2025-07-20 20:25:26 +01:00

768 lines
19 KiB
Rust

#![no_std]
#![allow(async_fn_in_trait)]
#![doc = include_str!("../README.md")]
#![warn(missing_docs)]
//! ## Feature flags
#![doc = document_features::document_features!(feature_label = r#"<span class="stab portability"><code>{feature}</code></span>"#)]
// This mod MUST go first, so that the others see its macros.
pub(crate) mod fmt;
#[cfg(feature = "binary-info")]
pub use rp_binary_info as binary_info;
#[cfg(feature = "critical-section-impl")]
mod critical_section_impl;
#[cfg(feature = "rp2040")]
mod intrinsics;
pub mod adc;
#[cfg(feature = "_rp235x")]
pub mod block;
#[cfg(feature = "rp2040")]
pub mod bootsel;
pub mod clocks;
pub mod dma;
pub mod flash;
#[cfg(feature = "rp2040")]
mod float;
pub mod gpio;
pub mod i2c;
pub mod i2c_slave;
pub mod multicore;
#[cfg(feature = "_rp235x")]
pub mod otp;
pub mod pio_programs;
pub mod pwm;
mod reset;
pub mod rom_data;
#[cfg(feature = "rp2040")]
pub mod rtc;
pub mod spi;
mod spinlock;
pub mod spinlock_mutex;
#[cfg(feature = "time-driver")]
pub mod time_driver;
#[cfg(feature = "_rp235x")]
pub mod trng;
pub mod uart;
pub mod usb;
pub mod watchdog;
// PIO
pub mod pio;
pub(crate) mod relocate;
// Reexports
pub use embassy_hal_internal::{Peri, PeripheralType};
#[cfg(feature = "unstable-pac")]
pub use rp_pac as pac;
#[cfg(not(feature = "unstable-pac"))]
pub(crate) use rp_pac as pac;
#[cfg(feature = "rt")]
pub use crate::pac::NVIC_PRIO_BITS;
#[cfg(feature = "rp2040")]
embassy_hal_internal::interrupt_mod!(
TIMER_IRQ_0,
TIMER_IRQ_1,
TIMER_IRQ_2,
TIMER_IRQ_3,
PWM_IRQ_WRAP,
USBCTRL_IRQ,
XIP_IRQ,
PIO0_IRQ_0,
PIO0_IRQ_1,
PIO1_IRQ_0,
PIO1_IRQ_1,
DMA_IRQ_0,
DMA_IRQ_1,
IO_IRQ_BANK0,
IO_IRQ_QSPI,
SIO_IRQ_PROC0,
SIO_IRQ_PROC1,
CLOCKS_IRQ,
SPI0_IRQ,
SPI1_IRQ,
UART0_IRQ,
UART1_IRQ,
ADC_IRQ_FIFO,
I2C0_IRQ,
I2C1_IRQ,
RTC_IRQ,
SWI_IRQ_0,
SWI_IRQ_1,
SWI_IRQ_2,
SWI_IRQ_3,
SWI_IRQ_4,
SWI_IRQ_5,
);
#[cfg(feature = "_rp235x")]
embassy_hal_internal::interrupt_mod!(
TIMER0_IRQ_0,
TIMER0_IRQ_1,
TIMER0_IRQ_2,
TIMER0_IRQ_3,
TIMER1_IRQ_0,
TIMER1_IRQ_1,
TIMER1_IRQ_2,
TIMER1_IRQ_3,
PWM_IRQ_WRAP_0,
PWM_IRQ_WRAP_1,
DMA_IRQ_0,
DMA_IRQ_1,
USBCTRL_IRQ,
PIO0_IRQ_0,
PIO0_IRQ_1,
PIO1_IRQ_0,
PIO1_IRQ_1,
PIO2_IRQ_0,
PIO2_IRQ_1,
IO_IRQ_BANK0,
IO_IRQ_BANK0_NS,
IO_IRQ_QSPI,
IO_IRQ_QSPI_NS,
SIO_IRQ_FIFO,
SIO_IRQ_BELL,
SIO_IRQ_FIFO_NS,
SIO_IRQ_BELL_NS,
CLOCKS_IRQ,
SPI0_IRQ,
SPI1_IRQ,
UART0_IRQ,
UART1_IRQ,
ADC_IRQ_FIFO,
I2C0_IRQ,
I2C1_IRQ,
TRNG_IRQ,
PLL_SYS_IRQ,
PLL_USB_IRQ,
SWI_IRQ_0,
SWI_IRQ_1,
SWI_IRQ_2,
SWI_IRQ_3,
SWI_IRQ_4,
SWI_IRQ_5,
);
/// Macro to bind interrupts to handlers.
