2025-09-24 15:58:33 -05:00

650 lines
21 KiB
Rust

//! Serial Peripheral Instance in master mode (SPIM) driver.
#![macro_use]
use core::future::poll_fn;
use core::marker::PhantomData;
#[cfg(feature = "_nrf52832_anomaly_109")]
use core::sync::atomic::AtomicU8;
use core::sync::atomic::{compiler_fence, Ordering};
use core::task::Poll;
use embassy_embedded_hal::SetConfig;
use embassy_hal_internal::{Peri, PeripheralType};
use embassy_sync::waitqueue::AtomicWaker;
pub use embedded_hal_02::spi::{Mode, Phase, Polarity, MODE_0, MODE_1, MODE_2, MODE_3};
pub use pac::spim::vals::{Frequency, Order as BitOrder};
use crate::chip::{EASY_DMA_SIZE, FORCE_COPY_BUFFER_SIZE};
use crate::gpio::{self, convert_drive, AnyPin, OutputDrive, Pin as GpioPin, PselBits, SealedPin as _};
use crate::interrupt::typelevel::Interrupt;
use crate::pac::gpio::vals as gpiovals;
use crate::pac::spim::vals;
use crate::util::slice_in_ram_or;
use crate::{interrupt, pac};
/// SPIM error
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub enum Error {
/// EasyDMA can only read from data memory, read only buffers in flash will fail.
BufferNotInRAM,
}
/// SPIM configuration.
#[non_exhaustive]
#[derive(Clone)]
pub struct Config {
/// Frequency
pub frequency: Frequency,
/// SPI mode
pub mode: Mode,
/// Bit order
pub bit_order: BitOrder,
/// Overread character.
///
/// When doing bidirectional transfers, if the TX buffer is shorter than the RX buffer,
/// this byte will be transmitted in the MOSI line for the left-over bytes.
pub orc: u8,
/// Drive strength for the SCK line.
pub sck_drive: OutputDrive,
/// Drive strength for the MOSI line.
pub mosi_drive: OutputDrive,
}
impl Default for Config {
fn default() -> Self {
Self {
frequency: Frequency::M1,
mode: MODE_0,
bit_order: BitOrder::MSB_FIRST,
orc: 0x00,
sck_drive: OutputDrive::HighDrive,
mosi_drive: OutputDrive::HighDrive,
}
}
}
/// Interrupt handler.
pub struct InterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
unsafe fn on_interrupt() {
let r = T::regs();
let s = T::state();
#[cfg(feature = "_nrf52832_anomaly_109")]
{
// Ideally we should call this only during the first chunk transfer,
// but so far calling this every time doesn't seem to be causing any issues.
if r.events_started().read() != 0 {
s.waker.wake();
r.intenclr().write(|w| w.set_started(true));
}
}
if r.events_end().read() != 0 {
s.waker.wake();
r.intenclr().write(|w| w.set_end(true));
}
}
}
/// SPIM driver.
pub struct Spim<'d> {
r: pac::spim::Spim,
irq: interrupt::Interrupt,
state: &'static State,
_p: PhantomData<&'d ()>,
}
impl<'d> Spim<'d> {
/// Create a new SPIM driver.
pub fn new<T: Instance>(
spim: Peri<'d, T>,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
sck: Peri<'d, impl GpioPin>,
miso: Peri<'d, impl GpioPin>,
mosi: Peri<'d, impl GpioPin>,
config: Config,
) -> Self {
Self::new_inner(spim, Some(sck.into()), Some(miso.into()), Some(mosi.into()), config)
}
/// Create a new SPIM driver, capable of TX only (MOSI only).
pub fn new_txonly<T: Instance>(
spim: Peri<'d, T>,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
sck: Peri<'d, impl GpioPin>,
mosi: Peri<'d, impl GpioPin>,
config: Config,
) -> Self {
Self::new_inner(spim, Some(sck.into()), None, Some(mosi.into()), config)
}
/// Create a new SPIM driver, capable of RX only (MISO only).
