mirror of
https://github.com/embassy-rs/embassy.git
synced 2025-09-26 20:00:27 +00:00
650 lines
21 KiB
Rust
650 lines
21 KiB
Rust
//! Serial Peripheral Instance in master mode (SPIM) driver.
|
|
|
|
#![macro_use]
|
|
|
|
use core::future::poll_fn;
|
|
use core::marker::PhantomData;
|
|
#[cfg(feature = "_nrf52832_anomaly_109")]
|
|
use core::sync::atomic::AtomicU8;
|
|
use core::sync::atomic::{compiler_fence, Ordering};
|
|
use core::task::Poll;
|
|
|
|
use embassy_embedded_hal::SetConfig;
|
|
use embassy_hal_internal::{Peri, PeripheralType};
|
|
use embassy_sync::waitqueue::AtomicWaker;
|
|
pub use embedded_hal_02::spi::{Mode, Phase, Polarity, MODE_0, MODE_1, MODE_2, MODE_3};
|
|
pub use pac::spim::vals::{Frequency, Order as BitOrder};
|
|
|
|
use crate::chip::{EASY_DMA_SIZE, FORCE_COPY_BUFFER_SIZE};
|
|
use crate::gpio::{self, convert_drive, AnyPin, OutputDrive, Pin as GpioPin, PselBits, SealedPin as _};
|
|
use crate::interrupt::typelevel::Interrupt;
|
|
use crate::pac::gpio::vals as gpiovals;
|
|
use crate::pac::spim::vals;
|
|
use crate::util::slice_in_ram_or;
|
|
use crate::{interrupt, pac};
|
|
|
|
/// SPIM error
|
|
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
|
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
|
#[non_exhaustive]
|
|
pub enum Error {
|
|
/// EasyDMA can only read from data memory, read only buffers in flash will fail.
|
|
BufferNotInRAM,
|
|
}
|
|
|
|
/// SPIM configuration.
|
|
#[non_exhaustive]
|
|
#[derive(Clone)]
|
|
pub struct Config {
|
|
/// Frequency
|
|
pub frequency: Frequency,
|
|
|
|
/// SPI mode
|
|
pub mode: Mode,
|
|
|
|
/// Bit order
|
|
pub bit_order: BitOrder,
|
|
|
|
/// Overread character.
|
|
///
|
|
/// When doing bidirectional transfers, if the TX buffer is shorter than the RX buffer,
|
|
/// this byte will be transmitted in the MOSI line for the left-over bytes.
|
|
pub orc: u8,
|
|
|
|
/// Drive strength for the SCK line.
|
|
pub sck_drive: OutputDrive,
|
|
|
|
/// Drive strength for the MOSI line.
|
|
pub mosi_drive: OutputDrive,
|
|
}
|
|
|
|
impl Default for Config {
|
|
fn default() -> Self {
|
|
Self {
|
|
frequency: Frequency::M1,
|
|
mode: MODE_0,
|
|
bit_order: BitOrder::MSB_FIRST,
|
|
orc: 0x00,
|
|
sck_drive: OutputDrive::HighDrive,
|
|
mosi_drive: OutputDrive::HighDrive,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Interrupt handler.
|
|
pub struct InterruptHandler<T: Instance> {
|
|
_phantom: PhantomData<T>,
|
|
}
|
|
|
|
impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
|
|
unsafe fn on_interrupt() {
|
|
let r = T::regs();
|
|
let s = T::state();
|
|
|
|
#[cfg(feature = "_nrf52832_anomaly_109")]
|
|
{
|
|
// Ideally we should call this only during the first chunk transfer,
|
|
// but so far calling this every time doesn't seem to be causing any issues.
|
|
if r.events_started().read() != 0 {
|
|
s.waker.wake();
|
|
r.intenclr().write(|w| w.set_started(true));
|
|
}
|
|
}
|
|
|
|
if r.events_end().read() != 0 {
|
|
s.waker.wake();
|
|
r.intenclr().write(|w| w.set_end(true));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// SPIM driver.
|
|
pub struct Spim<'d> {
|
|
r: pac::spim::Spim,
|
|
irq: interrupt::Interrupt,
|
|
state: &'static State,
|
|
_p: PhantomData<&'d ()>,
|
|
}
|
|
|
|
impl<'d> Spim<'d> {
|
|
/// Create a new SPIM driver.