///
/// This defines the right interrupt handlers, and creates a unit struct (like `struct Irqs;`)
/// and implements the right [`Binding`]s for it. You can pass this struct to drivers to
/// prove at compile-time that the right interrupts have been bound.
///
/// Example of how to bind one interrupt:
///
/// ```rust,ignore
/// use embassy_rp::{bind_interrupts, usb, peripherals};
///
/// bind_interrupts!(
/// /// Binds the USB Interrupts.
/// struct Irqs {
/// USBCTRL_IRQ => usb::InterruptHandler<peripherals::USB>;
/// }
/// );
/// ```
///
// developer note: this macro can't be in `embassy-hal-internal` due to the use of `$crate`.
#[macro_export]
macro_rules! bind_interrupts {
($(#[$attr:meta])* $vis:vis struct $name:ident {
$(
$(#[cfg($cond_irq:meta)])?
$irq:ident => $(
$(#[cfg($cond_handler:meta)])?
$handler:ty
),*;
)*
}) => {
#[derive(Copy, Clone)]
$(#[$attr])*
$vis struct $name;
$(
#[allow(non_snake_case)]
#[no_mangle]
$(#[cfg($cond_irq)])?
unsafe extern "C" fn $irq() {
unsafe {
$(
$(#[cfg($cond_handler)])?
<$handler as $crate::interrupt::typelevel::Handler<$crate::interrupt::typelevel::$irq>>::on_interrupt();
)*
}
}
$(#[cfg($cond_irq)])?
$crate::bind_interrupts!(@inner
$(
$(#[cfg($cond_handler)])?
unsafe impl $crate::interrupt::typelevel::Binding<$crate::interrupt::typelevel::$irq, $handler> for $name {}
)*
);
)*
};
(@inner $($t:tt)*) => {
$($t)*
}
}
#[cfg(feature = "rp2040")]
embassy_hal_internal::peripherals! {
PIN_0,
PIN_1,
PIN_2,
PIN_3,
PIN_4,
PIN_5,
PIN_6,
PIN_7,
PIN_8,
PIN_9,
PIN_10,
PIN_11,
PIN_12,
PIN_13,
PIN_14,
PIN_15,
PIN_16,
PIN_17,
PIN_18,
PIN_19,
PIN_20,
PIN_21,
PIN_22,
PIN_23,
PIN_24,
PIN_25,
PIN_26,
PIN_27,
PIN_28,
PIN_29,
PIN_QSPI_SCLK,
PIN_QSPI_SS,
PIN_QSPI_SD0,
PIN_QSPI_SD1,
PIN_QSPI_SD2,
PIN_QSPI_SD3,
UART0,
UART1,
SPI0,
SPI1,
I2C0,
I2C1,
DMA_CH0,
DMA_CH1,
DMA_CH2,
DMA_CH3,
DMA_CH4,
DMA_CH5,
DMA_CH6,
DMA_CH7,
DMA_CH8,
DMA_CH9,
DMA_CH10,
DMA_CH11,
PWM_SLICE0,
PWM_SLICE1,
PWM_SLICE2,
PWM_SLICE3,
PWM_SLICE4,
PWM_SLICE5,
PWM_SLICE6,
PWM_SLICE7,
USB,
RTC,
FLASH,
ADC,
ADC_TEMP_SENSOR,
CORE1,
PIO0,
PIO1,
WATCHDOG,
BOOTSEL,
}
#[cfg(feature = "_rp235x")]
embassy_hal_internal::peripherals! {
PIN_0,
PIN_1,
PIN_2,
PIN_3,
PIN_4,
PIN_5,
PIN_6,
PIN_7,
PIN_8,
PIN_9,
PIN_10,
PIN_11,
PIN_12,
PIN_13,
PIN_14,
PIN_15,
PIN_16,
PIN_17,
PIN_18,
PIN_19,
PIN_20,
PIN_21,
PIN_22,
PIN_23,
PIN_24,
PIN_25,
PIN_26,
PIN_27,
PIN_28,
PIN_29,
#[cfg(feature = "rp235xb")]
PIN_30,
#[cfg(feature = "rp235xb")]
PIN_31,
#[cfg(feature = "rp235xb")]
PIN_32,
#[cfg(feature = "rp235xb")]
PIN_33,
#[cfg(feature = "rp235xb")]
PIN_34,
#[cfg(feature = "rp235xb")]
PIN_35,
#[cfg(feature = "rp235xb")]
PIN_36,
#[cfg(feature = "rp235xb")]
PIN_37,
#[cfg(feature = "rp235xb")]
PIN_38,
#[cfg(feature = "rp235xb")]
PIN_39,
#[cfg(feature = "rp235xb")]