pub fn new_rxonly<T: Instance>(
spim: Peri<'d, T>,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
sck: Peri<'d, impl GpioPin>,
miso: Peri<'d, impl GpioPin>,
config: Config,
) -> Self {
Self::new_inner(spim, Some(sck.into()), Some(miso.into()), None, config)
}
/// Create a new SPIM driver, capable of TX only (MOSI only), without SCK pin.
pub fn new_txonly_nosck<T: Instance>(
spim: Peri<'d, T>,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
mosi: Peri<'d, impl GpioPin>,
config: Config,
) -> Self {
Self::new_inner(spim, None, None, Some(mosi.into()), config)
}
fn new_inner<T: Instance>(
_spim: Peri<'d, T>,
sck: Option<Peri<'d, AnyPin>>,
miso: Option<Peri<'d, AnyPin>>,
mosi: Option<Peri<'d, AnyPin>>,
config: Config,
) -> Self {
let r = T::regs();
// Configure pins
if let Some(sck) = &sck {
sck.conf().write(|w| {
w.set_dir(gpiovals::Dir::OUTPUT);
convert_drive(w, config.sck_drive);
});
}
if let Some(mosi) = &mosi {
mosi.conf().write(|w| {
w.set_dir(gpiovals::Dir::OUTPUT);
convert_drive(w, config.mosi_drive);
});
}
if let Some(miso) = &miso {
miso.conf().write(|w| w.set_input(gpiovals::Input::CONNECT));
}
match config.mode.polarity {
Polarity::IdleHigh => {
if let Some(sck) = &sck {
sck.set_high();
}
if let Some(mosi) = &mosi {
mosi.set_high();
}
}
Polarity::IdleLow => {
if let Some(sck) = &sck {
sck.set_low();
}
if let Some(mosi) = &mosi {
mosi.set_low();
}
}
}
// Select pins.
r.psel().sck().write_value(sck.psel_bits());
r.psel().mosi().write_value(mosi.psel_bits());
r.psel().miso().write_value(miso.psel_bits());
// Enable SPIM instance.
r.enable().write(|w| w.set_enable(vals::Enable::ENABLED));
let mut spim = Self {
r: T::regs(),
irq: T::Interrupt::IRQ,
state: T::state(),
_p: PhantomData {},
};
// Apply runtime peripheral configuration
Self::set_config(&mut spim, &config).unwrap();
// Disable all events interrupts
r.intenclr().write(|w| w.0 = 0xFFFF_FFFF);
T::Interrupt::unpend();
unsafe { T::Interrupt::enable() };
spim
}
fn prepare_dma_transfer(&mut self, rx: *mut [u8], tx: *const [u8], offset: usize, length: usize) {
compiler_fence(Ordering::SeqCst);
let r = self.r;
fn xfer_params(ptr: u32, total: usize, offset: usize, length: usize) -> (u32, usize) {
if total > offset {
(ptr.wrapping_add(offset as _), core::cmp::min(total - offset, length))
} else {
(ptr, 0)
}
}
// Set up the DMA read.
let (rx_ptr, rx_len) = xfer_params(rx as *mut u8 as _, rx.len() as _, offset, length);
r.rxd().ptr().write_value(rx_ptr);
r.rxd().maxcnt().write(|w| w.set_maxcnt(rx_len as _));
// Set up the DMA write.
let (tx_ptr, tx_len) = xfer_params(tx as *const u8 as _, tx.len() as _, offset, length);
r.txd().ptr().write_value(tx_ptr);
r.txd().maxcnt().write(|w| w.set_maxcnt(tx_len as _));
/*
trace!("XFER: offset: {}, length: {}", offset, length);
trace!("RX(len: {}, ptr: {=u32:02x})", rx_len, rx_ptr as u32);
trace!("TX(len: {}, ptr: {=u32:02x})", tx_len, tx_ptr as u32);
*/
#[cfg(feature = "_nrf52832_anomaly_109")]
if offset == 0 {
let s = self.state;
r.events_started().write_value(0);
// Set rx/tx buffer lengths to 0...
r.txd().maxcnt().write(|_| ());
r.rxd().maxcnt().write(|_| ());
// ...and keep track of original buffer lengths...
s.tx.store(tx_len as _, Ordering::Relaxed);
s.rx.store(rx_len as _, Ordering::Relaxed);
// ...signalling the start of the fake transfer.
