embassy/embassy-stm32/src/can/fd/peripheral.rs
2024-03-23 01:38:51 +01:00

738 lines
26 KiB
Rust

// Note: This file is copied and modified from fdcan crate by Richard Meadows
use core::convert::Infallible;
use core::slice;
use cfg_if::cfg_if;
use crate::can::enums::*;
use crate::can::fd::config::*;
use crate::can::fd::message_ram::enums::*;
use crate::can::fd::message_ram::{RegisterBlock, RxFifoElement, TxBufferElement};
use crate::can::frame::*;
/// Loopback Mode
#[derive(Clone, Copy, Debug)]
enum LoopbackMode {
None,
Internal,
External,
}
pub struct Registers {
pub regs: &'static crate::pac::can::Fdcan,
pub msgram: &'static crate::pac::fdcanram::Fdcanram,
pub msg_ram_offset: usize,
}
impl Registers {
fn tx_buffer_element(&self, bufidx: usize) -> &mut TxBufferElement {
&mut self.msg_ram_mut().transmit.tbsa[bufidx]
}
pub fn msg_ram_mut(&self) -> &mut RegisterBlock {
#[cfg(stm32h7)]
let ptr = self.msgram.ram(self.msg_ram_offset / 4).as_ptr() as *mut RegisterBlock;
#[cfg(not(stm32h7))]
let ptr = self.msgram.as_ptr() as *mut RegisterBlock;
unsafe { &mut (*ptr) }
}
fn rx_fifo_element(&self, fifonr: usize, bufnum: usize) -> &mut RxFifoElement {
&mut self.msg_ram_mut().receive[fifonr].fxsa[bufnum]
}
pub fn read<F: CanHeader>(&self, fifonr: usize) -> Option<(F, u16)> {
// Fill level - do we have a msg?
if self.regs.rxfs(fifonr).read().ffl() < 1 {
return None;
}
let read_idx = self.regs.rxfs(fifonr).read().fgi();
let mailbox = self.rx_fifo_element(fifonr, read_idx as usize);
let mut buffer = [0u8; 64];
let maybe_header = extract_frame(mailbox, &mut buffer);
// Clear FIFO, reduces count and increments read buf
self.regs.rxfa(fifonr).modify(|w| w.set_fai(read_idx));
match maybe_header {
Some((header, ts)) => {
let data = &buffer[0..header.len() as usize];
match F::from_header(header, data) {
Ok(frame) => Some((frame, ts)),
Err(_) => None,
}
}
None => None,
}
}
pub fn put_tx_frame(&self, bufidx: usize, header: &Header, buffer: &[u8]) {
let mailbox = self.tx_buffer_element(bufidx);
mailbox.reset();
put_tx_header(mailbox, header);
put_tx_data(mailbox, &buffer[..header.len() as usize]);
// Set <idx as Mailbox> as ready to transmit
self.regs.txbar().modify(|w| w.set_ar(bufidx, true));
}
fn reg_to_error(value: u8) -> Option<BusError> {
match value {
//0b000 => None,
0b001 => Some(BusError::Stuff),
0b010 => Some(BusError::Form),
0b011 => Some(BusError::Acknowledge),
0b100 => Some(BusError::BitRecessive),
0b101 => Some(BusError::BitDominant),
0b110 => Some(BusError::Crc),
//0b111 => Some(BusError::NoError),
_ => None,
}
}
pub fn curr_error(&self) -> Option<BusError> {
let err = { self.regs.psr().read() };
if err.bo() {
return Some(BusError::BusOff);
} else if err.ep() {
return Some(BusError::BusPassive);
} else if err.ew() {
return Some(BusError::BusWarning);
} else {
cfg_if! {
if #[cfg(stm32h7)] {
let lec = err.lec();
} else {
let lec = err.lec().to_bits();
}
}
if let Some(err) = Self::reg_to_error(lec) {
return Some(err);
}
}
None
}
/// Returns if the tx queue is able to accept new messages without having to cancel an existing one
#[inline]
pub fn tx_queue_is_full(&self) -> bool {
self.regs.txfqs().read().tfqf()
}
/// Returns the current TX buffer operation mode (queue or FIFO)
#[inline]
pub fn tx_queue_mode(&self) -> TxBufferMode {
self.regs.txbc().read().tfqm().into()
}
#[inline]
pub fn has_pending_frame(&self, idx: usize) -> bool {
self.regs.txbrp().read().trp(idx)
}
/// Returns `Ok` when the mailbox is free or if it contains pending frame with a
/// lower priority (higher ID) than the identifier `id`.
