mirror of
https://github.com/embassy-rs/embassy.git
synced 2025-09-27 12:20:37 +00:00
500 lines
20 KiB
Rust
500 lines
20 KiB
Rust
use digest::Digest;
|
|
#[cfg(target_os = "none")]
|
|
use embassy_embedded_hal::flash::partition::BlockingPartition;
|
|
#[cfg(target_os = "none")]
|
|
use embassy_sync::blocking_mutex::raw::NoopRawMutex;
|
|
use embedded_storage::nor_flash::NorFlash;
|
|
|
|
use super::FirmwareUpdaterConfig;
|
|
use crate::{FirmwareUpdaterError, State, BOOT_MAGIC, DFU_DETACH_MAGIC, STATE_ERASE_VALUE, SWAP_MAGIC};
|
|
|
|
/// Blocking FirmwareUpdater is an application API for interacting with the BootLoader without the ability to
|
|
/// 'mess up' the internal bootloader state
|
|
pub struct BlockingFirmwareUpdater<'d, DFU: NorFlash, STATE: NorFlash> {
|
|
dfu: DFU,
|
|
state: BlockingFirmwareState<'d, STATE>,
|
|
last_erased_dfu_sector_index: Option<usize>,
|
|
}
|
|
|
|
#[cfg(target_os = "none")]
|
|
impl<'a, DFU: NorFlash, STATE: NorFlash>
|
|
FirmwareUpdaterConfig<BlockingPartition<'a, NoopRawMutex, DFU>, BlockingPartition<'a, NoopRawMutex, STATE>>
|
|
{
|
|
/// Constructs a `FirmwareUpdaterConfig` instance from flash memory and address symbols defined in the linker file.
|
|
///
|
|
/// This method initializes `BlockingPartition` instances for the DFU (Device Firmware Update), and state
|
|
/// partitions, leveraging start and end addresses specified by the linker. These partitions are critical
|
|
/// for managing firmware updates, application state, and boot operations within the bootloader.
|
|
///
|
|
/// # Parameters
|
|
/// - `dfu_flash`: A reference to a mutex-protected `RefCell` for the DFU partition's flash interface.
|
|
/// - `state_flash`: A reference to a mutex-protected `RefCell` for the state partition's flash interface.
|
|
///
|
|
/// # Safety
|
|
/// The method contains `unsafe` blocks for dereferencing raw pointers that represent the start and end addresses
|
|
/// of the bootloader's partitions in flash memory. It is crucial that these addresses are accurately defined
|
|
/// in the memory.x file to prevent undefined behavior.
|
|
///
|
|
/// The caller must ensure that the memory regions defined by these symbols are valid and that the flash memory
|
|
/// interfaces provided are compatible with these regions.
|
|
///
|
|
/// # Returns
|
|
/// A `FirmwareUpdaterConfig` instance with `BlockingPartition` instances for the DFU, and state partitions.
|
|
///
|
|
/// # Example
|
|
/// ```ignore
|
|
/// // Assume `dfu_flash`, and `state_flash` share the same flash memory interface.
|
|
/// let layout = Flash::new_blocking(p.FLASH).into_blocking_regions();
|
|
/// let flash = Mutex::new(RefCell::new(layout.bank1_region));
|
|
///
|
|
/// let config = FirmwareUpdaterConfig::from_linkerfile_blocking(&flash, &flash);
|
|
/// // `config` can now be used to create a `FirmwareUpdater` instance for managing boot operations.
|
|
/// ```
|
|
/// Working examples can be found in the bootloader examples folder.