PIN_40,
#[cfg(feature = "rp235xb")]
PIN_41,
#[cfg(feature = "rp235xb")]
PIN_42,
#[cfg(feature = "rp235xb")]
PIN_43,
#[cfg(feature = "rp235xb")]
PIN_44,
#[cfg(feature = "rp235xb")]
PIN_45,
#[cfg(feature = "rp235xb")]
PIN_46,
#[cfg(feature = "rp235xb")]
PIN_47,
PIN_QSPI_SCLK,
PIN_QSPI_SS,
PIN_QSPI_SD0,
PIN_QSPI_SD1,
PIN_QSPI_SD2,
PIN_QSPI_SD3,
UART0,
UART1,
SPI0,
SPI1,
I2C0,
I2C1,
DMA_CH0,
DMA_CH1,
DMA_CH2,
DMA_CH3,
DMA_CH4,
DMA_CH5,
DMA_CH6,
DMA_CH7,
DMA_CH8,
DMA_CH9,
DMA_CH10,
DMA_CH11,
DMA_CH12,
DMA_CH13,
DMA_CH14,
DMA_CH15,
PWM_SLICE0,
PWM_SLICE1,
PWM_SLICE2,
PWM_SLICE3,
PWM_SLICE4,
PWM_SLICE5,
PWM_SLICE6,
PWM_SLICE7,
PWM_SLICE8,
PWM_SLICE9,
PWM_SLICE10,
PWM_SLICE11,
USB,
RTC,
FLASH,
ADC,
ADC_TEMP_SENSOR,
CORE1,
PIO0,
PIO1,
PIO2,
WATCHDOG,
BOOTSEL,
TRNG
}
#[cfg(all(not(feature = "boot2-none"), feature = "rp2040"))]
macro_rules! select_bootloader {
( $( $feature:literal => $loader:ident, )+ default => $default:ident ) => {
$(
#[cfg(feature = $feature)]
#[link_section = ".boot2"]
#[used]
static BOOT2: [u8; 256] = rp2040_boot2::$loader;
)*
#[cfg(not(any( $( feature = $feature),* )))]
#[link_section = ".boot2"]
#[used]
static BOOT2: [u8; 256] = rp2040_boot2::$default;
}
}
#[cfg(all(not(feature = "boot2-none"), feature = "rp2040"))]
select_bootloader! {
"boot2-at25sf128a" => BOOT_LOADER_AT25SF128A,
"boot2-gd25q64cs" => BOOT_LOADER_GD25Q64CS,
"boot2-generic-03h" => BOOT_LOADER_GENERIC_03H,
"boot2-is25lp080" => BOOT_LOADER_IS25LP080,
"boot2-ram-memcpy" => BOOT_LOADER_RAM_MEMCPY,
"boot2-w25q080" => BOOT_LOADER_W25Q080,
"boot2-w25x10cl" => BOOT_LOADER_W25X10CL,
default => BOOT_LOADER_W25Q080
}
#[cfg(all(not(feature = "imagedef-none"), feature = "_rp235x"))]
macro_rules! select_imagedef {
( $( $feature:literal => $imagedef:ident, )+ default => $default:ident ) => {
$(
#[cfg(feature = $feature)]
#[link_section = ".start_block"]
#[used]
static IMAGE_DEF: crate::block::ImageDef = crate::block::ImageDef::$imagedef();
)*
#[cfg(not(any( $( feature = $feature),* )))]
#[link_section = ".start_block"]
#[used]
static IMAGE_DEF: crate::block::ImageDef = crate::block::ImageDef::$default();
}
}
#[cfg(all(not(feature = "imagedef-none"), feature = "_rp235x"))]
select_imagedef! {
"imagedef-secure-exe" => secure_exe,
"imagedef-nonsecure-exe" => non_secure_exe,
default => secure_exe
}
/// Installs a stack guard for the CORE0 stack in MPU region 0.
/// Will fail if the MPU is already configured. This function requires
/// a `_stack_end` symbol to be defined by the linker script, and expects
/// `_stack_end` to be located at the lowest address (largest depth) of
/// the stack.
///
/// This method can *only* set up stack guards on the currently
/// executing core. Stack guards for CORE1 are set up automatically,
/// only CORE0 should ever use this.