#[inline]
pub fn is_available(&self, bufidx: usize, id: &embedded_can::Id) -> bool {
if self.has_pending_frame(bufidx) {
let mailbox = self.tx_buffer_element(bufidx);
let header_reg = mailbox.header.read();
let old_id = make_id(header_reg.id().bits(), header_reg.xtd().bits());
*id > old_id
} else {
true
}
}
/// Attempts to abort the sending of a frame that is pending in a mailbox.
///
/// If there is no frame in the provided mailbox, or its transmission succeeds before it can be
/// aborted, this function has no effect and returns `false`.
///
/// If there is a frame in the provided mailbox, and it is canceled successfully, this function
/// returns `true`.
#[inline]
pub fn abort(&self, bufidx: usize) -> bool {
let can = self.regs;
// Check if there is a request pending to abort
if self.has_pending_frame(bufidx) {
// Abort Request
can.txbcr().write(|w| w.set_cr(bufidx, true));
// Wait for the abort request to be finished.
loop {
if can.txbcf().read().cf(bufidx) {
// Return false when a transmission has occured
break can.txbto().read().to(bufidx) == false;
}
}
} else {
false
}
}
#[inline]
fn abort_pending_mailbox<F: embedded_can::Frame>(&self, bufidx: usize) -> Option<F> {
if self.abort(bufidx) {
let mailbox = self.tx_buffer_element(bufidx);
let header_reg = mailbox.header.read();
let id = make_id(header_reg.id().bits(), header_reg.xtd().bits());
let len = match header_reg.to_data_length() {
DataLength::Fdcan(len) => len,
DataLength::Classic(len) => len,
};
if len as usize > ClassicData::MAX_DATA_LEN {
return None;
}
let mut data = [0u8; 64];
data_from_tx_buffer(&mut data, mailbox, len as usize);
if header_reg.rtr().bit() {
F::new_remote(id, len as usize)
} else {
F::new(id, &data)
}
} else {
// Abort request failed because the frame was already sent (or being sent) on
// the bus. All mailboxes are now free. This can happen for small prescaler
// values (e.g. 1MBit/s bit timing with a source clock of 8MHz) or when an ISR
// has preempted the execution.
None
}
}
pub fn write<F: embedded_can::Frame + CanHeader>(&self, frame: &F) -> nb::Result<Option<F>, Infallible> {
let (idx, pending_frame) = if self.tx_queue_is_full() {
if self.tx_queue_mode() == TxBufferMode::Fifo {
// Does not make sense to cancel a pending frame when using FIFO
return Err(nb::Error::WouldBlock);
}
// If the queue is full,
// Discard the first slot with a lower priority message
let id = frame.header().id();
if self.is_available(0, id) {
(0, self.abort_pending_mailbox(0))
} else if self.is_available(1, id) {
(1, self.abort_pending_mailbox(1))
} else if self.is_available(2, id) {
(2, self.abort_pending_mailbox(2))
} else {
// For now we bail when there is no lower priority slot available
// Can this lead to priority inversion?
return Err(nb::Error::WouldBlock);
}
} else {
// Read the Write Pointer
let idx = self.regs.txfqs().read().tfqpi();
(idx, None)
};
self.put_tx_frame(idx as usize, frame.header(), frame.data());
Ok(pending_frame)
}
#[inline]
fn reset_msg_ram(&mut self) {
self.msg_ram_mut().reset();
}
#[inline]
fn enter_init_mode(&mut self) {
self.regs.cccr().modify(|w| w.set_init(true));
while false == self.regs.cccr().read().init() {}
self.regs.cccr().modify(|w| w.set_cce(true));
}
/// Enables or disables loopback mode: Internally connects the TX and RX
/// signals together.
#[inline]
fn set_loopback_mode(&mut self, mode: LoopbackMode) {
let (test, mon, lbck) = match mode {
LoopbackMode::None => (false, false, false),
LoopbackMode::Internal => (true, true, true),
LoopbackMode::External => (true, false, true),
};
self.set_test_mode(test);
self.set_bus_monitoring_mode(mon);
self.regs.test().modify(|w| w.set_lbck(lbck));
}
/// Enables or disables silent mode: Disconnects the TX signal from the pin.
