mirror of
https://github.com/embassy-rs/embassy.git
synced 2025-09-30 05:40:55 +00:00

When a slave responds with a NACK in blocking I²C master mode, all subsequent transmissions send only the address followed immediately by a STOP. This happens because the current implementation sets I2C_CR2.STOP = 1 whenever any error (including a NACK) occurs. As a result, the STOP bit is already set when the next transmission starts. According to the reference manual: "If a NACK is received: […] a STOP condition is automatically sent […]" This bug was not triggered until #4454 was merged.
1472 lines
46 KiB
Rust
1472 lines
46 KiB
Rust
use core::cmp;
|
|
use core::future::poll_fn;
|
|
use core::task::Poll;
|
|
|
|
use config::{Address, OwnAddresses, OA2};
|
|
use embassy_embedded_hal::SetConfig;
|
|
use embassy_hal_internal::drop::OnDrop;
|
|
use embedded_hal_1::i2c::Operation;
|
|
use mode::{Master, MultiMaster};
|
|
use stm32_metapac::i2c::vals::{Addmode, Oamsk};
|
|
|
|
use super::*;
|
|
use crate::pac::i2c;
|
|
|
|
impl From<AddrMask> for Oamsk {
|
|
fn from(value: AddrMask) -> Self {
|
|
match value {
|
|
AddrMask::NOMASK => Oamsk::NO_MASK,
|
|
AddrMask::MASK1 => Oamsk::MASK1,
|
|
AddrMask::MASK2 => Oamsk::MASK2,
|
|
AddrMask::MASK3 => Oamsk::MASK3,
|
|
AddrMask::MASK4 => Oamsk::MASK4,
|
|
AddrMask::MASK5 => Oamsk::MASK5,
|
|
AddrMask::MASK6 => Oamsk::MASK6,
|
|
AddrMask::MASK7 => Oamsk::MASK7,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Address {
|
|
pub(super) fn add_mode(&self) -> stm32_metapac::i2c::vals::Addmode {
|
|
match self {
|
|
Address::SevenBit(_) => stm32_metapac::i2c::vals::Addmode::BIT7,
|
|
Address::TenBit(_) => stm32_metapac::i2c::vals::Addmode::BIT10,
|
|
}
|
|
}
|
|
}
|
|
|
|
enum ReceiveResult {
|
|
DataAvailable,
|
|
StopReceived,
|
|
NewStart,
|
|
}
|
|
|
|
fn debug_print_interrupts(isr: stm32_metapac::i2c::regs::Isr) {
|
|
if isr.tcr() {
|
|
trace!("interrupt: tcr");
|
|
}
|
|
if isr.tc() {
|
|
trace!("interrupt: tc");
|
|
}
|
|
if isr.addr() {
|
|
trace!("interrupt: addr");
|
|
}
|
|
if isr.stopf() {
|
|
trace!("interrupt: stopf");
|
|
}
|
|
if isr.nackf() {
|
|
trace!("interrupt: nackf");
|
|
}
|
|
if isr.berr() {
|
|
trace!("interrupt: berr");
|
|
}
|
|
if isr.arlo() {
|
|
trace!("interrupt: arlo");
|
|
}
|
|
if isr.ovr() {
|
|
trace!("interrupt: ovr");
|
|
}
|
|
}
|
|
|
|
pub(crate) unsafe fn on_interrupt<T: Instance>() {
|
|
let regs = T::info().regs;
|
|
let isr = regs.isr().read();
|
|
|
|
if isr.tcr() || isr.tc() || isr.addr() || isr.stopf() || isr.nackf() || isr.berr() || isr.arlo() || isr.ovr() {
|
|
debug_print_interrupts(isr);
|
|
|
|
T::state().waker.wake();
|
|
}
|
|
|
|
critical_section::with(|_| {
|
|
regs.cr1().modify(|w| {
|
|
w.set_addrie(false);
|
|
w.set_stopie(false);
|
|
// The flag can only be cleared by writting to nbytes, we won't do that here
|
|
w.set_tcie(false);
|
|
// Error flags are to be read in the routines, so we also don't clear them here
|
|
w.set_nackie(false);
|
|
w.set_errie(false);
|
|
});
|
|
});
|
|
}
|
|
|
|
impl<'d, M: Mode, IM: MasterMode> I2c<'d, M, IM> {
|
|
pub(crate) fn init(&mut self, config: Config) {
|
|
self.info.regs.cr1().modify(|reg| {
|
|
reg.set_pe(false);
|
|
reg.set_anfoff(false);
|
|
});
|
|
|
|
let timings = Timings::new(self.kernel_clock, config.frequency.into());
|
|
|
|
self.info.regs.timingr().write(|reg| {
|
|
reg.set_presc(timings.prescale);
|
|
reg.set_scll(timings.scll);
|
|
reg.set_sclh(timings.sclh);
|
|
reg.set_sdadel(timings.sdadel);
|
|
reg.set_scldel(timings.scldel);
|
|
});
|
|
|
|
self.info.regs.cr1().modify(|reg| {
|
|
reg.set_pe(true);
|
|
});
|
|
}
|
|
|
|
fn master_stop(&mut self) {
|
|
self.info.regs.cr2().write(|w| w.set_stop(true));
|
|
}
|
|
|
|
fn master_read(
|
|
info: &'static Info,
|
|
address: Address,
|
|
length: usize,
|
|
stop: Stop,
|
|
reload: bool,
|
|
restart: bool,
|
|
timeout: Timeout,
|
|
) -> Result<(), Error> {
|
|
assert!(length < 256);
|
|
|
|
if !restart {
|
|
// Wait for any previous address sequence to end
|
|
// automatically. This could be up to 50% of a bus
|
|
// cycle (ie. up to 0.5/freq)
|
|
while info.regs.cr2().read().start() {
|
|
timeout.check()?;
|
|
}
|
|
}
|
|
|
|
// Set START and prepare to receive bytes into
|
|
// `buffer`. The START bit can be set even if the bus
|
|
// is BUSY or I2C is in slave mode.
|
|
|
|
let reload = if reload {
|
|
i2c::vals::Reload::NOT_COMPLETED
|
|
} else {
|
|
i2c::vals::Reload::COMPLETED
|
|
};
|
|
|
|
info.regs.cr2().modify(|w| {
|
|
w.set_sadd(address.addr() << 1);
|
|
w.set_add10(address.add_mode());
|
|
w.set_dir(i2c::vals::Dir::READ);
|
|
w.set_nbytes(length as u8);
|
|
w.set_start(true);
|
|
w.set_autoend(stop.autoend());
|
|
w.set_reload(reload);
|
|
});
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn master_write(
|
|
info: &'static Info,
|
|
address: Address,
|
|
length: usize,
|
|
stop: Stop,
|
|
reload: bool,
|
|
timeout: Timeout,
|
|
) -> Result<(), Error> {
|
|
assert!(length < 256);
|
|
|
|
// Wait for any previous address sequence to end
|
|
// automatically. This could be up to 50% of a bus
|
|
// cycle (ie. up to 0.5/freq)
|
|
while info.regs.cr2().read().start() {
|
|
timeout.check()?;
|
|
}
|
|
|
|
// Wait for the bus to be free
|
|
while info.regs.isr().read().busy() {
|
|
timeout.check()?;
|
|
}
|
|
|
|
let reload = if reload {
|
|
i2c::vals::Reload::NOT_COMPLETED
|
|
} else {
|
|
i2c::vals::Reload::COMPLETED
|
|
};
|
|
|
|
// Set START and prepare to send `bytes`. The
|
|
// START bit can be set even if the bus is BUSY or
|
|
// I2C is in slave mode.