///
/// # Usage
///
/// ```no_run
/// use embassy_rp::install_core0_stack_guard;
/// use embassy_executor::{Executor, Spawner};
///
/// #[embassy_executor::main]
/// async fn main(_spawner: Spawner) {
/// // set up by the linker as follows:
/// //
/// // MEMORY {
/// // STACK0: ORIGIN = 0x20040000, LENGTH = 4K
/// // }
/// //
/// // _stack_end = ORIGIN(STACK0);
/// // _stack_start = _stack_end + LENGTH(STACK0);
/// //
/// install_core0_stack_guard().expect("MPU already configured");
/// let p = embassy_rp::init(Default::default());
///
/// // ...
/// }
/// ```
pub fn install_core0_stack_guard() -> Result<(), ()> {
extern "C" {
static mut _stack_end: usize;
}
unsafe { install_stack_guard(core::ptr::addr_of_mut!(_stack_end)) }
}
#[cfg(all(feature = "rp2040", not(feature = "_test")))]
#[inline(always)]
unsafe fn install_stack_guard(stack_bottom: *mut usize) -> Result<(), ()> {
let core = unsafe { cortex_m::Peripherals::steal() };
// Fail if MPU is already configured
if core.MPU.ctrl.read() != 0 {
return Err(());
}
// The minimum we can protect is 32 bytes on a 32 byte boundary, so round up which will
// just shorten the valid stack range a tad.
let addr = (stack_bottom as u32 + 31) & !31;
// Mask is 1 bit per 32 bytes of the 256 byte range... clear the bit for the segment we want
let subregion_select = 0xff ^ (1 << ((addr >> 5) & 7));
unsafe {
core.MPU.ctrl.write(5); // enable mpu with background default map
core.MPU.rbar.write((addr & !0xff) | (1 << 4)); // set address and update RNR
core.MPU.rasr.write(
1 // enable region
| (0x7 << 1) // size 2^(7 + 1) = 256
| (subregion_select << 8)
| 0x10000000, // XN = disable instruction fetch; no other bits means no permissions
);
}
Ok(())
}
#[cfg(all(feature = "_rp235x", not(feature = "_test")))]
#[inline(always)]
unsafe fn install_stack_guard(stack_bottom: *mut usize) -> Result<(), ()> {
let core = unsafe { cortex_m::Peripherals::steal() };
// Fail if MPU is already configured
if core.MPU.ctrl.read() != 0 {
return Err(());
}
unsafe {
core.MPU.ctrl.write(5); // enable mpu with background default map
core.MPU.rbar.write(stack_bottom as u32 & !0xff); // set address
core.MPU.rlar.write(1); // enable region
}
Ok(())
}
// This is to hack around cortex_m defaulting to ARMv7 when building tests,
// so the compile fails when we try to use ARMv8 peripherals.
#[cfg(feature = "_test")]
#[inline(always)]
unsafe fn install_stack_guard(_stack_bottom: *mut usize) -> Result<(), ()> {
Ok(())
}
/// HAL configuration for RP.
pub mod config {
use crate::clocks::ClockConfig;
/// HAL configuration passed when initializing.
#[non_exhaustive]
pub struct Config {
/// Clock configuration.
pub clocks: ClockConfig,
}
impl Default for Config {
fn default() -> Self {
Self {
clocks: ClockConfig::crystal(12_000_000),
}
}
}
impl Config {
/// Create a new configuration with the provided clock config.
pub fn new(clocks: ClockConfig) -> Self {
Self { clocks }
}
}
}
/// Initialize the `embassy-rp` HAL with the provided configuration.
///
/// This returns the peripheral singletons that can be used for creating drivers.
///
/// This should only be called once at startup, otherwise it panics.
pub fn init(config: config::Config) -> Peripherals {
// Do this first, so that it panics if user is calling `init` a second time
// before doing anything important.
let peripherals = Peripherals::take();
unsafe {
clocks::init(config.clocks);
#[cfg(feature = "time-driver")]
time_driver::init();
dma::init();
gpio::init();
}
peripherals
}
#[cfg(feature = "rt")]
#[cortex_m_rt::pre_init]
unsafe fn pre_init() {
// SIO does not get reset when core0 is reset with either `scb::sys_reset()` or with SWD.
// Since we're using SIO spinlock 31 for the critical-section impl, this causes random
// hangs if we reset in the middle of a CS, because the next boot sees the spinlock
// as locked and waits forever.
//
// See https://github.com/embassy-rs/embassy/issues/1736
// and https://github.com/rp-rs/rp-hal/issues/292
// and https://matrix.to/#/!vhKMWjizPZBgKeknOo:matrix.org/$VfOkQgyf1PjmaXZbtycFzrCje1RorAXd8BQFHTl4d5M
//
// According to Raspberry Pi, this is considered Working As Intended, and not an errata,
// even though this behavior is different from every other ARM chip (sys_reset usually resets
// the *system* as its name implies, not just the current core).