#[inline]
fn set_bus_monitoring_mode(&mut self, enabled: bool) {
self.regs.cccr().modify(|w| w.set_mon(enabled));
}
#[inline]
fn set_restricted_operations(&mut self, enabled: bool) {
self.regs.cccr().modify(|w| w.set_asm(enabled));
}
#[inline]
fn set_normal_operations(&mut self, _enabled: bool) {
self.set_loopback_mode(LoopbackMode::None);
}
#[inline]
fn set_test_mode(&mut self, enabled: bool) {
self.regs.cccr().modify(|w| w.set_test(enabled));
}
#[inline]
fn set_power_down_mode(&mut self, enabled: bool) {
self.regs.cccr().modify(|w| w.set_csr(enabled));
while self.regs.cccr().read().csa() != enabled {}
}
/// Moves out of PoweredDownMode and into ConfigMode
#[inline]
pub fn into_config_mode(mut self, _config: FdCanConfig) {
self.set_power_down_mode(false);
self.enter_init_mode();
self.reset_msg_ram();
// check the FDCAN core matches our expections
assert!(
self.regs.crel().read().rel() == 3,
"Expected FDCAN core major release 3"
);
assert!(
self.regs.endn().read().etv() == 0x87654321_u32,
"Error reading endianness test value from FDCAN core"
);
/*
for fid in 0..crate::can::message_ram::STANDARD_FILTER_MAX {
self.set_standard_filter((fid as u8).into(), StandardFilter::disable());
}
for fid in 0..Ecrate::can::message_ram::XTENDED_FILTER_MAX {
self.set_extended_filter(fid.into(), ExtendedFilter::disable());
}
*/
}
/// Applies the settings of a new FdCanConfig See [`FdCanConfig`]
#[inline]
pub fn apply_config(&mut self, config: FdCanConfig) {
self.set_tx_buffer_mode(config.tx_buffer_mode);
// set standard filters list size to 28
// set extended filters list size to 8
// REQUIRED: we use the memory map as if these settings are set
// instead of re-calculating them.
#[cfg(not(stm32h7))]
{
self.regs.rxgfc().modify(|w| {
w.set_lss(crate::can::fd::message_ram::STANDARD_FILTER_MAX);
w.set_lse(crate::can::fd::message_ram::EXTENDED_FILTER_MAX);
});
}
#[cfg(stm32h7)]
{
self.regs
.sidfc()
.modify(|w| w.set_lss(crate::can::fd::message_ram::STANDARD_FILTER_MAX));
self.regs
.xidfc()
.modify(|w| w.set_lse(crate::can::fd::message_ram::EXTENDED_FILTER_MAX));
}
self.configure_msg_ram();
// Enable timestamping
#[cfg(not(stm32h7))]
self.regs
.tscc()
.write(|w| w.set_tss(stm32_metapac::can::vals::Tss::INCREMENT));
#[cfg(stm32h7)]
self.regs.tscc().write(|w| w.set_tss(0x01));
// this isn't really documented in the reference manual
// but corresponding txbtie bit has to be set for the TC (TxComplete) interrupt to fire
self.regs.txbtie().write(|w| w.0 = 0xffff_ffff);
self.regs.ie().modify(|w| {
w.set_rfne(0, true); // Rx Fifo 0 New Msg
w.set_rfne(1, true); // Rx Fifo 1 New Msg
w.set_tce(true); // Tx Complete
});
self.regs.ile().modify(|w| {
w.set_eint0(true); // Interrupt Line 0
w.set_eint1(true); // Interrupt Line 1
});
self.set_data_bit_timing(config.dbtr);
self.set_nominal_bit_timing(config.nbtr);
self.set_automatic_retransmit(config.automatic_retransmit);
self.set_transmit_pause(config.transmit_pause);
self.set_frame_transmit(config.frame_transmit);
//self.set_interrupt_line_config(config.interrupt_line_config);
self.set_non_iso_mode(config.non_iso_mode);
self.set_edge_filtering(config.edge_filtering);
self.set_protocol_exception_handling(config.protocol_exception_handling);
self.set_global_filter(config.global_filter);
}
#[inline]
fn leave_init_mode(&mut self, config: FdCanConfig) {
self.apply_config(config);
self.regs.cccr().modify(|w| w.set_cce(false));
self.regs.cccr().modify(|w| w.set_init(false));
while self.regs.cccr().read().init() == true {}
}
/// Moves out of ConfigMode and into specified mode
#[inline]
pub fn into_mode(mut self, config: FdCanConfig, mode: crate::can::_version::FdcanOperatingMode) {
match mode {
crate::can::FdcanOperatingMode::InternalLoopbackMode => self.set_loopback_mode(LoopbackMode::Internal),
crate::can::FdcanOperatingMode::ExternalLoopbackMode => self.set_loopback_mode(LoopbackMode::External),
crate::can::FdcanOperatingMode::NormalOperationMode => self.set_normal_operations(true),
crate::can::FdcanOperatingMode::RestrictedOperationMode => self.set_restricted_operations(true),
crate::can::FdcanOperatingMode::BusMonitoringMode => self.set_bus_monitoring_mode(true),
}
self.leave_init_mode(config);
}
/// Configures the bit timings.
