ()> {
self.set_config(config);
Ok(())
}
}
impl<'d, T: Instance, M: PeriMode> GetConfig for Ospi<'d, T, M> {
type Config = Config;
fn get_config(&self) -> Self::Config {
self.get_config()
}
}
/// Word sizes usable for OSPI.
#[allow(private_bounds)]
pub trait Word: word::Word + SealedWord {}
macro_rules! impl_word {
($T:ty, $config:expr) => {
impl SealedWord for $T {
const CONFIG: u8 = $config;
}
impl Word for $T {}
};
}
impl_word!(u8, 8);
impl_word!(u16, 16);
impl_word!(u32, 32);