//
// To fix this, reset SIO on boot. We must do this in pre_init because it's unsound to do it
// in `embassy_rp::init`, since the user could've acquired a CS by then. pre_init is guaranteed
// to run before any user code.
//
// A similar thing could happen with PROC1. It is unclear whether it's possible for PROC1
// to stay unreset through a PROC0 reset, so we reset it anyway just in case.
//
// Important info from PSM logic (from Luke Wren in above Matrix thread)
//
// The logic is, each PSM stage is reset if either of the following is true:
// - The previous stage is in reset and FRCE_ON is false
// - FRCE_OFF is true
//
// The PSM order is SIO -> PROC0 -> PROC1.
// So, we have to force-on PROC0 to prevent it from getting reset when resetting SIO.
#[cfg(feature = "rp2040")]
{
pac::PSM.frce_on().write_and_wait(|w| {
w.set_proc0(true);
});
// Then reset SIO and PROC1.
pac::PSM.frce_off().write_and_wait(|w| {
w.set_sio(true);
w.set_proc1(true);
});
// clear force_off first, force_on second. The other way around would reset PROC0.
pac::PSM.frce_off().write_and_wait(|_| {});
pac::PSM.frce_on().write_and_wait(|_| {});
}
#[cfg(feature = "_rp235x")]
{
// on RP235x, datasheet says "The FRCE_ON register is a development feature that does nothing in production devices."
// No idea why they removed it. Removing it means we can't use PSM to reset SIO, because it comes before
// PROC0, so we'd need FRCE_ON to prevent resetting ourselves.
//
// So we just unlock the spinlock manually.
pac::SIO.spinlock(31).write_value(1);
// We can still use PSM to reset PROC1 since it comes after PROC0 in the state machine.
pac::PSM.frce_off().write_and_wait(|w| w.set_proc1(true));
pac::PSM.frce_off().write_and_wait(|_| {});
// Make atomics work between cores.
enable_actlr_extexclall();
}
}
/// Set the EXTEXCLALL bit in ACTLR.
///
/// The default MPU memory map marks all memory as non-shareable, so atomics don't
/// synchronize memory accesses between cores at all. This bit forces all memory to be
/// considered shareable regardless of what the MPU says.
///
/// TODO: does this interfere somehow if the user wants to use a custom MPU configuration?
/// maybe we need to add a way to disable this?
///
/// This must be done FOR EACH CORE.
#[cfg(feature = "_rp235x")]
unsafe fn enable_actlr_extexclall() {
(&*cortex_m::peripheral::ICB::PTR).actlr.modify(|w| w | (1 << 29));
}
/// Extension trait for PAC regs, adding atomic xor/bitset/bitclear writes.
#[allow(unused)]
trait RegExt<T: Copy> {
#[allow(unused)]
fn write_xor<R>(&self, f: impl FnOnce(&mut T) -> R) -> R;
fn write_set<R>(&self, f: impl FnOnce(&mut T) -> R) -> R;
fn write_clear<R>(&self, f: impl FnOnce(&mut T) -> R) -> R;
fn write_and_wait<R>(&self, f: impl FnOnce(&mut T) -> R) -> R
where
T: PartialEq;
}
impl<T: Default + Copy, A: pac::common::Write> RegExt<T> for pac::common::Reg<T, A> {
fn write_xor<R>(&self, f: impl FnOnce(&mut T) -> R) -> R {
let mut val = Default::default();
let res = f(&mut val);
unsafe {
let ptr = (self.as_ptr() as *mut u8).add(0x1000) as *mut T;
ptr.write_volatile(val);
}
res
}
fn write_set<R>(&self, f: impl FnOnce(&mut T) -> R) -> R {
let mut val = Default::default();
let res = f(&mut val);
unsafe {
let ptr = (self.as_ptr() as *mut u8).add(0x2000) as *mut T;
ptr.write_volatile(val);
}
res
}
fn write_clear<R>(&self, f: impl FnOnce(&mut T) -> R) -> R {
let mut val = Default::default();
let res = f(&mut val);
unsafe {
let ptr = (self.as_ptr() as *mut u8).add(0x3000) as *mut T;
ptr.write_volatile(val);
}
res
}
fn write_and_wait<R>(&self, f: impl FnOnce(&mut T) -> R) -> R
where
T: PartialEq,
{
let mut val = Default::default();
let res = f(&mut val);
unsafe {
self.as_ptr().write_volatile(val);
while self.as_ptr().read_volatile() != val {}
}
res
}
}