|
|
pub fn from_linkerfile_blocking(
|
|
dfu_flash: &'a embassy_sync::blocking_mutex::Mutex<NoopRawMutex, core::cell::RefCell<DFU>>,
|
|
state_flash: &'a embassy_sync::blocking_mutex::Mutex<NoopRawMutex, core::cell::RefCell<STATE>>,
|
|
) -> Self {
|
|
extern "C" {
|
|
static __bootloader_state_start: u32;
|
|
static __bootloader_state_end: u32;
|
|
static __bootloader_dfu_start: u32;
|
|
static __bootloader_dfu_end: u32;
|
|
}
|
|
|
|
let dfu = unsafe {
|
|
let start = &__bootloader_dfu_start as *const u32 as u32;
|
|
let end = &__bootloader_dfu_end as *const u32 as u32;
|
|
trace!("DFU: 0x{:x} - 0x{:x}", start, end);
|
|
|
|
BlockingPartition::new(dfu_flash, start, end - start)
|
|
};
|
|
let state = unsafe {
|
|
let start = &__bootloader_state_start as *const u32 as u32;
|
|
let end = &__bootloader_state_end as *const u32 as u32;
|
|
trace!("STATE: 0x{:x} - 0x{:x}", start, end);
|
|
|
|
BlockingPartition::new(state_flash, start, end - start)
|
|
};
|
|
|
|
Self { dfu, state }
|
|
}
|
|
}
|
|
|
|
impl<'d, DFU: NorFlash, STATE: NorFlash> BlockingFirmwareUpdater<'d, DFU, STATE> {
|
|
/// Create a firmware updater instance with partition ranges for the update and state partitions.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// The `aligned` buffer must have a size of STATE::WRITE_SIZE, and follow the alignment rules for the flash being read from
|
|
/// and written to.
|
|
pub fn new(config: FirmwareUpdaterConfig<DFU, STATE>, aligned: &'d mut [u8]) -> Self {
|
|
Self {
|
|
dfu: config.dfu,
|
|
state: BlockingFirmwareState::new(config.state, aligned),
|
|
last_erased_dfu_sector_index: None,
|
|
}
|
|
}
|
|
|
|
/// Obtain the current state.
|
|
///
|
|
/// This is useful to check if the bootloader has just done a swap, in order
|
|
/// to do verifications and self-tests of the new image before calling
|
|
/// `mark_booted`.
|
|
pub fn get_state(&mut self) -> Result<State, FirmwareUpdaterError> {
|
|
self.state.get_state()
|
|
}
|
|
|
|
/// Verify the DFU given a public key. If there is an error then DO NOT
|
|
/// proceed with updating the firmware as it must be signed with a
|
|
/// corresponding private key (otherwise it could be malicious firmware).
|
|
///
|
|
/// Mark to trigger firmware swap on next boot if verify succeeds.
|
|
///
|
|
/// If the "ed25519-salty" feature is set (or another similar feature) then the signature is expected to have
|
|
/// been generated from a SHA-512 digest of the firmware bytes.
|
|
///
|
|
/// If no signature feature is set then this method will always return a
|
|
/// signature error.
|
|
#[cfg(feature = "_verify")]
|
|
pub fn verify_and_mark_updated(
|
|
&mut self,
|
|
_public_key: &[u8; 32],
|
|
_signature: &[u8; 64],
|
|
_update_len: u32,
|
|
) -> Result<(), FirmwareUpdaterError> {
|
|
assert!(_update_len <= self.dfu.capacity() as u32);
|
|
|
|
self.state.verify_booted()?;
|
|
|
|
#[cfg(feature = "ed25519-dalek")]
|
|
{
|
|
use ed25519_dalek::{Signature, SignatureError, Verifier, VerifyingKey};
|
|
|
|
use crate::digest_adapters::ed25519_dalek::Sha512;
|
|
|
|
let into_signature_error = |e: SignatureError| FirmwareUpdaterError::Signature(e.into());
|
|
|
|
let public_key = VerifyingKey::from_bytes(_public_key).map_err(into_signature_error)?;
|
|
let signature = Signature::from_bytes(_signature);
|
|
|
|
let mut message = [0; 64];
|
|
let mut chunk_buf = [0; 2];
|
|
self.hash::<Sha512>(_update_len, &mut chunk_buf, &mut message)?;
|
|
|
|
public_key.verify(&message, &signature).map_err(into_signature_error)?