|
|
info.regs.cr2().modify(|w| {
|
|
w.set_sadd(address.addr() << 1);
|
|
w.set_add10(address.add_mode());
|
|
w.set_dir(i2c::vals::Dir::WRITE);
|
|
w.set_nbytes(length as u8);
|
|
w.set_start(true);
|
|
w.set_autoend(stop.autoend());
|
|
w.set_reload(reload);
|
|
});
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn reload(info: &'static Info, length: usize, will_reload: bool, timeout: Timeout) -> Result<(), Error> {
|
|
assert!(length < 256 && length > 0);
|
|
|
|
while !info.regs.isr().read().tcr() {
|
|
timeout.check()?;
|
|
}
|
|
|
|
let will_reload = if will_reload {
|
|
i2c::vals::Reload::NOT_COMPLETED
|
|
} else {
|
|
i2c::vals::Reload::COMPLETED
|
|
};
|
|
|
|
info.regs.cr2().modify(|w| {
|
|
w.set_nbytes(length as u8);
|
|
w.set_reload(will_reload);
|
|
});
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn flush_txdr(&self) {
|
|
if self.info.regs.isr().read().txis() {
|
|
trace!("Flush TXDATA with zeroes");
|
|
self.info.regs.txdr().modify(|w| w.set_txdata(0));
|
|
}
|
|
if !self.info.regs.isr().read().txe() {
|
|
trace!("Flush TXDR");
|
|
self.info.regs.isr().modify(|w| w.set_txe(true))
|
|
}
|
|
}
|
|
|
|
fn error_occurred(&self, isr: &i2c::regs::Isr, timeout: Timeout) -> Result<(), Error> {
|
|
if isr.nackf() {
|
|
trace!("NACK triggered.");
|
|
self.info.regs.icr().modify(|reg| reg.set_nackcf(true));
|
|
// NACK should be followed by STOP
|
|
if let Ok(()) = self.wait_stop(timeout) {
|
|
trace!("Got STOP after NACK, clearing flag.");
|
|
self.info.regs.icr().modify(|reg| reg.set_stopcf(true));
|
|
}
|
|
self.flush_txdr();
|
|
return Err(Error::Nack);
|
|
} else if isr.berr() {
|
|
trace!("BERR triggered.");
|
|
self.info.regs.icr().modify(|reg| reg.set_berrcf(true));
|
|
self.flush_txdr();
|
|
return Err(Error::Bus);
|
|
} else if isr.arlo() {
|
|
trace!("ARLO triggered.");
|
|
self.info.regs.icr().modify(|reg| reg.set_arlocf(true));
|
|
self.flush_txdr();
|
|
return Err(Error::Arbitration);
|
|
} else if isr.ovr() {
|
|
trace!("OVR triggered.");
|
|
self.info.regs.icr().modify(|reg| reg.set_ovrcf(true));
|
|
return Err(Error::Overrun);
|
|
}
|
|
return Ok(());
|
|
}
|
|
|
|
fn wait_txis(&self, timeout: Timeout) -> Result<(), Error> {
|
|
let mut first_loop = true;
|
|
|
|
loop {
|
|
let isr = self.info.regs.isr().read();
|
|
self.error_occurred(&isr, timeout)?;
|
|
if isr.txis() {
|
|
trace!("TXIS");
|
|
return Ok(());
|
|
}
|
|
|
|
{
|
|
if first_loop {
|
|
trace!("Waiting for TXIS...");
|
|
first_loop = false;
|
|
}
|
|
}
|
|
timeout.check()?;
|
|
}
|
|
}
|
|
|
|
fn wait_stop_or_err(&self, timeout: Timeout) -> Result<(), Error> {
|
|
loop {
|
|
let isr = self.info.regs.isr().read();
|
|
self.error_occurred(&isr, timeout)?;
|
|
if isr.stopf() {
|
|
trace!("STOP triggered.");
|
|
self.info.regs.icr().modify(|reg| reg.set_stopcf(true));
|
|
return Ok(());
|
|
}
|
|
timeout.check()?;
|
|
}
|
|
}
|
|
fn wait_stop(&self, timeout: Timeout) -> Result<(), Error> {
|
|
loop {
|
|
let isr = self.info.regs.isr().read();
|
|
if isr.stopf() {
|
|
trace!("STOP triggered.");
|
|
self.info.regs.icr().modify(|reg| reg.set_stopcf(true));
|
|
return Ok(());
|
|
}
|
|
timeout.check()?;
|
|
}
|
|
}
|
|
|
|
fn wait_af(&self, timeout: Timeout) -> Result<(), Error> {
|
|
loop {
|
|
let isr = self.info.regs.isr().read();
|
|
if isr.nackf() {
|
|
trace!("AF triggered.");
|
|
self.info.regs.icr().modify(|reg| reg.set_nackcf(true));
|
|
return Ok(());
|
|
}
|
|
timeout.check()?;
|
|
}
|
|
}
|
|
|
|
fn wait_rxne(&self, timeout: Timeout) -> Result<ReceiveResult, Error> {
|
|
let mut first_loop = true;
|
|
|
|
loop {
|
|
let isr = self.info.regs.isr().read();
|
|
self.error_occurred(&isr, timeout)?;
|
|
if isr.stopf() {
|
|
trace!("STOP when waiting for RXNE.");
|
|
if self.info.regs.isr().read().rxne() {
|
|
trace!("Data received with STOP.");
|
|
return Ok(ReceiveResult::DataAvailable);
|
|
}
|
|
trace!("STOP triggered without data.");
|
|
return Ok(ReceiveResult::StopReceived);
|
|
} else if isr.rxne() {
|
|
trace!("RXNE.");
|
|
return Ok(ReceiveResult::DataAvailable);
|
|
} else if isr.addr() {
|
|
// Another addr event received, which means START was sent again
|
|
// which happens when accessing memory registers (common i2c interface design)
|
|
// e.g. master sends: START, write 1 byte (register index), START, read N bytes (until NACK)
