2025-07-25 20:53:04 +02:00

556 lines
17 KiB
Rust

use cfg_if::cfg_if;
use pac::adc::vals::Dmacfg;
#[cfg(adc_v3)]
use pac::adc::vals::{OversamplingRatio, OversamplingShift, Rovsm, Trovs};
use super::{
blocking_delay_us, Adc, AdcChannel, AnyAdcChannel, Instance, Resolution, RxDma, SampleTime, SealedAdcChannel,
};
use crate::dma::Transfer;
use crate::{pac, rcc, Peri};
/// Default VREF voltage used for sample conversion to millivolts.
pub const VREF_DEFAULT_MV: u32 = 3300;
/// VREF voltage used for factory calibration of VREFINTCAL register.
pub const VREF_CALIB_MV: u32 = 3000;
pub struct VrefInt;
impl<T: Instance> AdcChannel<T> for VrefInt {}
impl<T: Instance> SealedAdcChannel<T> for VrefInt {
fn channel(&self) -> u8 {
cfg_if! {
if #[cfg(adc_g0)] {
let val = 13;
} else if #[cfg(any(adc_h5, adc_h7rs))] {
let val = 17;
} else if #[cfg(adc_u0)] {
let val = 12;
} else {
let val = 0;
}
}
val
}
}
pub struct Temperature;
impl<T: Instance> AdcChannel<T> for Temperature {}
impl<T: Instance> SealedAdcChannel<T> for Temperature {
fn channel(&self) -> u8 {
cfg_if! {
if #[cfg(adc_g0)] {
let val = 12;
} else if #[cfg(any(adc_h5, adc_h7rs))] {
let val = 16;
} else if #[cfg(adc_u0)] {
let val = 11;
} else {
let val = 17;
}
}
val
}
}
pub struct Vbat;
impl<T: Instance> AdcChannel<T> for Vbat {}
impl<T: Instance> SealedAdcChannel<T> for Vbat {
fn channel(&self) -> u8 {
cfg_if! {
if #[cfg(adc_g0)] {
let val = 14;
} else if #[cfg(any(adc_h5, adc_h7rs))] {
let val = 2;
} else if #[cfg(any(adc_h5, adc_h7rs))] {
let val = 13;
} else {
let val = 18;
}
}
val
}
}
cfg_if! {
if #[cfg(any(adc_h5, adc_h7rs))] {
pub struct VddCore;
impl<T: Instance> AdcChannel<T> for VddCore {}
impl<T: Instance> super::SealedAdcChannel<T> for VddCore {
fn channel(&self) -> u8 {
6
}
}
}
}
cfg_if! {
if #[cfg(adc_u0)] {
pub struct DacOut;
impl<T: Instance> AdcChannel<T> for DacOut {}
impl<T: Instance> super::SealedAdcChannel<T> for DacOut {
fn channel(&self) -> u8 {
19
}
}
}
}
/// Number of samples used for averaging.
pub enum Averaging {
Disabled,
Samples2,
Samples4,
Samples8,
Samples16,
Samples32,
Samples64,
Samples128,
Samples256,
}
impl<'d, T: Instance> Adc<'d, T> {
pub fn new(adc: Peri<'d, T>) -> Self {
rcc::enable_and_reset::<T>();
T::regs().cr().modify(|reg| {
#[cfg(not(any(adc_g0, adc_u0)))]
reg.set_deeppwd(false);
reg.set_advregen(true);
});
// If this is false then each ADC_CHSELR bit enables an input channel.
#[cfg(any(adc_g0, adc_u0))]
T::regs().cfgr1().modify(|reg| {
reg.set_chselrmod(false);
});
blocking_delay_us(20);
T::regs().cr().modify(|reg| {
reg.set_adcal(true);
});
while T::regs().cr().read().adcal() {
// spin
}
blocking_delay_us(1);
Self {
adc,
sample_time: SampleTime::from_bits(0),
}
}
// Enable ADC only when it is not already running.