r.intenset().write(|w| w.set_started(true));
}
// Reset and enable the event
r.events_end().write_value(0);
r.intenset().write(|w| w.set_end(true));
// Start SPI transaction.
r.tasks_start().write_value(1);
}
fn blocking_inner_from_ram_chunk(&mut self, rx: *mut [u8], tx: *const [u8], offset: usize, length: usize) {
self.prepare_dma_transfer(rx, tx, offset, length);
#[cfg(feature = "_nrf52832_anomaly_109")]
if offset == 0 {
while self.nrf52832_dma_workaround_status().is_pending() {}
}
// Wait for 'end' event.
while self.r.events_end().read() == 0 {}
compiler_fence(Ordering::SeqCst);
}
fn blocking_inner_from_ram(&mut self, rx: *mut [u8], tx: *const [u8]) -> Result<(), Error> {
slice_in_ram_or(tx, Error::BufferNotInRAM)?;
// NOTE: RAM slice check for rx is not necessary, as a mutable
// slice can only be built from data located in RAM.
let xfer_len = core::cmp::max(rx.len(), tx.len());
for offset in (0..xfer_len).step_by(EASY_DMA_SIZE) {
let length = core::cmp::min(xfer_len - offset, EASY_DMA_SIZE);
self.blocking_inner_from_ram_chunk(rx, tx, offset, length);
}
Ok(())
}
fn blocking_inner(&mut self, rx: &mut [u8], tx: &[u8]) -> Result<(), Error> {
match self.blocking_inner_from_ram(rx, tx) {
Ok(_) => Ok(()),
Err(Error::BufferNotInRAM) => {
// trace!("Copying SPIM tx buffer into RAM for DMA");
let tx_ram_buf = &mut [0; FORCE_COPY_BUFFER_SIZE][..tx.len()];
tx_ram_buf.copy_from_slice(tx);
self.blocking_inner_from_ram(rx, tx_ram_buf)
}
}
}
async fn async_inner_from_ram_chunk(&mut self, rx: *mut [u8], tx: *const [u8], offset: usize, length: usize) {
self.prepare_dma_transfer(rx, tx, offset, length);
#[cfg(feature = "_nrf52832_anomaly_109")]
if offset == 0 {
poll_fn(|cx| {
let s = self.state;
s.waker.register(cx.waker());
self.nrf52832_dma_workaround_status()
})
.await;
}
// Wait for 'end' event.
poll_fn(|cx| {
self.state.waker.register(cx.waker());
if self.r.events_end().read() != 0 {
return Poll::Ready(());
}
Poll::Pending
})
.await;
compiler_fence(Ordering::SeqCst);
}
async fn async_inner_from_ram(&mut self, rx: *mut [u8], tx: *const [u8]) -> Result<(), Error> {
slice_in_ram_or(tx, Error::BufferNotInRAM)?;
// NOTE: RAM slice check for rx is not necessary, as a mutable
// slice can only be built from data located in RAM.
let xfer_len = core::cmp::max(rx.len(), tx.len());
for offset in (0..xfer_len).step_by(EASY_DMA_SIZE) {
let length = core::cmp::min(xfer_len - offset, EASY_DMA_SIZE);
self.async_inner_from_ram_chunk(rx, tx, offset, length).await;
}
Ok(())
}
async fn async_inner(&mut self, rx: &mut [u8], tx: &[u8]) -> Result<(), Error> {
match self.async_inner_from_ram(rx, tx).await {
Ok(_) => Ok(()),
Err(Error::BufferNotInRAM) => {
// trace!("Copying SPIM tx buffer into RAM for DMA");
let tx_ram_buf = &mut [0; FORCE_COPY_BUFFER_SIZE][..tx.len()];
tx_ram_buf.copy_from_slice(tx);
self.async_inner_from_ram(rx, tx_ram_buf).await
}
}
}
/// Reads data from the SPI bus without sending anything. Blocks until the buffer has been filled.
pub fn blocking_read(&mut self, data: &mut [u8]) -> Result<(), Error> {
self.blocking_inner(data, &[])
}
/// Simultaneously sends and receives data. Blocks until the transmission is completed.