|
|
// Possible to receive this flag at the same time as rxne, so check rxne first
|
|
trace!("START when waiting for RXNE. Ending receive loop.");
|
|
// Return without clearing ADDR so `listen` can catch it
|
|
return Ok(ReceiveResult::NewStart);
|
|
}
|
|
{
|
|
if first_loop {
|
|
trace!("Waiting for RXNE...");
|
|
first_loop = false;
|
|
}
|
|
}
|
|
|
|
timeout.check()?;
|
|
}
|
|
}
|
|
|
|
fn wait_tc(&self, timeout: Timeout) -> Result<(), Error> {
|
|
loop {
|
|
let isr = self.info.regs.isr().read();
|
|
self.error_occurred(&isr, timeout)?;
|
|
if isr.tc() {
|
|
return Ok(());
|
|
}
|
|
timeout.check()?;
|
|
}
|
|
}
|
|
|
|
fn read_internal(
|
|
&mut self,
|
|
address: Address,
|
|
read: &mut [u8],
|
|
restart: bool,
|
|
timeout: Timeout,
|
|
) -> Result<(), Error> {
|
|
let completed_chunks = read.len() / 255;
|
|
let total_chunks = if completed_chunks * 255 == read.len() {
|
|
completed_chunks
|
|
} else {
|
|
completed_chunks + 1
|
|
};
|
|
let last_chunk_idx = total_chunks.saturating_sub(1);
|
|
|
|
Self::master_read(
|
|
self.info,
|
|
address,
|
|
read.len().min(255),
|
|
Stop::Automatic,
|
|
last_chunk_idx != 0,
|
|
restart,
|
|
timeout,
|
|
)?;
|
|
|
|
for (number, chunk) in read.chunks_mut(255).enumerate() {
|
|
if number != 0 {
|
|
Self::reload(self.info, chunk.len(), number != last_chunk_idx, timeout)?;
|
|
}
|
|
|
|
for byte in chunk {
|
|
// Wait until we have received something
|
|
self.wait_rxne(timeout)?;
|
|
|
|
*byte = self.info.regs.rxdr().read().rxdata();
|
|
}
|
|
}
|
|
self.wait_stop(timeout)?;
|
|
Ok(())
|
|
}
|
|
|
|
fn write_internal(
|
|
&mut self,
|
|
address: Address,
|
|
write: &[u8],
|
|
send_stop: bool,
|
|
timeout: Timeout,
|
|
) -> Result<(), Error> {
|
|
let completed_chunks = write.len() / 255;
|
|
let total_chunks = if completed_chunks * 255 == write.len() {
|
|
completed_chunks
|
|
} else {
|
|
completed_chunks + 1
|
|
};
|
|
let last_chunk_idx = total_chunks.saturating_sub(1);
|
|
|
|
// I2C start
|
|
//
|
|
// ST SAD+W
|
|
if let Err(err) = Self::master_write(
|
|
self.info,
|
|
address,
|
|
write.len().min(255),
|
|
Stop::Software,
|
|
last_chunk_idx != 0,
|
|
timeout,
|
|
) {
|
|
if send_stop {
|
|
self.master_stop();
|
|
}
|
|
return Err(err);
|
|
}
|
|
|
|
for (number, chunk) in write.chunks(255).enumerate() {
|
|
if number != 0 {
|
|
Self::reload(self.info, chunk.len(), number != last_chunk_idx, timeout)?;
|
|
}
|
|
|
|
for byte in chunk {
|
|
// Wait until we are allowed to send data
|
|
// (START has been ACKed or last byte when
|
|
// through)
|
|
if let Err(err) = self.wait_txis(timeout) {
|
|
if send_stop && err != Error::Nack {
|
|
// STOP is sent automatically if a NACK was received
|
|
self.master_stop();
|
|
}
|
|
return Err(err);
|
|
}
|
|
|
|
self.info.regs.txdr().write(|w| w.set_txdata(*byte));
|
|
}
|
|
}
|
|
// Wait until the write finishes
|
|
self.wait_tc(timeout)?;
|
|
if send_stop {
|
|
self.master_stop();
|
|
self.wait_stop(timeout)?;
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// =========================
|
|
// Blocking public API
|
|
|
|
/// Blocking read.
|
|
pub fn blocking_read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Error> {
|
|
self.read_internal(address.into(), read, false, self.timeout())
|
|
// Automatic Stop
|
|
}
|
|
|
|
/// Blocking write.
|
|
pub fn blocking_write(&mut self, address: u8, write: &[u8]) -> Result<(), Error> {
|
|
self.write_internal(address.into(), write, true, self.timeout())
|
|
}
|
|
|
|
/// Blocking write, restart, read.
|
|
pub fn blocking_write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Error> {
|
|
let timeout = self.timeout();
|
|
self.write_internal(address.into(), write, false, timeout)?;
|
|
self.read_internal(address.into(), read, true, timeout)
|
|
// Automatic Stop
|
|
}
|
|
|
|
/// Blocking transaction with operations.
|
|
///
|
|
/// Consecutive operations of same type are merged. See [transaction contract] for details.
|
|
///
|
|
/// [transaction contract]: embedded_hal_1::i2c::I2c::transaction
|
|
pub fn blocking_transaction(&mut self, addr: u8, operations: &mut [Operation<'_>]) -> Result<(), Error> {
|
|
let _ = addr;
|
|
let _ = operations;
|
|
todo!()
|
|
}
|
|
|
|
/// Blocking write multiple buffers.
|
|
///
|
|
/// The buffers are concatenated in a single write transaction.
