2025-09-15 12:21:45 +02:00

546 lines
16 KiB
Rust

#[cfg(stm32u5)]
use pac::adc::vals::{Adc4Dmacfg as Dmacfg, Adc4Exten as Exten, Adc4OversamplingRatio as OversamplingRatio};
#[allow(unused)]
#[cfg(stm32wba)]
use pac::adc::vals::{Chselrmod, Cont, Dmacfg, Exten, OversamplingRatio, Ovss, Smpsel};
use super::{blocking_delay_us, AdcChannel, AnyAdcChannel, RxDma4, SealedAdcChannel};
use crate::dma::Transfer;
#[cfg(stm32u5)]
pub use crate::pac::adc::regs::Adc4Chselrmod0 as Chselr;
#[cfg(stm32wba)]
pub use crate::pac::adc::regs::Chselr;
#[cfg(stm32u5)]
pub use crate::pac::adc::vals::{Adc4Presc as Presc, Adc4Res as Resolution, Adc4SampleTime as SampleTime};
#[cfg(stm32wba)]
pub use crate::pac::adc::vals::{Presc, Res as Resolution, SampleTime};
use crate::time::Hertz;
use crate::{pac, rcc, Peri};
const MAX_ADC_CLK_FREQ: Hertz = Hertz::mhz(55);
/// Default VREF voltage used for sample conversion to millivolts.
pub const VREF_DEFAULT_MV: u32 = 3300;
/// VREF voltage used for factory calibration of VREFINTCAL register.
pub const VREF_CALIB_MV: u32 = 3300;
const VREF_CHANNEL: u8 = 0;
const VCORE_CHANNEL: u8 = 12;
const TEMP_CHANNEL: u8 = 13;
const VBAT_CHANNEL: u8 = 14;
const DAC_CHANNEL: u8 = 21;
// NOTE: Vrefint/Temperature/Vbat are not available on all ADCs, this currently cannot be modeled with stm32-data, so these are available from the software on all ADCs
/// Internal voltage reference channel.
pub struct VrefInt;
impl<T: Instance> AdcChannel<T> for VrefInt {}
impl<T: Instance> SealedAdcChannel<T> for VrefInt {
fn channel(&self) -> u8 {
VREF_CHANNEL
}
}
/// Internal temperature channel.
pub struct Temperature;
impl<T: Instance> AdcChannel<T> for Temperature {}
impl<T: Instance> SealedAdcChannel<T> for Temperature {
fn channel(&self) -> u8 {
TEMP_CHANNEL
}
}
/// Internal battery voltage channel.
pub struct Vbat;
impl<T: Instance> AdcChannel<T> for Vbat {}
impl<T: Instance> SealedAdcChannel<T> for Vbat {
fn channel(&self) -> u8 {
VBAT_CHANNEL
}
}
/// Internal DAC channel.
pub struct Dac;
impl<T: Instance> AdcChannel<T> for Dac {}
impl<T: Instance> SealedAdcChannel<T> for Dac {
fn channel(&self) -> u8 {
DAC_CHANNEL
}
}
/// Internal Vcore channel.
pub struct Vcore;
impl<T: Instance> AdcChannel<T> for Vcore {}
impl<T: Instance> SealedAdcChannel<T> for Vcore {
fn channel(&self) -> u8 {
VCORE_CHANNEL
}
}
#[derive(Copy, Clone)]
pub enum DacChannel {
OUT1,
OUT2,
}
/// Number of samples used for averaging.
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Averaging {
Disabled,
Samples2,
Samples4,
Samples8,
Samples16,
Samples32,
Samples64,
Samples128,
Samples256,
}
pub const fn resolution_to_max_count(res: Resolution) -> u32 {
match res {
Resolution::BITS12 => (1 << 12) - 1,
Resolution::BITS10 => (1 << 10) - 1,
Resolution::BITS8 => (1 << 8) - 1,
Resolution::BITS6 => (1 << 6) - 1,
#[allow(unreachable_patterns)]
_ => core::unreachable!(),
}
}
// NOTE (unused): The prescaler enum closely copies the hardware capabilities,
// but high prescaling doesn't make a lot of sense in the current implementation and is ommited.