/// If necessary, the write buffer will be copied into RAM (see struct description for detail).
pub fn blocking_transfer(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Error> {
self.blocking_inner(read, write)
}
/// Same as [`blocking_transfer`](Spim::blocking_transfer) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
pub fn blocking_transfer_from_ram(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Error> {
self.blocking_inner(read, write)
}
/// Simultaneously sends and receives data.
/// Places the received data into the same buffer and blocks until the transmission is completed.
pub fn blocking_transfer_in_place(&mut self, data: &mut [u8]) -> Result<(), Error> {
self.blocking_inner_from_ram(data, data)
}
/// Sends data, discarding any received data. Blocks until the transmission is completed.
/// If necessary, the write buffer will be copied into RAM (see struct description for detail).
pub fn blocking_write(&mut self, data: &[u8]) -> Result<(), Error> {
self.blocking_inner(&mut [], data)
}
/// Same as [`blocking_write`](Spim::blocking_write) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
pub fn blocking_write_from_ram(&mut self, data: &[u8]) -> Result<(), Error> {
self.blocking_inner(&mut [], data)
}
/// Reads data from the SPI bus without sending anything.
pub async fn read(&mut self, data: &mut [u8]) -> Result<(), Error> {
self.async_inner(data, &[]).await
}
/// Simultaneously sends and receives data.
/// If necessary, the write buffer will be copied into RAM (see struct description for detail).
pub async fn transfer(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Error> {
self.async_inner(read, write).await
}
/// Same as [`transfer`](Spim::transfer) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
pub async fn transfer_from_ram(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Error> {
self.async_inner_from_ram(read, write).await
}
/// Simultaneously sends and receives data. Places the received data into the same buffer.
pub async fn transfer_in_place(&mut self, data: &mut [u8]) -> Result<(), Error> {
self.async_inner_from_ram(data, data).await
}
/// Sends data, discarding any received data.
/// If necessary, the write buffer will be copied into RAM (see struct description for detail).
pub async fn write(&mut self, data: &[u8]) -> Result<(), Error> {
self.async_inner(&mut [], data).await
}
/// Same as [`write`](Spim::write) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
pub async fn write_from_ram(&mut self, data: &[u8]) -> Result<(), Error> {
self.async_inner_from_ram(&mut [], data).await
}
#[cfg(feature = "_nrf52832_anomaly_109")]
fn nrf52832_dma_workaround_status(&mut self) -> Poll<()> {
let r = self.r;
if r.events_started().read() != 0 {
let s = self.state;
// Handle the first "fake" transmission
r.events_started().write_value(0);
r.events_end().write_value(0);
// Update DMA registers with correct rx/tx buffer sizes
r.rxd().maxcnt().write(|w| w.set_maxcnt(s.rx.load(Ordering::Relaxed)));
r.txd().maxcnt().write(|w| w.set_maxcnt(s.tx.load(Ordering::Relaxed)));
r.intenset().write(|w| w.set_end(true));
// ... and start actual, hopefully glitch-free transmission
r.tasks_start().write_value(1);
return Poll::Ready(());
}
Poll::Pending
}
}
impl<'d> Drop for Spim<'d> {
fn drop(&mut self) {
trace!("spim drop");
// TODO check for abort, wait for xxxstopped
// disable!
let r = self.r;
r.enable().write(|w| w.set_enable(vals::Enable::DISABLED));
gpio::deconfigure_pin(r.psel().sck().read());
gpio::deconfigure_pin(r.psel().miso().read());
gpio::deconfigure_pin(r.psel().mosi().read());
// Disable all events interrupts
cortex_m::peripheral::NVIC::mask(self.irq);
trace!("spim drop: done");
}
}
pub(crate) struct State {
waker: AtomicWaker,
#[cfg(feature = "_nrf52832_anomaly_109")]
rx: AtomicU8,
#[cfg(feature = "_nrf52832_anomaly_109")]
tx: AtomicU8,
}
impl State {
pub(crate) const fn new() -> Self {
Self {
waker: AtomicWaker::new(),
#[cfg(feature = "_nrf52832_anomaly_109")]
rx: AtomicU8::new(0),
#[cfg(feature = "_nrf52832_anomaly_109")]
tx: AtomicU8::new(0),
}
}
}
pub(crate) trait SealedInstance {
fn regs() -> pac::spim::Spim;
fn state() -> &'static State;
}
/// SPIM peripheral instance
#[allow(private_bounds)]
pub trait Instance: SealedInstance + PeripheralType + 'static {
/// Interrupt for this peripheral.
