embassy/examples/stm32g4/src/bin/i2c_slave.rs
2025-08-08 23:37:47 +08:00

150 lines
5.2 KiB
Rust

//! This example shows how to use an stm32 as both a master and a slave.
#![no_std]
#![no_main]
use defmt::*;
use embassy_executor::Spawner;
use embassy_stm32::i2c::{Address, OwnAddresses, SlaveCommandKind};
use embassy_stm32::mode::Async;
use embassy_stm32::time::Hertz;
use embassy_stm32::{bind_interrupts, i2c, peripherals};
use embassy_time::Timer;
use {defmt_rtt as _, panic_probe as _};
bind_interrupts!(struct Irqs {
I2C1_ER => i2c::ErrorInterruptHandler<peripherals::I2C1>;
I2C1_EV => i2c::EventInterruptHandler<peripherals::I2C1>;
I2C2_ER => i2c::ErrorInterruptHandler<peripherals::I2C2>;
I2C2_EV => i2c::EventInterruptHandler<peripherals::I2C2>;
});
const DEV_ADDR: u8 = 0x42;
#[embassy_executor::task]
async fn device_task(mut dev: i2c::I2c<'static, Async, i2c::MultiMaster>) -> ! {
info!("Device start");
let mut state = 0;
loop {
let mut buf = [0u8; 128];
match dev.listen().await {
Ok(i2c::SlaveCommand {
kind: SlaveCommandKind::Read,
address: Address::SevenBit(DEV_ADDR),
}) => match dev.respond_to_read(&[state]).await {
Ok(i2c::SendStatus::LeftoverBytes(x)) => info!("tried to write {} extra bytes", x),
Ok(i2c::SendStatus::Done) => {}
Err(e) => error!("error while responding {}", e),
},
Ok(i2c::SlaveCommand {
kind: SlaveCommandKind::Write,
address: Address::SevenBit(DEV_ADDR),
}) => match dev.respond_to_write(&mut buf).await {
Ok(len) => {
info!("Device received write: {}", buf[..len]);
if match buf[0] {
// Set the state
0xC2 => {
state = buf[1];
true
}
// Reset State
0xC8 => {
state = 0;
true
}
x => {
error!("Invalid Write Read {:x}", x);
false
}
} {
match dev.respond_to_read(&[state]).await {
Ok(read_status) => info!(
"This read is part of a write/read transaction. The response read status {}",
read_status
),
Err(i2c::Error::Timeout) => {
info!("The device only performed a write and it not also do a read")
}
Err(e) => error!("error while responding {}", e),
}
}
}
Err(e) => error!("error while receiving {}", e),
},
Ok(i2c::SlaveCommand { address, .. }) => {
defmt::unreachable!(
"The slave matched address: {}, which it was not configured for",
address
);
}
Err(e) => error!("{}", e),
}
}
}
#[embassy_executor::task]
async fn controller_task(mut con: i2c::I2c<'static, Async, i2c::Master>) {
info!("Controller start");
loop {
let mut resp_buff = [0u8; 1];
for i in 0..10 {
match con.write_read(DEV_ADDR, &[0xC2, i], &mut resp_buff).await {
Ok(_) => {
info!("write_read response: {}", resp_buff);
defmt::assert_eq!(resp_buff[0], i);
}
Err(e) => error!("Error writing {}", e),
}
Timer::after_millis(100).await;
}
match con.read(DEV_ADDR, &mut resp_buff).await {
Ok(_) => {
info!("read response: {}", resp_buff);
// assert that the state is the last index that was written
defmt::assert_eq!(resp_buff[0], 9);
}
Err(e) => error!("Error writing {}", e),
}
match con.write_read(DEV_ADDR, &[0xC8], &mut resp_buff).await {
Ok(_) => {
info!("write_read response: {}", resp_buff);
// assert that the state has been reset
defmt::assert_eq!(resp_buff[0], 0);
}
Err(e) => error!("Error writing {}", e),
}
Timer::after_millis(100).await;
}
}
#[embassy_executor::main]
async fn main(spawner: Spawner) {
let p = embassy_stm32::init(Default::default());
info!("Hello World!");
let mut config = i2c::Config::default();
config.frequency = Hertz::khz(400);
let d_addr_config = i2c::SlaveAddrConfig {
addr: OwnAddresses::OA1(Address::SevenBit(DEV_ADDR)),
general_call: false,
};
let d_sda = p.PA8;
let d_scl = p.PA9;
let device =
i2c::I2c::new(p.I2C2, d_scl, d_sda, Irqs, p.DMA1_CH1, p.DMA1_CH2, config).into_slave_multimaster(d_addr_config);
unwrap!(spawner.spawn(device_task(device)));
let c_sda = p.PB8;
let c_scl = p.PB7;
let controller = i2c::I2c::new(p.I2C1, c_sda, c_scl, Irqs, p.DMA1_CH3, p.DMA1_CH4, config);
unwrap!(spawner.spawn(controller_task(controller)));
}