#[allow(unused)]
enum Prescaler {
NotDivided,
DividedBy2,
DividedBy4,
DividedBy6,
DividedBy8,
DividedBy10,
DividedBy12,
DividedBy16,
DividedBy32,
DividedBy64,
DividedBy128,
DividedBy256,
}
impl Prescaler {
fn from_ker_ck(frequency: Hertz) -> Self {
let raw_prescaler = frequency.0 / MAX_ADC_CLK_FREQ.0;
match raw_prescaler {
0 => Self::NotDivided,
1 => Self::DividedBy2,
2..=3 => Self::DividedBy4,
4..=5 => Self::DividedBy6,
6..=7 => Self::DividedBy8,
8..=9 => Self::DividedBy10,
10..=11 => Self::DividedBy12,
_ => unimplemented!(),
}
}
fn divisor(&self) -> u32 {
match self {
Prescaler::NotDivided => 1,
Prescaler::DividedBy2 => 2,
Prescaler::DividedBy4 => 4,
Prescaler::DividedBy6 => 6,
Prescaler::DividedBy8 => 8,
Prescaler::DividedBy10 => 10,
Prescaler::DividedBy12 => 12,
Prescaler::DividedBy16 => 16,
Prescaler::DividedBy32 => 32,
Prescaler::DividedBy64 => 64,
Prescaler::DividedBy128 => 128,
Prescaler::DividedBy256 => 256,
}
}
fn presc(&self) -> Presc {
match self {
Prescaler::NotDivided => Presc::DIV1,
Prescaler::DividedBy2 => Presc::DIV2,
Prescaler::DividedBy4 => Presc::DIV4,
Prescaler::DividedBy6 => Presc::DIV6,
Prescaler::DividedBy8 => Presc::DIV8,
Prescaler::DividedBy10 => Presc::DIV10,
Prescaler::DividedBy12 => Presc::DIV12,
Prescaler::DividedBy16 => Presc::DIV16,
Prescaler::DividedBy32 => Presc::DIV32,
Prescaler::DividedBy64 => Presc::DIV64,
Prescaler::DividedBy128 => Presc::DIV128,
Prescaler::DividedBy256 => Presc::DIV256,
}
}
}
pub trait SealedInstance {
#[allow(unused)]
fn regs() -> crate::pac::adc::Adc4;
}
pub trait Instance: SealedInstance + crate::PeripheralType + crate::rcc::RccPeripheral {
type Interrupt: crate::interrupt::typelevel::Interrupt;
}
pub struct Adc4<'d, T: Instance> {
#[allow(unused)]
adc: crate::Peri<'d, T>,
}
#[derive(Copy, Clone, Debug)]
pub enum Adc4Error {
InvalidSequence,
DMAError,
}
impl<'d, T: Instance> Adc4<'d, T> {
/// Create a new ADC driver.
pub fn new(adc: Peri<'d, T>) -> Self {
rcc::enable_and_reset::<T>();
let prescaler = Prescaler::from_ker_ck(T::frequency());
T::regs().ccr().modify(|w| w.set_presc(prescaler.presc()));
let frequency = Hertz(T::frequency().0 / prescaler.divisor());
info!("ADC4 frequency set to {}", frequency);
if frequency > MAX_ADC_CLK_FREQ {
panic!("Maximal allowed frequency for ADC4 is {} MHz and it varies with different packages, refer to ST docs for more information.", MAX_ADC_CLK_FREQ.0 / 1_000_000 );
}
let mut s = Self { adc };
s.power_up();
s.calibrate();
blocking_delay_us(1);
s.enable();
s.configure();
s
}
fn power_up(&mut self) {
T::regs().isr().modify(|w| {
w.set_ldordy(true);
});
T::regs().cr().modify(|w| {
w.set_advregen(true);
});
while !T::regs().isr().read().ldordy() {}
T::regs().isr().modify(|w| {
w.set_ldordy(true);
});
}
fn calibrate(&mut self) {
T::regs().cr().modify(|w| w.set_adcal(true));
while T::regs().cr().read().adcal() {}
T::regs().isr().modify(|w| w.set_eocal(true));
}
fn enable(&mut self) {
T::regs().isr().write(|w| w.set_adrdy(true));
T::regs().cr().modify(|w| w.set_aden(true));
while !T::regs().isr().read().adrdy() {}
T::regs().isr().write(|w| w.set_adrdy(true));
}
fn configure(&mut self) {
// single conversion mode, software trigger
T::regs().cfgr1().modify(|w| {
#[cfg(stm32u5)]
w.set_cont(false);
#[cfg(stm32wba)]
w.set_cont(Cont::SINGLE);
w.set_discen(false);
w.set_exten(Exten::DISABLED);
#[cfg(stm32u5)]
w.set_chselrmod(false);
#[cfg(stm32wba)]
w.set_chselrmod(Chselrmod::ENABLE_INPUT);
});
// only use one channel at the moment
T::regs().smpr().modify(|w| {
#[cfg(stm32u5)]
for i in 0..24 {
w.set_smpsel(i, false);
}
#[cfg(stm32wba)]
for i in 0..14 {
w.set_smpsel(i, Smpsel::SMP1);
}
});
}
/// Enable reading the voltage reference internal channel.