|
|
pub fn blocking_write_vectored(&mut self, address: u8, write: &[&[u8]]) -> Result<(), Error> {
|
|
if write.is_empty() {
|
|
return Err(Error::ZeroLengthTransfer);
|
|
}
|
|
|
|
let timeout = self.timeout();
|
|
|
|
let first_length = write[0].len();
|
|
let last_slice_index = write.len() - 1;
|
|
|
|
if let Err(err) = Self::master_write(
|
|
self.info,
|
|
address.into(),
|
|
first_length.min(255),
|
|
Stop::Software,
|
|
(first_length > 255) || (last_slice_index != 0),
|
|
timeout,
|
|
) {
|
|
self.master_stop();
|
|
return Err(err);
|
|
}
|
|
|
|
for (idx, slice) in write.iter().enumerate() {
|
|
let slice_len = slice.len();
|
|
let completed_chunks = slice_len / 255;
|
|
let total_chunks = if completed_chunks * 255 == slice_len {
|
|
completed_chunks
|
|
} else {
|
|
completed_chunks + 1
|
|
};
|
|
let last_chunk_idx = total_chunks.saturating_sub(1);
|
|
|
|
if idx != 0 {
|
|
if let Err(err) = Self::reload(
|
|
self.info,
|
|
slice_len.min(255),
|
|
(idx != last_slice_index) || (slice_len > 255),
|
|
timeout,
|
|
) {
|
|
if err != Error::Nack {
|
|
self.master_stop();
|
|
}
|
|
return Err(err);
|
|
}
|
|
}
|
|
|
|
for (number, chunk) in slice.chunks(255).enumerate() {
|
|
if number != 0 {
|
|
if let Err(err) = Self::reload(
|
|
self.info,
|
|
chunk.len(),
|
|
(number != last_chunk_idx) || (idx != last_slice_index),
|
|
timeout,
|
|
) {
|
|
if err != Error::Nack {
|
|
self.master_stop();
|
|
}
|
|
return Err(err);
|
|
}
|
|
}
|
|
|
|
for byte in chunk {
|
|
// Wait until we are allowed to send data
|
|
// (START has been ACKed or last byte when
|
|
// through)
|
|
if let Err(err) = self.wait_txis(timeout) {
|
|
if err != Error::Nack {
|
|
self.master_stop();
|
|
}
|
|
return Err(err);
|
|
}
|
|
|
|
// Put byte on the wire
|
|
//self.i2c.txdr.write(|w| w.txdata().bits(*byte));
|
|
self.info.regs.txdr().write(|w| w.set_txdata(*byte));
|
|
}
|
|
}
|
|
}
|
|
// Wait until the write finishes
|
|
self.wait_tc(timeout)?;
|
|
self.master_stop();
|
|
self.wait_stop(timeout)?;
|
|
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl<'d, IM: MasterMode> I2c<'d, Async, IM> {
|
|
async fn write_dma_internal(
|
|
&mut self,
|
|
address: Address,
|
|
write: &[u8],
|
|
first_slice: bool,
|
|
last_slice: bool,
|
|
send_stop: bool,
|
|
timeout: Timeout,
|
|
) -> Result<(), Error> {
|
|
let total_len = write.len();
|
|
|
|
let dma_transfer = unsafe {
|
|
let regs = self.info.regs;
|
|
regs.cr1().modify(|w| {
|
|
w.set_txdmaen(true);
|
|
if first_slice {
|
|
w.set_tcie(true);
|
|
}
|
|
w.set_nackie(true);
|
|
w.set_errie(true);
|
|
});
|
|
let dst = regs.txdr().as_ptr() as *mut u8;
|
|
|
|
self.tx_dma.as_mut().unwrap().write(write, dst, Default::default())
|
|
};
|
|
|
|
let mut remaining_len = total_len;
|
|
|
|
let on_drop = OnDrop::new(|| {
|
|
let regs = self.info.regs;
|
|
let isr = regs.isr().read();
|
|
regs.cr1().modify(|w| {
|
|
if last_slice || isr.nackf() || isr.arlo() || isr.berr() || isr.ovr() {
|
|
w.set_txdmaen(false);
|
|
}
|
|
w.set_tcie(false);
|
|
w.set_nackie(false);
|
|
w.set_errie(false);
|
|
});
|
|
regs.icr().write(|w| {
|
|
w.set_nackcf(true);
|
|
w.set_berrcf(true);
|
|
w.set_arlocf(true);
|
|
w.set_ovrcf(true);
|
|
});
|
|
});
|
|
|
|
poll_fn(|cx| {
|
|
self.state.waker.register(cx.waker());
|
|
|
|
let isr = self.info.regs.isr().read();
|
|
|
|
if isr.nackf() {
|
|
return Poll::Ready(Err(Error::Nack));
|
|
}
|
|
if isr.arlo() {
|
|
return Poll::Ready(Err(Error::Arbitration));
|
|
}
|
|
if isr.berr() {
|
|
return Poll::Ready(Err(Error::Bus));
|
|
}
|
|
if isr.ovr() {
|
|
return Poll::Ready(Err(Error::Overrun));
|
|
}
|
|
|
|
if remaining_len == total_len {
|
|
if first_slice {
|
|
Self::master_write(
|
|
self.info,
|
|
address,
|
|
total_len.min(255),
|
|
Stop::Software,
|
|
(total_len > 255) || !last_slice,
|
|
timeout,
|
|
)?;
|
|
} else {
|
|
Self::reload(self.info, total_len.min(255), (total_len > 255) || !last_slice, timeout)?;
|
|
self.info.regs.cr1().modify(|w| w.set_tcie(true));
|
|
}
|
|
} else if !(isr.tcr() || isr.tc()) {
|
|
// poll_fn was woken without an interrupt present
|
|
return Poll::Pending;
|
|
} else if remaining_len == 0 {
|
|
return Poll::Ready(Ok(()));
|
|
} else {
|
|
let last_piece = (remaining_len <= 255) && last_slice;
|
|
|
|
if let Err(e) = Self::reload(self.info, remaining_len.min(255), !last_piece, timeout) {
|
|
return Poll::Ready(Err(e));
|
|
}
|
|
self.info.regs.cr1().modify(|w| w.set_tcie(true));
|
|
}
|
|
|
|
remaining_len = remaining_len.saturating_sub(255);
|
|
Poll::Pending
|
|
})
|
|
.await?;
|
|
|
|
dma_transfer.await;
|
|
if last_slice {
|
|
// This should be done already
|
|
self.wait_tc(timeout)?;
|
|
}
|
|
|
|
if last_slice & send_stop {
|
|
self.master_stop();
|
|
}
|
|
|
|
drop(on_drop);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
async fn read_dma_internal(
|
|
&mut self,
|
|
address: Address,
|
|
buffer: &mut [u8],
|
|
restart: bool,
|
|
timeout: Timeout,
|
|
) -> Result<(), Error> {
|
|
let total_len = buffer.len();
|
|
|
|
let dma_transfer = unsafe {
|
|
let regs = self.info.regs;
|
|
regs.cr1().modify(|w| {
|
|
w.set_rxdmaen(true);
|
|
w.set_tcie(true);
|
|
w.set_nackie(true);
|
|
w.set_errie(true);
|
|
});
|
|
let src = regs.rxdr().as_ptr() as *mut u8;
|
|
|
|
self.rx_dma.as_mut().unwrap().read(src, buffer, Default::default())
|
|
};
|
|
|
|
let mut remaining_len = total_len;
|
|
|
|
let on_drop = OnDrop::new(|| {
|
|
let regs = self.info.regs;
|
|
regs.cr1().modify(|w| {
|
|
w.set_rxdmaen(false);
|
|
w.set_tcie(false);
|
|
w.set_nackie(false);
|
|
w.set_errie(false);
|
|
});
|
|
regs.icr().write(|w| {
|
|
w.set_nackcf(true);
|
|
w.set_berrcf(true);
|
|
w.set_arlocf(true);
|
|
w.set_ovrcf(true);
|
|
});
|
|
});
|
|
|
|
poll_fn(|cx| {
|
|
self.state.waker.register(cx.waker());
|
|
|
|
let isr = self.info.regs.isr().read();
|
|
|
|
if isr.nackf() {
|
|
return Poll::Ready(Err(Error::Nack));
|
|
}
|
|
if isr.arlo() {
|
|
return Poll::Ready(Err(Error::Arbitration));
|
|
}
|
|
if isr.berr() {
|
|
return Poll::Ready(Err(Error::Bus));
|
|
}
|
|
if isr.ovr() {
|
|
return Poll::Ready(Err(Error::Overrun));
|
|
}
|
|
|
|
if remaining_len == total_len {
|
|
Self::master_read(
|
|
self.info,
|
|
address,
|
|
total_len.min(255),
|
|
Stop::Automatic,
|
|
total_len > 255,
|
|
restart,
|
|
timeout,
|
|
)?;
|
|
if total_len <= 255 {
|
|
return Poll::Ready(Ok(()));
|
|
}
|
|
} else if isr.tcr() {
|
|
// poll_fn was woken without an interrupt present
|
|
return Poll::Pending;
|
|
} else {
|
|
let last_piece = remaining_len <= 255;
|
|
|
|
if let Err(e) = Self::reload(self.info, remaining_len.min(255), !last_piece, timeout) {
|
|
return Poll::Ready(Err(e));
|
|
}
|
|
// Return here if we are on last chunk,
|
|
// end of transfer will be awaited with the DMA below
|
|
if last_piece {
|
|
return Poll::Ready(Ok(()));
|
|
}
|
|
self.info.regs.cr1().modify(|w| w.set_tcie(true));
|
|
}
|
|
|
|
remaining_len = remaining_len.saturating_sub(255);
|
|
Poll::Pending
|
|
})
|
|
.await?;
|
|
|
|
dma_transfer.await;
|
|
drop(on_drop);
|
|
|
|
Ok(())
|
|
}
|
|
// =========================
|
|
// Async public API
|
|
|
|
/// Write.