|
|
pub fn new<T: Instance>(
|
|
spim: Peri<'d, T>,
|
|
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
|
|
sck: Peri<'d, impl GpioPin>,
|
|
miso: Peri<'d, impl GpioPin>,
|
|
mosi: Peri<'d, impl GpioPin>,
|
|
config: Config,
|
|
) -> Self {
|
|
Self::new_inner(spim, Some(sck.into()), Some(miso.into()), Some(mosi.into()), config)
|
|
}
|
|
|
|
/// Create a new SPIM driver, capable of TX only (MOSI only).
|
|
pub fn new_txonly<T: Instance>(
|
|
spim: Peri<'d, T>,
|
|
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
|
|
sck: Peri<'d, impl GpioPin>,
|
|
mosi: Peri<'d, impl GpioPin>,
|
|
config: Config,
|
|
) -> Self {
|
|
Self::new_inner(spim, Some(sck.into()), None, Some(mosi.into()), config)
|
|
}
|
|
|
|
/// Create a new SPIM driver, capable of RX only (MISO only).
|
|
pub fn new_rxonly<T: Instance>(
|
|
spim: Peri<'d, T>,
|
|
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
|
|
sck: Peri<'d, impl GpioPin>,
|
|
miso: Peri<'d, impl GpioPin>,
|
|
config: Config,
|
|
) -> Self {
|
|
Self::new_inner(spim, Some(sck.into()), Some(miso.into()), None, config)
|
|
}
|
|
|
|
/// Create a new SPIM driver, capable of TX only (MOSI only), without SCK pin.
|
|
pub fn new_txonly_nosck<T: Instance>(
|
|
spim: Peri<'d, T>,
|
|
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
|
|
mosi: Peri<'d, impl GpioPin>,
|
|
config: Config,
|
|
) -> Self {
|
|
Self::new_inner(spim, None, None, Some(mosi.into()), config)
|
|
}
|
|
|
|
fn new_inner<T: Instance>(
|
|
_spim: Peri<'d, T>,
|
|
sck: Option<Peri<'d, AnyPin>>,
|
|
miso: Option<Peri<'d, AnyPin>>,
|
|
mosi: Option<Peri<'d, AnyPin>>,
|
|
config: Config,
|
|
) -> Self {
|
|
let r = T::regs();
|
|
|
|
// Configure pins
|
|
if let Some(sck) = &sck {
|
|
sck.conf().write(|w| {
|
|
w.set_dir(gpiovals::Dir::OUTPUT);
|
|
convert_drive(w, config.sck_drive);
|
|
});
|
|
}
|
|
if let Some(mosi) = &mosi {
|
|
mosi.conf().write(|w| {
|
|
w.set_dir(gpiovals::Dir::OUTPUT);
|
|
convert_drive(w, config.mosi_drive);
|
|
});
|
|
}
|
|
if let Some(miso) = &miso {
|
|
miso.conf().write(|w| w.set_input(gpiovals::Input::CONNECT));
|
|
}
|
|
|
|
match config.mode.polarity {
|
|
Polarity::IdleHigh => {
|
|
if let Some(sck) = &sck {
|
|
sck.set_high();
|
|
}
|
|
if let Some(mosi) = &mosi {
|
|
mosi.set_high();
|
|
}
|
|
}
|
|
Polarity::IdleLow => {
|
|
if let Some(sck) = &sck {
|
|
sck.set_low();
|
|
}
|
|
if let Some(mosi) = &mosi {
|
|
mosi.set_low();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Select pins.
|
|
r.psel().sck().write_value(sck.psel_bits());
|
|
r.psel().mosi().write_value(mosi.psel_bits());
|
|
r.psel().miso().write_value(miso.psel_bits());
|
|
|
|
// Enable SPIM instance.
|
|
r.enable().write(|w| w.set_enable(vals::Enable::ENABLED));
|
|
|
|
let mut spim = Self {
|
|
r: T::regs(),
|
|
irq: T::Interrupt::IRQ,
|
|
state: T::state(),
|
|
_p: PhantomData {},
|
|
};
|
|
|
|
// Apply runtime peripheral configuration
|
|
Self::set_config(&mut spim, &config).unwrap();
|
|
|
|
// Disable all events interrupts
|
|
r.intenclr().write(|w| w.0 = 0xFFFF_FFFF);
|
|
|
|
T::Interrupt::unpend();
|
|
unsafe { T::Interrupt::enable() };
|
|
|
|
spim
|
|
}
|
|
|
|
fn prepare_dma_transfer(&mut self, rx: *mut [u8], tx: *const [u8], offset: usize, length: usize) {
|
|
compiler_fence(Ordering::SeqCst);
|
|
|
|
let r = self.r;
|
|
|
|
fn xfer_params(ptr: u32, total: usize, offset: usize, length: usize) -> (u32, usize) {
|
|
if total > offset {
|
|
(ptr.wrapping_add(offset as _), core::cmp::min(total - offset, length))
|
|
} else {
|
|
(ptr, 0)
|
|
}
|
|
}
|
|
|
|
// Set up the DMA read.