fn enable(&mut self) {
// Make sure bits are off
while T::regs().cr().read().addis() {
// spin
}
if !T::regs().cr().read().aden() {
// Enable ADC
T::regs().isr().modify(|reg| {
reg.set_adrdy(true);
});
T::regs().cr().modify(|reg| {
reg.set_aden(true);
});
while !T::regs().isr().read().adrdy() {
// spin
}
}
}
pub fn enable_vrefint(&self) -> VrefInt {
#[cfg(not(any(adc_g0, adc_u0)))]
T::common_regs().ccr().modify(|reg| {
reg.set_vrefen(true);
});
#[cfg(any(adc_g0, adc_u0))]
T::regs().ccr().modify(|reg| {
reg.set_vrefen(true);
});
// "Table 24. Embedded internal voltage reference" states that it takes a maximum of 12 us
// to stabilize the internal voltage reference.
blocking_delay_us(15);
VrefInt {}
}
pub fn enable_temperature(&self) -> Temperature {
cfg_if! {
if #[cfg(any(adc_g0, adc_u0))] {
T::regs().ccr().modify(|reg| {
reg.set_tsen(true);
});
} else if #[cfg(any(adc_h5, adc_h7rs))] {
T::common_regs().ccr().modify(|reg| {
reg.set_tsen(true);
});
} else {
T::common_regs().ccr().modify(|reg| {
reg.set_ch17sel(true);
});
}
}
Temperature {}
}
pub fn enable_vbat(&self) -> Vbat {
cfg_if! {
if #[cfg(any(adc_g0, adc_u0))] {
T::regs().ccr().modify(|reg| {
reg.set_vbaten(true);
});
} else if #[cfg(any(adc_h5, adc_h7rs))] {
T::common_regs().ccr().modify(|reg| {
reg.set_vbaten(true);
});
} else {
T::common_regs().ccr().modify(|reg| {
reg.set_ch18sel(true);
});
}
}
Vbat {}
}
/// Set the ADC sample time.
pub fn set_sample_time(&mut self, sample_time: SampleTime) {
self.sample_time = sample_time;
}
/// Get the ADC sample time.
pub fn sample_time(&self) -> SampleTime {
self.sample_time
}
/// Set the ADC resolution.
pub fn set_resolution(&mut self, resolution: Resolution) {
#[cfg(not(any(adc_g0, adc_u0)))]
T::regs().cfgr().modify(|reg| reg.set_res(resolution.into()));
#[cfg(any(adc_g0, adc_u0))]
T::regs().cfgr1().modify(|reg| reg.set_res(resolution.into()));
}
pub fn set_averaging(&mut self, averaging: Averaging) {
let (enable, samples, right_shift) = match averaging {
Averaging::Disabled => (false, 0, 0),
Averaging::Samples2 => (true, 0, 1),
Averaging::Samples4 => (true, 1, 2),
Averaging::Samples8 => (true, 2, 3),
Averaging::Samples16 => (true, 3, 4),
Averaging::Samples32 => (true, 4, 5),
Averaging::Samples64 => (true, 5, 6),
Averaging::Samples128 => (true, 6, 7),
Averaging::Samples256 => (true, 7, 8),
};
T::regs().cfgr2().modify(|reg| {
#[cfg(not(any(adc_g0, adc_u0)))]
reg.set_rovse(enable);
#[cfg(any(adc_g0, adc_u0))]
reg.set_ovse(enable);
#[cfg(any(adc_h5, adc_h7rs))]
reg.set_ovsr(samples.into());
#[cfg(not(any(adc_h5, adc_h7rs)))]
reg.set_ovsr(samples.into());
reg.set_ovss(right_shift.into());
})
}
/*
/// Convert a raw sample from the `Temperature` to deg C
pub fn to_degrees_centigrade(sample: u16) -> f32 {
(130.0 - 30.0) / (VtempCal130::get().read() as f32 - VtempCal30::get().read() as f32)
* (sample as f32 - VtempCal30::get().read() as f32)
+ 30.0
}
*/
/// Perform a single conversion.
fn convert(&mut self) -> u16 {
T::regs().isr().modify(|reg| {
reg.set_eos(true);
reg.set_eoc(true);
});
// Start conversion
T::regs().cr().modify(|reg| {
reg.set_adstart(true);
});
while !T::regs().isr().read().eos() {
// spin
}
T::regs().dr().read().0 as u16
}
/// Read an ADC channel.
pub fn blocking_read(&mut self, channel: &mut impl AdcChannel<T>) -> u16 {
self.read_channel(channel)
}
/// Read one or multiple ADC channels using DMA.
///
/// `sequence` iterator and `readings` must have the same length.