pub fn enable_vrefint(&self) -> VrefInt {
T::regs().ccr().modify(|w| {
w.set_vrefen(true);
});
VrefInt {}
}
/// Enable reading the temperature internal channel.
pub fn enable_temperature(&self) -> Temperature {
T::regs().ccr().modify(|w| {
w.set_vsensesel(true);
});
Temperature {}
}
/// Enable reading the vbat internal channel.
#[cfg(stm32u5)]
pub fn enable_vbat(&self) -> Vbat {
T::regs().ccr().modify(|w| {
w.set_vbaten(true);
});
Vbat {}
}
/// Enable reading the vbat internal channel.
pub fn enable_vcore(&self) -> Vcore {
Vcore {}
}
/// Enable reading the vbat internal channel.
#[cfg(stm32u5)]
pub fn enable_dac_channel(&self, dac: DacChannel) -> Dac {
let mux;
match dac {
DacChannel::OUT1 => mux = false,
DacChannel::OUT2 => mux = true,
}
T::regs().or().modify(|w| w.set_chn21sel(mux));
Dac {}
}
/// Set the ADC sample time.
pub fn set_sample_time(&mut self, sample_time: SampleTime) {
T::regs().smpr().modify(|w| {
w.set_smp(0, sample_time);
});
}
/// Get the ADC sample time.
pub fn sample_time(&self) -> SampleTime {
T::regs().smpr().read().smp(0)
}
/// Set the ADC resolution.
pub fn set_resolution(&mut self, resolution: Resolution) {
T::regs().cfgr1().modify(|w| w.set_res(resolution.into()));
}
/// Set hardware averaging.
#[cfg(stm32u5)]
pub fn set_averaging(&mut self, averaging: Averaging) {
let (enable, samples, right_shift) = match averaging {
Averaging::Disabled => (false, OversamplingRatio::OVERSAMPLE2X, 0),
Averaging::Samples2 => (true, OversamplingRatio::OVERSAMPLE2X, 1),
Averaging::Samples4 => (true, OversamplingRatio::OVERSAMPLE4X, 2),
Averaging::Samples8 => (true, OversamplingRatio::OVERSAMPLE8X, 3),
Averaging::Samples16 => (true, OversamplingRatio::OVERSAMPLE16X, 4),
Averaging::Samples32 => (true, OversamplingRatio::OVERSAMPLE32X, 5),
Averaging::Samples64 => (true, OversamplingRatio::OVERSAMPLE64X, 6),
Averaging::Samples128 => (true, OversamplingRatio::OVERSAMPLE128X, 7),
Averaging::Samples256 => (true, OversamplingRatio::OVERSAMPLE256X, 8),
};
T::regs().cfgr2().modify(|w| {
w.set_ovsr(samples);
w.set_ovss(right_shift);
w.set_ovse(enable)
})
}
#[cfg(stm32wba)]
pub fn set_averaging(&mut self, averaging: Averaging) {
let (enable, samples, right_shift) = match averaging {
Averaging::Disabled => (false, OversamplingRatio::OVERSAMPLE2X, Ovss::SHIFT0),
Averaging::Samples2 => (true, OversamplingRatio::OVERSAMPLE2X, Ovss::SHIFT1),
Averaging::Samples4 => (true, OversamplingRatio::OVERSAMPLE4X, Ovss::SHIFT2),
Averaging::Samples8 => (true, OversamplingRatio::OVERSAMPLE8X, Ovss::SHIFT3),
Averaging::Samples16 => (true, OversamplingRatio::OVERSAMPLE16X, Ovss::SHIFT4),
Averaging::Samples32 => (true, OversamplingRatio::OVERSAMPLE32X, Ovss::SHIFT5),
Averaging::Samples64 => (true, OversamplingRatio::OVERSAMPLE64X, Ovss::SHIFT6),
Averaging::Samples128 => (true, OversamplingRatio::OVERSAMPLE128X, Ovss::SHIFT7),
Averaging::Samples256 => (true, OversamplingRatio::OVERSAMPLE256X, Ovss::SHIFT8),
};
T::regs().cfgr2().modify(|w| {
w.set_ovsr(samples);
w.set_ovss(right_shift);
w.set_ovse(enable)
})
}
/// Read an ADC channel.