///
/// You can use <http://www.bittiming.can-wiki.info/> to calculate the `btr` parameter. Enter
/// parameters as follows:
///
/// - *Clock Rate*: The input clock speed to the CAN peripheral (*not* the CPU clock speed).
/// This is the clock rate of the peripheral bus the CAN peripheral is attached to (eg. APB1).
/// - *Sample Point*: Should normally be left at the default value of 87.5%.
/// - *SJW*: Should normally be left at the default value of 1.
///
/// Then copy the `CAN_BUS_TIME` register value from the table and pass it as the `btr`
/// parameter to this method.
#[inline]
pub fn set_nominal_bit_timing(&mut self, btr: NominalBitTiming) {
self.regs.nbtp().write(|w| {
w.set_nbrp(btr.nbrp() - 1);
w.set_ntseg1(btr.ntseg1() - 1);
w.set_ntseg2(btr.ntseg2() - 1);
w.set_nsjw(btr.nsjw() - 1);
});
}
/// Configures the data bit timings for the FdCan Variable Bitrates.
/// This is not used when frame_transmit is set to anything other than AllowFdCanAndBRS.
#[inline]
pub fn set_data_bit_timing(&mut self, btr: DataBitTiming) {
self.regs.dbtp().write(|w| {
w.set_dbrp(btr.dbrp() - 1);
w.set_dtseg1(btr.dtseg1() - 1);
w.set_dtseg2(btr.dtseg2() - 1);
w.set_dsjw(btr.dsjw() - 1);
});
}
/// Enables or disables automatic retransmission of messages
///
/// If this is enabled, the CAN peripheral will automatically try to retransmit each frame
/// util it can be sent. Otherwise, it will try only once to send each frame.
///
/// Automatic retransmission is enabled by default.
#[inline]
pub fn set_automatic_retransmit(&mut self, enabled: bool) {
self.regs.cccr().modify(|w| w.set_dar(!enabled));
}
/// Configures the transmit pause feature. See
/// [`FdCanConfig::set_transmit_pause`]
#[inline]
pub fn set_transmit_pause(&mut self, enabled: bool) {
self.regs.cccr().modify(|w| w.set_txp(!enabled));
}
/// Configures non-iso mode. See [`FdCanConfig::set_non_iso_mode`]
#[inline]
pub fn set_non_iso_mode(&mut self, enabled: bool) {
self.regs.cccr().modify(|w| w.set_niso(enabled));
}
/// Configures edge filtering. See [`FdCanConfig::set_edge_filtering`]
#[inline]
pub fn set_edge_filtering(&mut self, enabled: bool) {
self.regs.cccr().modify(|w| w.set_efbi(enabled));
}
/// Configures TX Buffer Mode
#[inline]
pub fn set_tx_buffer_mode(&mut self, tbm: TxBufferMode) {
self.regs.txbc().write(|w| w.set_tfqm(tbm.into()));
}
/// Configures frame transmission mode. See
/// [`FdCanConfig::set_frame_transmit`]
#[inline]
pub fn set_frame_transmit(&mut self, fts: FrameTransmissionConfig) {
let (fdoe, brse) = match fts {
FrameTransmissionConfig::ClassicCanOnly => (false, false),
FrameTransmissionConfig::AllowFdCan => (true, false),
FrameTransmissionConfig::AllowFdCanAndBRS => (true, true),
};
self.regs.cccr().modify(|w| {
w.set_fdoe(fdoe);
#[cfg(stm32h7)]
w.set_bse(brse);
#[cfg(not(stm32h7))]
w.set_brse(brse);
});
}
/// Sets the protocol exception handling on/off
#[inline]
pub fn set_protocol_exception_handling(&mut self, enabled: bool) {
self.regs.cccr().modify(|w| w.set_pxhd(!enabled));
}
/// Configures and resets the timestamp counter
#[inline]
#[allow(unused)]
pub fn set_timestamp_counter_source(&mut self, select: TimestampSource) {
#[cfg(stm32h7)]
let (tcp, tss) = match select {
TimestampSource::None => (0, 0),