///
/// Note: The order of values in `readings` is defined by the pin ADC
/// channel number and not the pin order in `sequence`.
///
/// Example
/// ```rust,ignore
/// use embassy_stm32::adc::{Adc, AdcChannel}
///
/// let mut adc = Adc::new(p.ADC1);
/// let mut adc_pin0 = p.PA0.degrade_adc();
/// let mut adc_pin1 = p.PA1.degrade_adc();
/// let mut measurements = [0u16; 2];
///
/// adc.read(
/// p.DMA1_CH2.reborrow(),
/// [
/// (&mut *adc_pin0, SampleTime::CYCLES160_5),
/// (&mut *adc_pin1, SampleTime::CYCLES160_5),
/// ]
/// .into_iter(),
/// &mut measurements,
/// )
/// .await;
/// defmt::info!("measurements: {}", measurements);
/// ```
pub async fn read(
&mut self,
rx_dma: Peri<'_, impl RxDma<T>>,
sequence: impl ExactSizeIterator<Item = (&mut AnyAdcChannel<T>, SampleTime)>,
readings: &mut [u16],
) {
assert!(sequence.len() != 0, "Asynchronous read sequence cannot be empty");
assert!(
sequence.len() == readings.len(),
"Sequence length must be equal to readings length"
);
assert!(
sequence.len() <= 16,
"Asynchronous read sequence cannot be more than 16 in length"
);
// Ensure no conversions are ongoing and ADC is enabled.
Self::cancel_conversions();
self.enable();
// Set sequence length
#[cfg(not(any(adc_g0, adc_u0)))]
T::regs().sqr1().modify(|w| {
w.set_l(sequence.len() as u8 - 1);
});
#[cfg(any(adc_g0, adc_u0))]
let mut channel_mask = 0;
// Configure channels and ranks
for (_i, (channel, sample_time)) in sequence.enumerate() {
Self::configure_channel(channel, sample_time);
// Each channel is sampled according to sequence
#[cfg(not(any(adc_g0, adc_u0)))]
match _i {
0..=3 => {
T::regs().sqr1().modify(|w| {
w.set_sq(_i, channel.channel());
});
}
4..=8 => {
T::regs().sqr2().modify(|w| {
w.set_sq(_i - 4, channel.channel());
});
}
9..=13 => {
T::regs().sqr3().modify(|w| {
w.set_sq(_i - 9, channel.channel());
});
}
14..=15 => {
T::regs().sqr4().modify(|w| {
w.set_sq(_i - 14, channel.channel());
});
}
_ => unreachable!(),
}
#[cfg(any(adc_g0, adc_u0))]
{
channel_mask |= 1 << channel.channel();
}
}
// On G0 and U0 enabled channels are sampled from 0 to last channel.
// It is possible to add up to 8 sequences if CHSELRMOD = 1.
// However for supporting more than 8 channels alternative CHSELRMOD = 0 approach is used.
#[cfg(any(adc_g0, adc_u0))]
T::regs().chselr().modify(|reg| {
reg.set_chsel(channel_mask);
});
// Set continuous mode with oneshot dma.
// Clear overrun flag before starting transfer.
T::regs().isr().modify(|reg| {
reg.set_ovr(true);
});
#[cfg(not(any(adc_g0, adc_u0)))]
T::regs().cfgr().modify(|reg| {
reg.set_discen(false);
reg.set_cont(true);
reg.set_dmacfg(Dmacfg::ONE_SHOT);
reg.set_dmaen(true);
});
#[cfg(any(adc_g0, adc_u0))]
T::regs().cfgr1().modify(|reg| {
reg.set_discen(false);
reg.set_cont(true);
reg.set_dmacfg(Dmacfg::ONE_SHOT);
reg.set_dmaen(true);
});
let request = rx_dma.request();
let transfer = unsafe {
Transfer::new_read(
rx_dma,
request,
T::regs().dr().as_ptr() as *mut u16,
readings,
Default::default(),
)
};
// Start conversion
T::regs().cr().modify(|reg| {
reg.set_adstart(true);
});
// Wait for conversion sequence to finish.
transfer.await;
// Ensure conversions are finished.
Self::cancel_conversions();
// Reset configuration.