pub fn blocking_read(&mut self, channel: &mut impl AdcChannel<T>) -> u16 {
channel.setup();
// Select channel
#[cfg(stm32wba)]
{
T::regs().chselr().write_value(Chselr(0_u32));
T::regs().chselr().modify(|w| {
w.set_chsel0(channel.channel() as usize, true);
});
}
#[cfg(stm32u5)]
{
T::regs().chselrmod0().write_value(Chselr(0_u32));
T::regs().chselrmod0().modify(|w| {
w.set_chsel(channel.channel() as usize, true);
});
}
// Reset interrupts
T::regs().isr().modify(|reg| {
reg.set_eos(true);
reg.set_eoc(true);
});
// Start conversion
T::regs().cr().modify(|reg| {
reg.set_adstart(true);
});
while !T::regs().isr().read().eos() {
// spin
}
T::regs().dr().read().0 as u16
}
/// Read one or multiple ADC channels using DMA.
///
/// `sequence` iterator and `readings` must have the same length.
/// The channels in `sequence` must be in ascending order.
///
/// Example
/// ```rust,ignore
/// use embassy_stm32::adc::adc4;
/// use embassy_stm32::adc::AdcChannel;
///
/// let mut adc4 = adc4::Adc4::new(p.ADC4);
/// let mut adc4_pin1 = p.PC1;
/// let mut adc4_pin2 = p.PC0;
/// let mut.into()d41 = adc4_pin1.into();
/// let mut.into()d42 = adc4_pin2.into();
/// let mut measurements = [0u16; 2];
/// // not that the channels must be in ascending order
/// adc4.read(
/// &mut p.GPDMA1_CH1,
/// [
/// &mut.into()d42,
/// &mut.into()d41,
/// ]
/// .into_iter(),
/// &mut measurements,
/// ).await.unwrap();
/// ```
pub async fn read(
&mut self,
rx_dma: Peri<'_, impl RxDma4<T>>,
sequence: impl ExactSizeIterator<Item = &mut AnyAdcChannel<T>>,
readings: &mut [u16],
) -> Result<(), Adc4Error> {
assert!(sequence.len() != 0, "Asynchronous read sequence cannot be empty");
assert!(
sequence.len() == readings.len(),
"Sequence length must be equal to readings length"
);
// Ensure no conversions are ongoing
Self::cancel_conversions();
T::regs().isr().modify(|reg| {
reg.set_ovr(true);
reg.set_eos(true);
reg.set_eoc(true);
});
T::regs().cfgr1().modify(|reg| {
reg.set_dmaen(true);
reg.set_dmacfg(Dmacfg::ONE_SHOT);
#[cfg(stm32u5)]
reg.set_chselrmod(false);
#[cfg(stm32wba)]
reg.set_chselrmod(Chselrmod::ENABLE_INPUT)
});
// Verify and activate sequence
let mut prev_channel: i16 = -1;
#[cfg(stm32wba)]
T::regs().chselr().write_value(Chselr(0_u32));
#[cfg(stm32u5)]
T::regs().chselrmod0().write_value(Chselr(0_u32));
for channel in sequence {
let channel_num = channel.channel;
if channel_num as i16 <= prev_channel {
return Err(Adc4Error::InvalidSequence);
};
prev_channel = channel_num as i16;
#[cfg(stm32wba)]
T::regs().chselr().modify(|w| {
w.set_chsel0(channel.channel as usize, true);
});
#[cfg(stm32u5)]
T::regs().chselrmod0().modify(|w| {
w.set_chsel(channel.channel as usize, true);
});
}
let request = rx_dma.request();
let transfer = unsafe {
Transfer::new_read(
rx_dma,
request,
T::regs().dr().as_ptr() as *mut u16,
readings,
Default::default(),
)
};
// Start conversion
T::regs().cr().modify(|reg| {
reg.set_adstart(true);
});
transfer.await;
// Ensure conversions are finished.
Self::cancel_conversions();
// Reset configuration.
T::regs().cfgr1().modify(|reg| {
reg.set_dmaen(false);
});
if T::regs().isr().read().ovr() {
Err(Adc4Error::DMAError)
} else {
Ok(())
}
}
fn cancel_conversions() {
if T::regs().cr().read().adstart() && !T::regs().cr().read().addis() {
T::regs().cr().modify(|reg| {
reg.set_adstp(true);
});
while T::regs().cr().read().adstart() {}
}
}
}