type Interrupt: interrupt::typelevel::Interrupt;
}
macro_rules! impl_spim {
($type:ident, $pac_type:ident, $irq:ident) => {
impl crate::spim::SealedInstance for peripherals::$type {
fn regs() -> pac::spim::Spim {
pac::$pac_type
}
fn state() -> &'static crate::spim::State {
static STATE: crate::spim::State = crate::spim::State::new();
&STATE
}
}
impl crate::spim::Instance for peripherals::$type {
type Interrupt = crate::interrupt::typelevel::$irq;
}
};
}
// ====================
mod eh02 {
use super::*;
impl<'d> embedded_hal_02::blocking::spi::Transfer<u8> for Spim<'d> {
type Error = Error;
fn transfer<'w>(&mut self, words: &'w mut [u8]) -> Result<&'w [u8], Self::Error> {
self.blocking_transfer_in_place(words)?;
Ok(words)
}
}
impl<'d> embedded_hal_02::blocking::spi::Write<u8> for Spim<'d> {
type Error = Error;
fn write(&mut self, words: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(words)
}
}
}
impl embedded_hal_1::spi::Error for Error {
fn kind(&self) -> embedded_hal_1::spi::ErrorKind {
match *self {
Self::BufferNotInRAM => embedded_hal_1::spi::ErrorKind::Other,
}
}
}
impl<'d> embedded_hal_1::spi::ErrorType for Spim<'d> {
type Error = Error;
}
impl<'d> embedded_hal_1::spi::SpiBus<u8> for Spim<'d> {
fn flush(&mut self) -> Result<(), Self::Error> {
Ok(())
}
fn read(&mut self, words: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_transfer(words, &[])
}
fn write(&mut self, words: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(words)
}
fn transfer(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Self::Error> {
self.blocking_transfer(read, write)
}
fn transfer_in_place(&mut self, words: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_transfer_in_place(words)
}
}
impl<'d> embedded_hal_async::spi::SpiBus<u8> for Spim<'d> {
async fn flush(&mut self) -> Result<(), Error> {
Ok(())
}
async fn read(&mut self, words: &mut [u8]) -> Result<(), Error> {
self.read(words).await
}
async fn write(&mut self, data: &[u8]) -> Result<(), Error> {
self.write(data).await
}
async fn transfer(&mut self, rx: &mut [u8], tx: &[u8]) -> Result<(), Error> {
self.transfer(rx, tx).await
}
async fn transfer_in_place(&mut self, words: &mut [u8]) -> Result<(), Error> {
self.transfer_in_place(words).await
}
}
impl<'d> SetConfig for Spim<'d> {
type Config = Config;
type ConfigError = ();
fn set_config(&mut self, config: &Self::Config) -> Result<(), Self::ConfigError> {
let r = self.r;
// Configure mode.
let mode = config.mode;
r.config().write(|w| {
w.set_order(config.bit_order);
match mode {
MODE_0 => {
w.set_cpol(vals::Cpol::ACTIVE_HIGH);
w.set_cpha(vals::Cpha::LEADING);
}
MODE_1 => {
w.set_cpol(vals::Cpol::ACTIVE_HIGH);
w.set_cpha(vals::Cpha::TRAILING);
}
MODE_2 => {
w.set_cpol(vals::Cpol::ACTIVE_LOW);
w.set_cpha(vals::Cpha::LEADING);
}
MODE_3 => {
w.set_cpol(vals::Cpol::ACTIVE_LOW);
w.set_cpha(vals::Cpha::TRAILING);
}
}
});
// Configure frequency.
let frequency = config.frequency;
r.frequency().write(|w| w.set_frequency(frequency));
// Set over-read character
let orc = config.orc;
r.orc().write(|w| w.set_orc(orc));
Ok(())
}
}