|
|
pub async fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Error> {
|
|
let timeout = self.timeout();
|
|
if write.is_empty() {
|
|
self.write_internal(address.into(), write, true, timeout)
|
|
} else {
|
|
timeout
|
|
.with(self.write_dma_internal(address.into(), write, true, true, true, timeout))
|
|
.await
|
|
}
|
|
}
|
|
|
|
/// Write multiple buffers.
|
|
///
|
|
/// The buffers are concatenated in a single write transaction.
|
|
pub async fn write_vectored(&mut self, address: Address, write: &[&[u8]]) -> Result<(), Error> {
|
|
let timeout = self.timeout();
|
|
|
|
if write.is_empty() {
|
|
return Err(Error::ZeroLengthTransfer);
|
|
}
|
|
let mut iter = write.iter();
|
|
|
|
let mut first = true;
|
|
let mut current = iter.next();
|
|
while let Some(c) = current {
|
|
let next = iter.next();
|
|
let is_last = next.is_none();
|
|
|
|
let fut = self.write_dma_internal(address, c, first, is_last, is_last, timeout);
|
|
timeout.with(fut).await?;
|
|
first = false;
|
|
current = next;
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Read.
|
|
pub async fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error> {
|
|
let timeout = self.timeout();
|
|
|
|
if buffer.is_empty() {
|
|
self.read_internal(address.into(), buffer, false, timeout)
|
|
} else {
|
|
let fut = self.read_dma_internal(address.into(), buffer, false, timeout);
|
|
timeout.with(fut).await
|
|
}
|
|
}
|
|
|
|
/// Write, restart, read.
|
|
pub async fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Error> {
|
|
let timeout = self.timeout();
|
|
|
|
if write.is_empty() {
|
|
self.write_internal(address.into(), write, false, timeout)?;
|
|
} else {
|
|
let fut = self.write_dma_internal(address.into(), write, true, true, false, timeout);
|
|
timeout.with(fut).await?;
|
|
}
|
|
|
|
if read.is_empty() {
|
|
self.read_internal(address.into(), read, true, timeout)?;
|
|
} else {
|
|
let fut = self.read_dma_internal(address.into(), read, true, timeout);
|
|
timeout.with(fut).await?;
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Transaction with operations.
|
|
///
|
|
/// Consecutive operations of same type are merged. See [transaction contract] for details.
|
|
///
|
|
/// [transaction contract]: embedded_hal_1::i2c::I2c::transaction
|
|
pub async fn transaction(&mut self, addr: u8, operations: &mut [Operation<'_>]) -> Result<(), Error> {
|
|
let _ = addr;
|
|
let _ = operations;
|
|
todo!()
|
|
}
|
|
}
|
|
|
|
impl<'d, M: Mode> I2c<'d, M, Master> {
|
|
/// Configure the I2C driver for slave operations, allowing for the driver to be used as a slave and a master (multimaster)
|
|
pub fn into_slave_multimaster(mut self, slave_addr_config: SlaveAddrConfig) -> I2c<'d, M, MultiMaster> {
|
|
let mut slave = I2c {
|
|
info: self.info,
|
|
state: self.state,
|
|
kernel_clock: self.kernel_clock,
|
|
tx_dma: self.tx_dma.take(),
|
|
rx_dma: self.rx_dma.take(),
|
|
#[cfg(feature = "time")]
|
|
timeout: self.timeout,
|
|
_phantom: PhantomData,
|
|
_phantom2: PhantomData,
|
|
_drop_guard: self._drop_guard,
|
|
};
|
|
slave.init_slave(slave_addr_config);
|
|
slave
|
|
}
|
|
}
|
|
|
|
impl<'d, M: Mode> I2c<'d, M, MultiMaster> {
|
|
pub(crate) fn init_slave(&mut self, config: SlaveAddrConfig) {
|
|
self.info.regs.cr1().modify(|reg| {
|
|
reg.set_pe(false);
|
|
});
|
|
|
|
self.info.regs.cr1().modify(|reg| {
|
|
reg.set_nostretch(false);
|
|
reg.set_gcen(config.general_call);
|
|
reg.set_sbc(true);
|
|
reg.set_pe(true);
|
|
});
|
|
|
|
self.reconfigure_addresses(config.addr);
|
|
}
|
|
|
|
/// Configure the slave address.