TimestampSource::Prescaler(p) => (p as u8, 1),
TimestampSource::FromTIM3 => (0, 2),
};
#[cfg(not(stm32h7))]
let (tcp, tss) = match select {
TimestampSource::None => (0, stm32_metapac::can::vals::Tss::ZERO),
TimestampSource::Prescaler(p) => (p as u8, stm32_metapac::can::vals::Tss::INCREMENT),
TimestampSource::FromTIM3 => (0, stm32_metapac::can::vals::Tss::EXTERNAL),
};
self.regs.tscc().write(|w| {
w.set_tcp(tcp);
w.set_tss(tss);
});
}
#[cfg(not(stm32h7))]
/// Configures the global filter settings
#[inline]
pub fn set_global_filter(&mut self, filter: GlobalFilter) {
let anfs = match filter.handle_standard_frames {
crate::can::fd::config::NonMatchingFilter::IntoRxFifo0 => stm32_metapac::can::vals::Anfs::ACCEPT_FIFO_0,
crate::can::fd::config::NonMatchingFilter::IntoRxFifo1 => stm32_metapac::can::vals::Anfs::ACCEPT_FIFO_1,
crate::can::fd::config::NonMatchingFilter::Reject => stm32_metapac::can::vals::Anfs::REJECT,
};
let anfe = match filter.handle_extended_frames {
crate::can::fd::config::NonMatchingFilter::IntoRxFifo0 => stm32_metapac::can::vals::Anfe::ACCEPT_FIFO_0,
crate::can::fd::config::NonMatchingFilter::IntoRxFifo1 => stm32_metapac::can::vals::Anfe::ACCEPT_FIFO_1,
crate::can::fd::config::NonMatchingFilter::Reject => stm32_metapac::can::vals::Anfe::REJECT,
};
self.regs.rxgfc().modify(|w| {
w.set_anfs(anfs);
w.set_anfe(anfe);
w.set_rrfs(filter.reject_remote_standard_frames);
w.set_rrfe(filter.reject_remote_extended_frames);
});
}
#[cfg(stm32h7)]
/// Configures the global filter settings
#[inline]
pub fn set_global_filter(&mut self, filter: GlobalFilter) {
let anfs = match filter.handle_standard_frames {
crate::can::fd::config::NonMatchingFilter::IntoRxFifo0 => 0,
crate::can::fd::config::NonMatchingFilter::IntoRxFifo1 => 1,
crate::can::fd::config::NonMatchingFilter::Reject => 2,
};
let anfe = match filter.handle_extended_frames {
crate::can::fd::config::NonMatchingFilter::IntoRxFifo0 => 0,
crate::can::fd::config::NonMatchingFilter::IntoRxFifo1 => 1,
crate::can::fd::config::NonMatchingFilter::Reject => 2,
};
self.regs.gfc().modify(|w| {
w.set_anfs(anfs);
w.set_anfe(anfe);
w.set_rrfs(filter.reject_remote_standard_frames);
w.set_rrfe(filter.reject_remote_extended_frames);
});
}
#[cfg(not(stm32h7))]
fn configure_msg_ram(&mut self) {}
#[cfg(stm32h7)]
fn configure_msg_ram(&mut self) {
let r = self.regs;
use crate::can::fd::message_ram::*;
//use fdcan::message_ram::*;
let mut offset_words = (self.msg_ram_offset / 4) as u16;
// 11-bit filter
r.sidfc().modify(|w| w.set_flssa(offset_words));
offset_words += STANDARD_FILTER_MAX as u16;
// 29-bit filter
r.xidfc().modify(|w| w.set_flesa(offset_words));
offset_words += 2 * EXTENDED_FILTER_MAX as u16;
// Rx FIFO 0 and 1
for i in 0..=1 {
r.rxfc(i).modify(|w| {
w.set_fsa(offset_words);
w.set_fs(RX_FIFO_MAX);
w.set_fwm(RX_FIFO_MAX);
});
offset_words += 18 * RX_FIFO_MAX as u16;
}
// Rx buffer - see below
// Tx event FIFO
r.txefc().modify(|w| {
w.set_efsa(offset_words);
w.set_efs(TX_EVENT_MAX);
w.set_efwm(TX_EVENT_MAX);
});
offset_words += 2 * TX_EVENT_MAX as u16;
// Tx buffers
r.txbc().modify(|w| {
w.set_tbsa(offset_words);
w.set_tfqs(TX_FIFO_MAX);
});
offset_words += 18 * TX_FIFO_MAX as u16;
// Rx Buffer - not used
r.rxbc().modify(|w| {
w.set_rbsa(offset_words);
});
// TX event FIFO?