|
|
}
|
|
#[cfg(feature = "ed25519-salty")]
|
|
{
|
|
use salty::{PublicKey, Signature};
|
|
|
|
use crate::digest_adapters::salty::Sha512;
|
|
|
|
fn into_signature_error<E>(_: E) -> FirmwareUpdaterError {
|
|
FirmwareUpdaterError::Signature(signature::Error::default())
|
|
}
|
|
|
|
let public_key = PublicKey::try_from(_public_key).map_err(into_signature_error)?;
|
|
let signature = Signature::try_from(_signature).map_err(into_signature_error)?;
|
|
|
|
let mut message = [0; 64];
|
|
let mut chunk_buf = [0; 2];
|
|
self.hash::<Sha512>(_update_len, &mut chunk_buf, &mut message)?;
|
|
|
|
let r = public_key.verify(&message, &signature);
|
|
trace!(
|
|
"Verifying with public key {}, signature {} and message {} yields ok: {}",
|
|
public_key.to_bytes(),
|
|
signature.to_bytes(),
|
|
message,
|
|
r.is_ok()
|
|
);
|
|
r.map_err(into_signature_error)?
|
|
}
|
|
|
|
self.state.mark_updated()
|
|
}
|
|
|
|
/// Verify the update in DFU with any digest.
|
|
pub fn hash<D: Digest>(
|
|
&mut self,
|
|
update_len: u32,
|
|
chunk_buf: &mut [u8],
|
|
output: &mut [u8],
|
|
) -> Result<(), FirmwareUpdaterError> {
|
|
let mut digest = D::new();
|
|
for offset in (0..update_len).step_by(chunk_buf.len()) {
|
|
self.dfu.read(offset, chunk_buf)?;
|
|
let len = core::cmp::min((update_len - offset) as usize, chunk_buf.len());
|
|
digest.update(&chunk_buf[..len]);
|
|
}
|
|
output.copy_from_slice(digest.finalize().as_slice());
|
|
Ok(())
|
|
}
|
|
|
|
/// Mark to trigger firmware swap on next boot.
|
|
#[cfg(not(feature = "_verify"))]
|
|
pub fn mark_updated(&mut self) -> Result<(), FirmwareUpdaterError> {
|
|
self.state.mark_updated()
|
|
}
|
|
|
|
/// Mark to trigger USB DFU device on next boot.
|
|
pub fn mark_dfu(&mut self) -> Result<(), FirmwareUpdaterError> {
|
|
self.state.verify_booted()?;
|
|
self.state.mark_dfu()
|
|
}
|
|
|
|
/// Mark firmware boot successful and stop rollback on reset.
|
|
pub fn mark_booted(&mut self) -> Result<(), FirmwareUpdaterError> {
|
|
self.state.mark_booted()
|
|
}
|
|
|
|
/// Writes firmware data to the device.
|
|
///
|
|
/// This function writes the given data to the firmware area starting at the specified offset.
|
|
/// It handles sector erasures and data writes while verifying the device is in a proper state
|
|
/// for firmware updates. The function ensures that only unerased sectors are erased before
|
|
/// writing and efficiently handles the writing process across sector boundaries and in
|
|
/// various configurations (data size, sector size, etc.).
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * `offset` - The starting offset within the firmware area where data writing should begin.
|
|
/// * `data` - A slice of bytes representing the firmware data to be written. It must be a
|
|
/// multiple of NorFlash WRITE_SIZE.
|
|
///
|
|
/// # Returns
|
|
///
|
|
/// A `Result<(), FirmwareUpdaterError>` indicating the success or failure of the write operation.
|
|
///
|
|
/// # Errors
|
|
///
|
|
/// This function will return an error if:
|
|
///
|
|
/// - The device is not in a proper state to receive firmware updates (e.g., not booted).
|
|
/// - There is a failure erasing a sector before writing.
|
|
/// - There is a failure writing data to the device.
|
|
pub fn write_firmware(&mut self, offset: usize, data: &[u8]) -> Result<(), FirmwareUpdaterError> {
|
|
// Make sure we are running a booted firmware to avoid reverting to a bad state.