|
|
pub fn reconfigure_addresses(&mut self, addresses: OwnAddresses) {
|
|
match addresses {
|
|
OwnAddresses::OA1(oa1) => self.configure_oa1(oa1),
|
|
OwnAddresses::OA2(oa2) => self.configure_oa2(oa2),
|
|
OwnAddresses::Both { oa1, oa2 } => {
|
|
self.configure_oa1(oa1);
|
|
self.configure_oa2(oa2);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn configure_oa1(&mut self, oa1: Address) {
|
|
match oa1 {
|
|
Address::SevenBit(addr) => self.info.regs.oar1().write(|reg| {
|
|
reg.set_oa1en(false);
|
|
reg.set_oa1((addr << 1) as u16);
|
|
reg.set_oa1mode(Addmode::BIT7);
|
|
reg.set_oa1en(true);
|
|
}),
|
|
Address::TenBit(addr) => self.info.regs.oar1().write(|reg| {
|
|
reg.set_oa1en(false);
|
|
reg.set_oa1(addr);
|
|
reg.set_oa1mode(Addmode::BIT10);
|
|
reg.set_oa1en(true);
|
|
}),
|
|
}
|
|
}
|
|
|
|
fn configure_oa2(&mut self, oa2: OA2) {
|
|
self.info.regs.oar2().write(|reg| {
|
|
reg.set_oa2en(false);
|
|
reg.set_oa2msk(oa2.mask.into());
|
|
reg.set_oa2(oa2.addr << 1);
|
|
reg.set_oa2en(true);
|
|
});
|
|
}
|
|
|
|
fn determine_matched_address(&self) -> Result<Address, Error> {
|
|
let matched = self.info.regs.isr().read().addcode();
|
|
|
|
if matched >> 3 == 0b11110 {
|
|
// is 10-bit address and we need to get the other 8 bits from the rxdr
|
|
// we do this by doing a blocking read of 1 byte
|
|
let mut buffer = [0];
|
|
self.slave_read_internal(&mut buffer, self.timeout())?;
|
|
Ok(Address::TenBit((matched as u16) << 6 | buffer[0] as u16))
|
|
} else {
|
|
Ok(Address::SevenBit(matched))
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'d, M: Mode> I2c<'d, M, MultiMaster> {
|
|
/// # Safety
|
|
/// This function will clear the address flag which will stop the clock stretching.
|
|
/// This should only be done after the dma transfer has been set up.
|
|
fn slave_start(info: &'static Info, length: usize, reload: bool) {
|
|
assert!(length < 256);
|
|
|
|
let reload = if reload {
|
|
i2c::vals::Reload::NOT_COMPLETED
|
|
} else {
|
|
i2c::vals::Reload::COMPLETED
|
|
};
|
|
|
|
info.regs.cr2().modify(|w| {
|
|
w.set_nbytes(length as u8);
|
|
w.set_reload(reload);
|
|
});
|
|
|
|
// clear the address flag, will stop the clock stretching.
|
|
// this should only be done after the dma transfer has been set up.
|
|
info.regs.icr().modify(|reg| reg.set_addrcf(true));
|
|
trace!("ADDRCF cleared (ADDR interrupt enabled, clock stretching ended)");
|
|
}
|
|
|
|
// A blocking read operation
|
|
fn slave_read_internal(&self, read: &mut [u8], timeout: Timeout) -> Result<usize, Error> {
|
|
let completed_chunks = read.len() / 255;
|
|
let total_chunks = if completed_chunks * 255 == read.len() {
|
|
completed_chunks
|
|
} else {
|
|
completed_chunks + 1
|
|
};
|
|
let last_chunk_idx = total_chunks.saturating_sub(1);
|
|
let total_len = read.len();
|
|
let mut remaining_len = total_len;
|
|
|
|
for (number, chunk) in read.chunks_mut(255).enumerate() {
|
|
trace!(
|
|
"--- Slave RX transmission start - chunk: {}, expected (max) size: {}",
|
|
number,
|
|
chunk.len()
|
|
);
|
|
if number == 0 {
|
|
Self::slave_start(self.info, chunk.len(), number != last_chunk_idx);
|
|
} else {
|
|
Self::reload(self.info, chunk.len(), number != last_chunk_idx, timeout)?;
|
|
}
|
|
|
|
let mut index = 0;
|
|
|
|
for byte in chunk {
|
|
// Wait until we have received something
|
|
match self.wait_rxne(timeout) {
|
|
Ok(ReceiveResult::StopReceived) | Ok(ReceiveResult::NewStart) => {
|
|
trace!("--- Slave RX transmission end (early)");
|
|
return Ok(total_len - remaining_len); // Return N bytes read
|
|
}
|
|
Ok(ReceiveResult::DataAvailable) => {
|
|
*byte = self.info.regs.rxdr().read().rxdata();
|
|
remaining_len = remaining_len.saturating_sub(1);
|
|
{
|
|
trace!("Slave RX data {}: {:#04x}", index, byte);
|
|
index = index + 1;
|
|
}
|
|
}
|
|
Err(e) => return Err(e),
|
|
};
|
|
}
|
|
}
|
|
self.wait_stop_or_err(timeout)?;
|
|
|
|
trace!("--- Slave RX transmission end");
|
|
Ok(total_len - remaining_len) // Return N bytes read
|
|
}
|
|
|
|
// A blocking write operation
|
|
fn slave_write_internal(&mut self, write: &[u8], timeout: Timeout) -> Result<(), Error> {
|
|
let completed_chunks = write.len() / 255;
|
|
let total_chunks = if completed_chunks * 255 == write.len() {
|
|
completed_chunks
|
|
} else {
|
|
completed_chunks + 1
|
|
};
|
|
let last_chunk_idx = total_chunks.saturating_sub(1);
|
|
|
|
for (number, chunk) in write.chunks(255).enumerate() {
|
|
trace!(
|
|
"--- Slave TX transmission start - chunk: {}, size: {}",
|
|
number,
|
|
chunk.len()
|
|
);
|
|
if number == 0 {
|
|
Self::slave_start(self.info, chunk.len(), number != last_chunk_idx);
|
|
} else {
|
|
Self::reload(self.info, chunk.len(), number != last_chunk_idx, timeout)?;
|
|
}
|
|
|
|
let mut index = 0;
|
|
|
|
for byte in chunk {
|
|
// Wait until we are allowed to send data
|
|
// (START has been ACKed or last byte when through)
|
|
self.wait_txis(timeout)?;
|
|
|
|
{
|
|
trace!("Slave TX data {}: {:#04x}", index, byte);
|
|
index = index + 1;
|
|
}
|
|
self.info.regs.txdr().write(|w| w.set_txdata(*byte));
|
|
}
|
|
}
|
|
self.wait_af(timeout)?;
|
|
self.flush_txdr();
|
|
self.wait_stop_or_err(timeout)?;
|
|
|
|
trace!("--- Slave TX transmission end");
|
|
Ok(())
|
|
}
|
|
|
|
/// Listen for incoming I2C messages.
|
|
///
|
|
/// The listen method is an asynchronous method but it does not require DMA to be asynchronous.
|
|
pub async fn listen(&mut self) -> Result<SlaveCommand, Error> {
|
|
let state = self.state;
|
|
self.info.regs.cr1().modify(|reg| {
|
|
reg.set_addrie(true);
|
|
trace!("Enable ADDRIE");
|
|
});
|
|
|
|
poll_fn(|cx| {
|
|
state.waker.register(cx.waker());
|
|
let isr = self.info.regs.isr().read();
|
|
if !isr.addr() {
|
|
Poll::Pending
|
|
} else {
|
|
trace!("ADDR triggered (address match)");
|
|
// we do not clear the address flag here as it will be cleared by the dma read/write
|
|
// if we clear it here the clock stretching will stop and the master will read in data before the slave is ready to send it
|
|
match isr.dir() {
|
|
i2c::vals::Dir::WRITE => {
|
|
trace!("DIR: write");
|
|
Poll::Ready(Ok(SlaveCommand {
|
|
kind: SlaveCommandKind::Write,
|
|
address: self.determine_matched_address()?,
|
|
}))
|
|
}
|
|
i2c::vals::Dir::READ => {
|
|
trace!("DIR: read");
|
|
Poll::Ready(Ok(SlaveCommand {
|
|
kind: SlaveCommandKind::Read,
|
|
address: self.determine_matched_address()?,
|
|
}))
|
|
}
|
|
}
|
|
}
|
|
})
|
|
.await
|
|
}
|
|
|
|
/// Respond to a write command.