// Trigger memory?
// Set the element sizes to 16 bytes
r.rxesc().modify(|w| {
w.set_rbds(0b111);
for i in 0..=1 {
w.set_fds(i, 0b111);
}
});
r.txesc().modify(|w| {
w.set_tbds(0b111);
})
}
}
fn make_id(id: u32, extended: bool) -> embedded_can::Id {
if extended {
embedded_can::Id::from(unsafe { embedded_can::ExtendedId::new_unchecked(id & 0x1FFFFFFF) })
} else {
// A standard identifier is stored into ID[28:18].
embedded_can::Id::from(unsafe { embedded_can::StandardId::new_unchecked(((id >> 18) & 0x000007FF) as u16) })
}
}
fn put_tx_header(mailbox: &mut TxBufferElement, header: &Header) {
let (id, id_type) = match header.id() {
// A standard identifier has to be written to ID[28:18].
embedded_can::Id::Standard(id) => ((id.as_raw() as u32) << 18, IdType::StandardId),
embedded_can::Id::Extended(id) => (id.as_raw() as u32, IdType::ExtendedId),
};
// Use FDCAN only for DLC > 8. FDCAN users can revise this if required.
let frame_format = if header.len() > 8 || header.fdcan() {
FrameFormat::Fdcan
} else {
FrameFormat::Classic
};
let brs = (frame_format == FrameFormat::Fdcan) && header.bit_rate_switching();
mailbox.header.write(|w| {
unsafe { w.id().bits(id) }
.rtr()
.bit(header.len() == 0 && header.rtr())
.xtd()
.set_id_type(id_type)
.set_len(DataLength::new(header.len(), frame_format))
.set_event(Event::NoEvent)
.fdf()
.set_format(frame_format)
.brs()
.bit(brs)
//esi.set_error_indicator(//TODO//)
});
}
fn put_tx_data(mailbox: &mut TxBufferElement, buffer: &[u8]) {
let mut lbuffer = [0_u32; 16];
let len = buffer.len();
let data = unsafe { slice::from_raw_parts_mut(lbuffer.as_mut_ptr() as *mut u8, len) };
data[..len].copy_from_slice(&buffer[..len]);
let data_len = ((len) + 3) / 4;
for (register, byte) in mailbox.data.iter_mut().zip(lbuffer[..data_len].iter()) {
unsafe { register.write(*byte) };
}
}
fn data_from_fifo(buffer: &mut [u8], mailbox: &RxFifoElement, len: usize) {
for (i, register) in mailbox.data.iter().enumerate() {
let register_value = register.read();
let register_bytes = unsafe { slice::from_raw_parts(&register_value as *const u32 as *const u8, 4) };
let num_bytes = (len) - i * 4;
if num_bytes <= 4 {
buffer[i * 4..i * 4 + num_bytes].copy_from_slice(&register_bytes[..num_bytes]);
break;
}
buffer[i * 4..(i + 1) * 4].copy_from_slice(register_bytes);
}
}
fn data_from_tx_buffer(buffer: &mut [u8], mailbox: &TxBufferElement, len: usize) {
for (i, register) in mailbox.data.iter().enumerate() {
let register_value = register.read();
let register_bytes = unsafe { slice::from_raw_parts(&register_value as *const u32 as *const u8, 4) };
let num_bytes = (len) - i * 4;
if num_bytes <= 4 {
buffer[i * 4..i * 4 + num_bytes].copy_from_slice(&register_bytes[..num_bytes]);
break;
}
buffer[i * 4..(i + 1) * 4].copy_from_slice(register_bytes);
}
}
fn extract_frame(mailbox: &RxFifoElement, buffer: &mut [u8]) -> Option<(Header, u16)> {
let header_reg = mailbox.header.read();
let id = make_id(header_reg.id().bits(), header_reg.xtd().bits());
let dlc = header_reg.to_data_length().len();
let len = dlc as usize;
let timestamp = header_reg.txts().bits;
if len > buffer.len() {
return None;
}
data_from_fifo(buffer, mailbox, len);
let header = if header_reg.fdf().bits {
Header::new_fd(id, dlc, header_reg.rtr().bits(), header_reg.brs().bits())
} else {
Header::new(id, dlc, header_reg.rtr().bits())
};
Some((header, timestamp))
}