|
|
let (rx_ptr, rx_len) = xfer_params(rx as *mut u8 as _, rx.len() as _, offset, length);
|
|
r.rxd().ptr().write_value(rx_ptr);
|
|
r.rxd().maxcnt().write(|w| w.set_maxcnt(rx_len as _));
|
|
|
|
// Set up the DMA write.
|
|
let (tx_ptr, tx_len) = xfer_params(tx as *const u8 as _, tx.len() as _, offset, length);
|
|
r.txd().ptr().write_value(tx_ptr);
|
|
r.txd().maxcnt().write(|w| w.set_maxcnt(tx_len as _));
|
|
|
|
/*
|
|
trace!("XFER: offset: {}, length: {}", offset, length);
|
|
trace!("RX(len: {}, ptr: {=u32:02x})", rx_len, rx_ptr as u32);
|
|
trace!("TX(len: {}, ptr: {=u32:02x})", tx_len, tx_ptr as u32);
|
|
*/
|
|
|
|
#[cfg(feature = "_nrf52832_anomaly_109")]
|
|
if offset == 0 {
|
|
let s = self.state;
|
|
|
|
r.events_started().write_value(0);
|
|
|
|
// Set rx/tx buffer lengths to 0...
|
|
r.txd().maxcnt().write(|_| ());
|
|
r.rxd().maxcnt().write(|_| ());
|
|
|
|
// ...and keep track of original buffer lengths...
|
|
s.tx.store(tx_len as _, Ordering::Relaxed);
|
|
s.rx.store(rx_len as _, Ordering::Relaxed);
|
|
|
|
// ...signalling the start of the fake transfer.
|
|
r.intenset().write(|w| w.set_started(true));
|
|
}
|
|
|
|
// Reset and enable the event
|
|
r.events_end().write_value(0);
|
|
r.intenset().write(|w| w.set_end(true));
|
|
|
|
// Start SPI transaction.
|
|
r.tasks_start().write_value(1);
|
|
}
|
|
|
|
fn blocking_inner_from_ram_chunk(&mut self, rx: *mut [u8], tx: *const [u8], offset: usize, length: usize) {
|
|
self.prepare_dma_transfer(rx, tx, offset, length);
|
|
|
|
#[cfg(feature = "_nrf52832_anomaly_109")]
|
|
if offset == 0 {
|
|
while self.nrf52832_dma_workaround_status().is_pending() {}
|
|
}
|
|
|
|
// Wait for 'end' event.
|
|
while self.r.events_end().read() == 0 {}
|
|
|
|
compiler_fence(Ordering::SeqCst);
|
|
}
|
|
|
|
fn blocking_inner_from_ram(&mut self, rx: *mut [u8], tx: *const [u8]) -> Result<(), Error> {
|
|
slice_in_ram_or(tx, Error::BufferNotInRAM)?;
|
|
// NOTE: RAM slice check for rx is not necessary, as a mutable
|
|
// slice can only be built from data located in RAM.
|
|
|
|
let xfer_len = core::cmp::max(rx.len(), tx.len());
|
|
for offset in (0..xfer_len).step_by(EASY_DMA_SIZE) {
|
|
let length = core::cmp::min(xfer_len - offset, EASY_DMA_SIZE);
|
|
self.blocking_inner_from_ram_chunk(rx, tx, offset, length);
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn blocking_inner(&mut self, rx: &mut [u8], tx: &[u8]) -> Result<(), Error> {
|
|
match self.blocking_inner_from_ram(rx, tx) {
|
|
Ok(_) => Ok(()),
|
|
Err(Error::BufferNotInRAM) => {
|
|
// trace!("Copying SPIM tx buffer into RAM for DMA");
|
|
let tx_ram_buf = &mut [0; FORCE_COPY_BUFFER_SIZE][..tx.len()];
|
|
tx_ram_buf.copy_from_slice(tx);
|
|
self.blocking_inner_from_ram(rx, tx_ram_buf)
|
|
}
|
|
}
|
|
}
|
|
|
|
async fn async_inner_from_ram_chunk(&mut self, rx: *mut [u8], tx: *const [u8], offset: usize, length: usize) {
|
|
self.prepare_dma_transfer(rx, tx, offset, length);
|
|
|
|
#[cfg(feature = "_nrf52832_anomaly_109")]
|
|
if offset == 0 {
|
|
poll_fn(|cx| {
|
|
let s = self.state;
|
|
|
|
s.waker.register(cx.waker());
|
|
|
|
self.nrf52832_dma_workaround_status()
|
|
})
|
|
.await;
|
|
}
|
|
|
|
// Wait for 'end' event.