|
|
///
|
|
/// Returns total number of bytes received.
|
|
pub fn blocking_respond_to_write(&self, read: &mut [u8]) -> Result<usize, Error> {
|
|
let timeout = self.timeout();
|
|
self.slave_read_internal(read, timeout)
|
|
}
|
|
|
|
/// Respond to a read command.
|
|
pub fn blocking_respond_to_read(&mut self, write: &[u8]) -> Result<(), Error> {
|
|
let timeout = self.timeout();
|
|
self.slave_write_internal(write, timeout)
|
|
}
|
|
}
|
|
|
|
impl<'d> I2c<'d, Async, MultiMaster> {
|
|
/// Respond to a write command.
|
|
///
|
|
/// Returns the total number of bytes received.
|
|
pub async fn respond_to_write(&mut self, buffer: &mut [u8]) -> Result<usize, Error> {
|
|
let timeout = self.timeout();
|
|
timeout.with(self.read_dma_internal_slave(buffer, timeout)).await
|
|
}
|
|
|
|
/// Respond to a read request from an I2C master.
|
|
pub async fn respond_to_read(&mut self, write: &[u8]) -> Result<SendStatus, Error> {
|
|
let timeout = self.timeout();
|
|
timeout.with(self.write_dma_internal_slave(write, timeout)).await
|
|
}
|
|
|
|
// for data reception in slave mode
|
|
//
|
|
// returns the total number of bytes received
|
|
async fn read_dma_internal_slave(&mut self, buffer: &mut [u8], timeout: Timeout) -> Result<usize, Error> {
|
|
let total_len = buffer.len();
|
|
let mut remaining_len = total_len;
|
|
|
|
let regs = self.info.regs;
|
|
|
|
let dma_transfer = unsafe {
|
|
regs.cr1().modify(|w| {
|
|
w.set_rxdmaen(true);
|
|
w.set_stopie(true);
|
|
w.set_tcie(true);
|
|
});
|
|
let src = regs.rxdr().as_ptr() as *mut u8;
|
|
|
|
self.rx_dma.as_mut().unwrap().read(src, buffer, Default::default())
|
|
};
|
|
|
|
let state = self.state;
|
|
|
|
let on_drop = OnDrop::new(|| {
|
|
regs.cr1().modify(|w| {
|
|
w.set_rxdmaen(false);
|
|
w.set_stopie(false);
|
|
w.set_tcie(false);
|
|
});
|
|
});
|
|
|
|
let total_received = poll_fn(|cx| {
|
|
state.waker.register(cx.waker());
|
|
|
|
let isr = regs.isr().read();
|
|
|
|
if remaining_len == total_len {
|
|
Self::slave_start(self.info, total_len.min(255), total_len > 255);
|
|
remaining_len = remaining_len.saturating_sub(255);
|
|
Poll::Pending
|
|
} else if isr.tcr() {
|
|
let is_last_slice = remaining_len <= 255;
|
|
if let Err(e) = Self::reload(self.info, remaining_len.min(255), !is_last_slice, timeout) {
|
|
return Poll::Ready(Err(e));
|
|
}
|
|
remaining_len = remaining_len.saturating_sub(255);
|
|
regs.cr1().modify(|w| w.set_tcie(true));
|
|
Poll::Pending
|
|
} else if isr.stopf() {
|
|
regs.icr().write(|reg| reg.set_stopcf(true));
|
|
let poll = Poll::Ready(Ok(total_len - remaining_len));
|
|
poll
|
|
} else {
|
|
Poll::Pending
|
|
}
|
|
})
|
|
.await?;
|
|
|
|
dma_transfer.await;
|
|
|
|
drop(on_drop);
|
|
|
|
Ok(total_received)
|
|
}
|
|
|
|
async fn write_dma_internal_slave(&mut self, buffer: &[u8], timeout: Timeout) -> Result<SendStatus, Error> {
|
|
let total_len = buffer.len();
|
|
let mut remaining_len = total_len;
|
|
|
|
let mut dma_transfer = unsafe {
|
|
let regs = self.info.regs;
|
|
regs.cr1().modify(|w| {
|
|
w.set_txdmaen(true);
|
|
w.set_stopie(true);
|
|
w.set_tcie(true);
|
|
});
|
|
let dst = regs.txdr().as_ptr() as *mut u8;
|
|
|
|
self.tx_dma.as_mut().unwrap().write(buffer, dst, Default::default())
|
|
};
|
|
|
|
let on_drop = OnDrop::new(|| {
|
|
let regs = self.info.regs;
|
|
regs.cr1().modify(|w| {
|
|
w.set_txdmaen(false);
|
|
w.set_stopie(false);
|
|
w.set_tcie(false);
|
|
})
|
|
});
|
|
|
|
let state = self.state;
|
|
|
|
let size = poll_fn(|cx| {
|
|
state.waker.register(cx.waker());
|
|
|
|
let isr = self.info.regs.isr().read();
|
|
|
|
if remaining_len == total_len {
|
|
Self::slave_start(self.info, total_len.min(255), total_len > 255);
|
|
remaining_len = remaining_len.saturating_sub(255);
|
|
Poll::Pending
|
|
} else if isr.tcr() {
|
|
let is_last_slice = remaining_len <= 255;
|
|
if let Err(e) = Self::reload(self.info, remaining_len.min(255), !is_last_slice, timeout) {
|
|
return Poll::Ready(Err(e));
|
|
}
|
|
remaining_len = remaining_len.saturating_sub(255);
|
|
self.info.regs.cr1().modify(|w| w.set_tcie(true));
|
|
Poll::Pending
|
|
} else if isr.stopf() {
|
|
self.info.regs.icr().write(|reg| reg.set_stopcf(true));
|
|
if remaining_len > 0 {
|
|
dma_transfer.request_stop();
|
|
Poll::Ready(Ok(SendStatus::LeftoverBytes(remaining_len as usize)))
|
|
} else {
|
|
Poll::Ready(Ok(SendStatus::Done))
|
|
}
|
|
} else {
|
|
Poll::Pending
|
|
}
|
|
})
|
|
.await?;
|
|
|
|
dma_transfer.await;
|
|
|
|
drop(on_drop);
|
|
|
|
Ok(size)
|
|
}
|
|
}
|
|
|
|
/// I2C Stop Configuration
|
|
///
|
|
/// Peripheral options for generating the STOP condition
|
|
#[derive(Copy, Clone, PartialEq)]