|
|
self.state.verify_booted()?;
|
|
|
|
// Initialize variables to keep track of the remaining data and the current offset.
|
|
let mut remaining_data = data;
|
|
let mut offset = offset;
|
|
|
|
// Continue writing as long as there is data left to write.
|
|
while !remaining_data.is_empty() {
|
|
// Compute the current sector and its boundaries.
|
|
let current_sector = offset / DFU::ERASE_SIZE;
|
|
let sector_start = current_sector * DFU::ERASE_SIZE;
|
|
let sector_end = sector_start + DFU::ERASE_SIZE;
|
|
// Determine if the current sector needs to be erased before writing.
|
|
let need_erase = self
|
|
.last_erased_dfu_sector_index
|
|
.map_or(true, |last_erased_sector| current_sector != last_erased_sector);
|
|
|
|
// If the sector needs to be erased, erase it and update the last erased sector index.
|
|
if need_erase {
|
|
self.dfu.erase(sector_start as u32, sector_end as u32)?;
|
|
self.last_erased_dfu_sector_index = Some(current_sector);
|
|
}
|
|
|
|
// Calculate the size of the data chunk that can be written in the current iteration.
|
|
let write_size = core::cmp::min(remaining_data.len(), sector_end - offset);
|
|
// Split the data to get the current chunk to be written and the remaining data.
|
|
let (data_chunk, rest) = remaining_data.split_at(write_size);
|
|
|
|
// Write the current data chunk.
|
|
self.dfu.write(offset as u32, data_chunk)?;
|
|
|
|
// Update the offset and remaining data for the next iteration.
|
|
remaining_data = rest;
|
|
offset += write_size;
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Prepare for an incoming DFU update by erasing the entire DFU area and
|
|
/// returning its `Partition`.
|
|
///
|
|
/// Using this instead of `write_firmware` allows for an optimized API in
|
|
/// exchange for added complexity.
|
|
pub fn prepare_update(&mut self) -> Result<&mut DFU, FirmwareUpdaterError> {
|
|
self.state.verify_booted()?;
|
|
self.dfu.erase(0, self.dfu.capacity() as u32)?;
|
|
|
|
Ok(&mut self.dfu)
|
|
}
|
|
}
|
|
|
|
/// Manages the state partition of the firmware update.
|
|
///
|
|
/// Can be used standalone for more fine grained control, or as part of the updater.
|
|
pub struct BlockingFirmwareState<'d, STATE> {
|
|
state: STATE,
|
|
aligned: &'d mut [u8],
|
|
}
|
|
|
|
impl<'d, STATE: NorFlash> BlockingFirmwareState<'d, STATE> {
|
|
/// Creates a firmware state instance from a FirmwareUpdaterConfig, with a buffer for magic content and state partition.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// The `aligned` buffer must have a size of STATE::WRITE_SIZE, and follow the alignment rules for the flash being read from
|
|
/// and written to.
|
|
pub fn from_config<DFU: NorFlash>(config: FirmwareUpdaterConfig<DFU, STATE>, aligned: &'d mut [u8]) -> Self {
|
|
Self::new(config.state, aligned)
|
|
}
|
|
|
|
/// Create a firmware state instance with a buffer for magic content and state partition.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// The `aligned` buffer must have a size of STATE::WRITE_SIZE, and follow the alignment rules for the flash being read from
|
|
/// and written to.
|
|
pub fn new(state: STATE, aligned: &'d mut [u8]) -> Self {
|
|
assert_eq!(aligned.len(), STATE::WRITE_SIZE);
|
|
Self { state, aligned }
|
|
}
|
|
|
|
// Make sure we are running a booted firmware to avoid reverting to a bad state.
|
|
fn verify_booted(&mut self) -> Result<(), FirmwareUpdaterError> {
|
|
if self.get_state()? == State::Boot || self.get_state()? == State::DfuDetach {
|
|
Ok(())
|
|
} else {
|
|
Err(FirmwareUpdaterError::BadState)
|
|
}
|
|
}
|
|
|
|
/// Obtain the current state.