#[cfg(not(any(adc_g0, adc_u0)))]
T::regs().cfgr().modify(|reg| {
reg.set_cont(false);
});
#[cfg(any(adc_g0, adc_u0))]
T::regs().cfgr1().modify(|reg| {
reg.set_cont(false);
});
}
fn configure_channel(channel: &mut impl AdcChannel<T>, sample_time: SampleTime) {
// RM0492, RM0481, etc.
// "This option bit must be set to 1 when ADCx_INP0 or ADCx_INN1 channel is selected."
#[cfg(any(adc_h5, adc_h7rs))]
if channel.channel() == 0 {
T::regs().or().modify(|reg| reg.set_op0(true));
}
// Configure channel
Self::set_channel_sample_time(channel.channel(), sample_time);
}
fn read_channel(&mut self, channel: &mut impl AdcChannel<T>) -> u16 {
self.enable();
Self::configure_channel(channel, self.sample_time);
// Select channel
#[cfg(not(any(adc_g0, adc_u0)))]
T::regs().sqr1().write(|reg| reg.set_sq(0, channel.channel()));
#[cfg(any(adc_g0, adc_u0))]
T::regs().chselr().write(|reg| reg.set_chsel(1 << channel.channel()));
// Some models are affected by an erratum:
// If we perform conversions slower than 1 kHz, the first read ADC value can be
// corrupted, so we discard it and measure again.
//
// STM32L471xx: Section 2.7.3
// STM32G4: Section 2.7.3
#[cfg(any(rcc_l4, rcc_g4))]
let _ = self.convert();
let val = self.convert();
T::regs().cr().modify(|reg| reg.set_addis(true));
// RM0492, RM0481, etc.
// "This option bit must be set to 1 when ADCx_INP0 or ADCx_INN1 channel is selected."
#[cfg(any(adc_h5, adc_h7rs))]
if channel.channel() == 0 {
T::regs().or().modify(|reg| reg.set_op0(false));
}
val
}
#[cfg(any(adc_g0, adc_u0))]
pub fn set_oversampling_shift(&mut self, shift: u8) {
T::regs().cfgr2().modify(|reg| reg.set_ovss(shift));
}
#[cfg(any(adc_g0, adc_u0))]
pub fn set_oversampling_ratio(&mut self, ratio: u8) {
T::regs().cfgr2().modify(|reg| reg.set_ovsr(ratio));
}
#[cfg(any(adc_g0, adc_u0))]
pub fn oversampling_enable(&mut self, enable: bool) {
T::regs().cfgr2().modify(|reg| reg.set_ovse(enable));
}
#[cfg(adc_v3)]
pub fn enable_regular_oversampling_mode(&mut self, mode: Rovsm, trig_mode: Trovs, enable: bool) {
T::regs().cfgr2().modify(|reg| reg.set_trovs(trig_mode));
T::regs().cfgr2().modify(|reg| reg.set_rovsm(mode));
T::regs().cfgr2().modify(|reg| reg.set_rovse(enable));
}
#[cfg(adc_v3)]
pub fn set_oversampling_ratio(&mut self, ratio: OversamplingRatio) {
T::regs().cfgr2().modify(|reg| reg.set_ovsr(ratio));
}
#[cfg(adc_v3)]
pub fn set_oversampling_shift(&mut self, shift: OversamplingShift) {
T::regs().cfgr2().modify(|reg| reg.set_ovss(shift));
}
fn set_channel_sample_time(_ch: u8, sample_time: SampleTime) {
cfg_if! {
if #[cfg(any(adc_g0, adc_u0))] {
// On G0 and U6 all channels use the same sampling time.
T::regs().smpr().modify(|reg| reg.set_smp1(sample_time.into()));
} else if #[cfg(any(adc_h5, adc_h7rs))] {
match _ch {
0..=9 => T::regs().smpr1().modify(|w| w.set_smp(_ch as usize % 10, sample_time.into())),
_ => T::regs().smpr2().modify(|w| w.set_smp(_ch as usize % 10, sample_time.into())),
}
} else {
let sample_time = sample_time.into();
T::regs()
.smpr(_ch as usize / 10)
.modify(|reg| reg.set_smp(_ch as usize % 10, sample_time));
}
}
}
fn cancel_conversions() {
if T::regs().cr().read().adstart() && !T::regs().cr().read().addis() {
T::regs().cr().modify(|reg| {
reg.set_adstp(true);
});
while T::regs().cr().read().adstart() {}
}
}
}