|
|
enum Stop {
|
|
/// Software end mode: Must write register to generate STOP condition
|
|
Software,
|
|
/// Automatic end mode: A STOP condition is automatically generated once the
|
|
/// configured number of bytes have been transferred
|
|
Automatic,
|
|
}
|
|
|
|
impl Stop {
|
|
fn autoend(&self) -> i2c::vals::Autoend {
|
|
match self {
|
|
Stop::Software => i2c::vals::Autoend::SOFTWARE,
|
|
Stop::Automatic => i2c::vals::Autoend::AUTOMATIC,
|
|
}
|
|
}
|
|
}
|
|
|
|
struct Timings {
|
|
prescale: u8,
|
|
scll: u8,
|
|
sclh: u8,
|
|
sdadel: u8,
|
|
scldel: u8,
|
|
}
|
|
|
|
impl Timings {
|
|
fn new(i2cclk: Hertz, frequency: Hertz) -> Self {
|
|
let i2cclk = i2cclk.0;
|
|
let frequency = frequency.0;
|
|
// Refer to RM0433 Rev 7 Figure 539 for setup and hold timing:
|
|
//
|
|
// t_I2CCLK = 1 / PCLK1
|
|
// t_PRESC = (PRESC + 1) * t_I2CCLK
|
|
// t_SCLL = (SCLL + 1) * t_PRESC
|
|
// t_SCLH = (SCLH + 1) * t_PRESC
|
|
//
|
|
// t_SYNC1 + t_SYNC2 > 4 * t_I2CCLK
|
|
// t_SCL ~= t_SYNC1 + t_SYNC2 + t_SCLL + t_SCLH
|
|
let ratio = i2cclk / frequency;
|
|
|
|
// For the standard-mode configuration method, we must have a ratio of 4
|
|
// or higher
|
|
assert!(ratio >= 4, "The I2C PCLK must be at least 4 times the bus frequency!");
|
|
|
|
let (presc_reg, scll, sclh, sdadel, scldel) = if frequency > 100_000 {
|
|
// Fast-mode (Fm) or Fast-mode Plus (Fm+)
|
|
// here we pick SCLL + 1 = 2 * (SCLH + 1)
|
|
|
|
// Prescaler, 384 ticks for sclh/scll. Round up then subtract 1
|
|
let presc_reg = ((ratio - 1) / 384) as u8;
|
|
// ratio < 1200 by pclk 120MHz max., therefore presc < 16
|
|
|
|
// Actual precale value selected
|
|
let presc = (presc_reg + 1) as u32;
|
|
|
|
let sclh = ((ratio / presc) - 3) / 3;
|
|
let scll = (2 * (sclh + 1)) - 1;
|
|
|
|
let (sdadel, scldel) = if frequency > 400_000 {
|
|
// Fast-mode Plus (Fm+)
|
|
assert!(i2cclk >= 17_000_000); // See table in datsheet
|
|
|
|
let sdadel = i2cclk / 8_000_000 / presc;
|
|
let scldel = i2cclk / 4_000_000 / presc - 1;
|
|
|
|
(sdadel, scldel)
|
|
} else {
|
|
// Fast-mode (Fm)
|
|
assert!(i2cclk >= 8_000_000); // See table in datsheet
|
|
|
|
let sdadel = i2cclk / 4_000_000 / presc;
|
|
let scldel = i2cclk / 2_000_000 / presc - 1;
|
|
|
|
(sdadel, scldel)
|
|
};
|
|
|
|
(presc_reg, scll as u8, sclh as u8, sdadel as u8, scldel as u8)
|
|
} else {
|
|
// Standard-mode (Sm)
|
|
// here we pick SCLL = SCLH
|
|
assert!(i2cclk >= 2_000_000); // See table in datsheet
|
|
|
|
// Prescaler, 512 ticks for sclh/scll. Round up then
|
|
// subtract 1
|
|
let presc = (ratio - 1) / 512;
|
|
let presc_reg = cmp::min(presc, 15) as u8;
|
|
|
|
// Actual prescale value selected
|
|
let presc = (presc_reg + 1) as u32;
|
|
|
|
let sclh = ((ratio / presc) - 2) / 2;
|
|
let scll = sclh;
|
|
|
|
// Speed check
|
|
assert!(sclh < 256, "The I2C PCLK is too fast for this bus frequency!");
|
|
|
|
let sdadel = i2cclk / 2_000_000 / presc;
|
|
let scldel = i2cclk / 500_000 / presc - 1;
|
|
|
|
(presc_reg, scll as u8, sclh as u8, sdadel as u8, scldel as u8)
|
|
};
|
|
|
|
// Sanity check
|
|
assert!(presc_reg < 16);
|
|
|
|
// Keep values within reasonable limits for fast per_ck
|
|
let sdadel = cmp::max(sdadel, 2);
|
|
let scldel = cmp::max(scldel, 4);
|
|
|
|
//(presc_reg, scll, sclh, sdadel, scldel)
|
|
Self {
|
|
prescale: presc_reg,
|
|
scll,
|
|
sclh,
|
|
sdadel,
|
|
scldel,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'d, M: Mode> SetConfig for I2c<'d, M, Master> {
|
|
type Config = Hertz;
|
|
type ConfigError = ();
|
|
fn set_config(&mut self, config: &Self::Config) -> Result<(), ()> {
|
|
self.info.regs.cr1().modify(|reg| {
|
|
reg.set_pe(false);
|
|
});
|
|
|
|
let timings = Timings::new(self.kernel_clock, *config);
|
|
|
|
self.info.regs.timingr().write(|reg| {
|
|
reg.set_presc(timings.prescale);
|
|
reg.set_scll(timings.scll);
|
|
reg.set_sclh(timings.sclh);
|
|
reg.set_sdadel(timings.sdadel);
|
|
reg.set_scldel(timings.scldel);
|
|
});
|
|
|
|
self.info.regs.cr1().modify(|reg| {
|
|
reg.set_pe(true);
|
|
});
|
|
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl<'d, M: Mode> SetConfig for I2c<'d, M, MultiMaster> {
|
|
type Config = (Hertz, SlaveAddrConfig);
|
|
type ConfigError = ();
|
|
fn set_config(&mut self, (config, addr_config): &Self::Config) -> Result<(), ()> {
|
|
let timings = Timings::new(self.kernel_clock, *config);
|
|
self.info.regs.timingr().write(|reg| {
|
|
reg.set_presc(timings.prescale);
|
|
reg.set_scll(timings.scll);
|
|
reg.set_sclh(timings.sclh);
|
|
reg.set_sdadel(timings.sdadel);
|
|
reg.set_scldel(timings.scldel);
|
|
});
|
|
self.init_slave(*addr_config);
|
|
|
|
Ok(())
|
|
}
|
|
}
|