|
|
///
|
|
/// This is useful to check if the bootloader has just done a swap, in order
|
|
/// to do verifications and self-tests of the new image before calling
|
|
/// `mark_booted`.
|
|
pub fn get_state(&mut self) -> Result<State, FirmwareUpdaterError> {
|
|
self.state.read(0, &mut self.aligned)?;
|
|
|
|
if !self.aligned.iter().any(|&b| b != SWAP_MAGIC) {
|
|
Ok(State::Swap)
|
|
} else if !self.aligned.iter().any(|&b| b != DFU_DETACH_MAGIC) {
|
|
Ok(State::DfuDetach)
|
|
} else {
|
|
Ok(State::Boot)
|
|
}
|
|
}
|
|
|
|
/// Mark to trigger firmware swap on next boot.
|
|
pub fn mark_updated(&mut self) -> Result<(), FirmwareUpdaterError> {
|
|
self.set_magic(SWAP_MAGIC)
|
|
}
|
|
|
|
/// Mark to trigger USB DFU on next boot.
|
|
pub fn mark_dfu(&mut self) -> Result<(), FirmwareUpdaterError> {
|
|
self.set_magic(DFU_DETACH_MAGIC)
|
|
}
|
|
|
|
/// Mark firmware boot successful and stop rollback on reset.
|
|
pub fn mark_booted(&mut self) -> Result<(), FirmwareUpdaterError> {
|
|
self.set_magic(BOOT_MAGIC)
|
|
}
|
|
|
|
fn set_magic(&mut self, magic: u8) -> Result<(), FirmwareUpdaterError> {
|
|
self.state.read(0, &mut self.aligned)?;
|
|
|
|
if self.aligned.iter().any(|&b| b != magic) {
|
|
// Read progress validity
|
|
self.state.read(STATE::WRITE_SIZE as u32, &mut self.aligned)?;
|
|
|
|
if self.aligned.iter().any(|&b| b != STATE_ERASE_VALUE) {
|
|
// The current progress validity marker is invalid
|
|
} else {
|
|
// Invalidate progress
|
|
self.aligned.fill(!STATE_ERASE_VALUE);
|
|
self.state.write(STATE::WRITE_SIZE as u32, &self.aligned)?;
|
|
}
|
|
|
|
// Clear magic and progress
|
|
self.state.erase(0, self.state.capacity() as u32)?;
|
|
|
|
// Set magic
|
|
self.aligned.fill(magic);
|
|
self.state.write(0, &self.aligned)?;
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use core::cell::RefCell;
|
|
|
|
use embassy_embedded_hal::flash::partition::BlockingPartition;
|
|
use embassy_sync::blocking_mutex::raw::NoopRawMutex;
|
|
use embassy_sync::blocking_mutex::Mutex;
|
|
use sha1::{Digest, Sha1};
|
|
|
|
use super::*;
|
|
use crate::mem_flash::MemFlash;
|
|
|
|
#[test]
|
|
fn can_verify_sha1() {
|
|
let flash = Mutex::<NoopRawMutex, _>::new(RefCell::new(MemFlash::<131072, 4096, 8>::default()));
|
|
let state = BlockingPartition::new(&flash, 0, 4096);
|
|
let dfu = BlockingPartition::new(&flash, 65536, 65536);
|
|
let mut aligned = [0; 8];
|
|
|
|
let update = [0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66];
|
|
let mut to_write = [0; 4096];
|
|
to_write[..7].copy_from_slice(update.as_slice());
|
|
|
|
let mut updater = BlockingFirmwareUpdater::new(FirmwareUpdaterConfig { dfu, state }, &mut aligned);
|
|
updater.write_firmware(0, to_write.as_slice()).unwrap();
|
|
let mut chunk_buf = [0; 2];
|
|
let mut hash = [0; 20];
|
|
updater
|
|
.hash::<Sha1>(update.len() as u32, &mut chunk_buf, &mut hash)
|
|
.unwrap();
|
|
|
|
assert_eq!(Sha1::digest(update).as_slice(), hash);
|
|
}
|
|
|
|
#[test]
|
|
fn can_verify_sha1_sector_bigger_than_chunk() {
|
|
let flash = Mutex::<NoopRawMutex, _>::new(RefCell::new(MemFlash::<131072, 4096, 8>::default()));
|
|
let state = BlockingPartition::new(&flash, 0, 4096);
|
|
let dfu = BlockingPartition::new(&flash, 65536, 65536);
|
|
let mut aligned = [0; 8];
|
|
|
|
let update = [0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66];
|
|
let mut to_write = [0; 4096];
|
|
to_write[..7].copy_from_slice(update.as_slice());
|
|
|
|
let mut updater = BlockingFirmwareUpdater::new(FirmwareUpdaterConfig { dfu, state }, &mut aligned);
|
|
let mut offset = 0;
|
|
for chunk in to_write.chunks(1024) {
|
|
updater.write_firmware(offset, chunk).unwrap();
|
|
offset += chunk.len();
|
|
}
|
|
let mut chunk_buf = [0; 2];
|
|
let mut hash = [0; 20];
|
|
updater
|
|
.hash::<Sha1>(update.len() as u32, &mut chunk_buf, &mut hash)
|
|
.unwrap();
|
|
|
|
assert_eq!(Sha1::digest(update).as_slice(), hash);
|
|
}
|
|
|
|
#[test]
|
|
fn can_verify_sha1_sector_smaller_than_chunk() {
|
|
let flash = Mutex::<NoopRawMutex, _>::new(RefCell::new(MemFlash::<131072, 1024, 8>::default()));
|
|
let state = BlockingPartition::new(&flash, 0, 4096);
|
|
let dfu = BlockingPartition::new(&flash, 65536, 65536);
|
|
let mut aligned = [0; 8];
|
|
|
|
let update = [0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66];
|
|
let mut to_write = [0; 4096];
|
|
to_write[..7].copy_from_slice(update.as_slice());
|
|
|
|
let mut updater = BlockingFirmwareUpdater::new(FirmwareUpdaterConfig { dfu, state }, &mut aligned);
|
|
let mut offset = 0;
|
|
for chunk in to_write.chunks(2048) {
|
|
updater.write_firmware(offset, chunk).unwrap();
|
|
offset += chunk.len();
|
|
}
|
|
let mut chunk_buf = [0; 2];
|
|
let mut hash = [0; 20];
|
|
updater
|
|
.hash::<Sha1>(update.len() as u32, &mut chunk_buf, &mut hash)
|
|
.unwrap();
|
|
|
|
assert_eq!(Sha1::digest(update).as_slice(), hash);
|
|
}
|
|
|
|
#[test]
|
|
fn can_verify_sha1_cross_sector_boundary() {
|
|
let flash = Mutex::<NoopRawMutex, _>::new(RefCell::new(MemFlash::<131072, 1024, 8>::default()));
|
|
let state = BlockingPartition::new(&flash, 0, 4096);
|
|
let dfu = BlockingPartition::new(&flash, 65536, 65536);
|
|
let mut aligned = [0; 8];
|
|
|
|
let update = [0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66];
|
|
let mut to_write = [0; 4096];
|
|
to_write[..7].copy_from_slice(update.as_slice());
|
|
|
|
let mut updater = BlockingFirmwareUpdater::new(FirmwareUpdaterConfig { dfu, state }, &mut aligned);
|
|
let mut offset = 0;
|
|
for chunk in to_write.chunks(896) {
|
|
updater.write_firmware(offset, chunk).unwrap();
|
|
offset += chunk.len();
|
|
}
|
|
let mut chunk_buf = [0; 2];
|
|
let mut hash = [0; 20];
|
|
updater
|
|
.hash::<Sha1>(update.len() as u32, &mut chunk_buf, &mut hash)
|
|
.unwrap();
|
|
|
|
assert_eq!(Sha1::digest(update).as_slice(), hash);
|
|
}
|
|
}
|