|
|
poll_fn(|cx| {
|
|
self.state.waker.register(cx.waker());
|
|
if self.r.events_end().read() != 0 {
|
|
return Poll::Ready(());
|
|
}
|
|
|
|
Poll::Pending
|
|
})
|
|
.await;
|
|
|
|
compiler_fence(Ordering::SeqCst);
|
|
}
|
|
|
|
async fn async_inner_from_ram(&mut self, rx: *mut [u8], tx: *const [u8]) -> Result<(), Error> {
|
|
slice_in_ram_or(tx, Error::BufferNotInRAM)?;
|
|
// NOTE: RAM slice check for rx is not necessary, as a mutable
|
|
// slice can only be built from data located in RAM.
|
|
|
|
let xfer_len = core::cmp::max(rx.len(), tx.len());
|
|
for offset in (0..xfer_len).step_by(EASY_DMA_SIZE) {
|
|
let length = core::cmp::min(xfer_len - offset, EASY_DMA_SIZE);
|
|
self.async_inner_from_ram_chunk(rx, tx, offset, length).await;
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
async fn async_inner(&mut self, rx: &mut [u8], tx: &[u8]) -> Result<(), Error> {
|
|
match self.async_inner_from_ram(rx, tx).await {
|
|
Ok(_) => Ok(()),
|
|
Err(Error::BufferNotInRAM) => {
|
|
// trace!("Copying SPIM tx buffer into RAM for DMA");
|
|
let tx_ram_buf = &mut [0; FORCE_COPY_BUFFER_SIZE][..tx.len()];
|
|
tx_ram_buf.copy_from_slice(tx);
|
|
self.async_inner_from_ram(rx, tx_ram_buf).await
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Reads data from the SPI bus without sending anything. Blocks until the buffer has been filled.
|
|
pub fn blocking_read(&mut self, data: &mut [u8]) -> Result<(), Error> {
|
|
self.blocking_inner(data, &[])
|
|
}
|
|
|
|
/// Simultaneously sends and receives data. Blocks until the transmission is completed.
|
|
/// If necessary, the write buffer will be copied into RAM (see struct description for detail).
|
|
pub fn blocking_transfer(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Error> {
|
|
self.blocking_inner(read, write)
|
|
}
|
|
|
|
/// Same as [`blocking_transfer`](Spim::blocking_transfer) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
|
|
pub fn blocking_transfer_from_ram(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Error> {
|
|
self.blocking_inner(read, write)
|
|
}
|
|
|
|
/// Simultaneously sends and receives data.
|
|
/// Places the received data into the same buffer and blocks until the transmission is completed.
|
|
pub fn blocking_transfer_in_place(&mut self, data: &mut [u8]) -> Result<(), Error> {
|
|
self.blocking_inner_from_ram(data, data)
|
|
}
|
|
|
|
/// Sends data, discarding any received data. Blocks until the transmission is completed.
|
|
/// If necessary, the write buffer will be copied into RAM (see struct description for detail).
|
|
pub fn blocking_write(&mut self, data: &[u8]) -> Result<(), Error> {
|
|
self.blocking_inner(&mut [], data)
|
|
}
|
|
|
|
/// Same as [`blocking_write`](Spim::blocking_write) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
|
|
pub fn blocking_write_from_ram(&mut self, data: &[u8]) -> Result<(), Error> {
|
|
self.blocking_inner(&mut [], data)
|
|
}
|
|
|
|
/// Reads data from the SPI bus without sending anything.
|
|
pub async fn read(&mut self, data: &mut [u8]) -> Result<(), Error> {
|
|
self.async_inner(data, &[]).await
|
|
}
|
|
|
|
/// Simultaneously sends and receives data.
|
|
/// If necessary, the write buffer will be copied into RAM (see struct description for detail).
|
|
pub async fn transfer(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Error> {
|
|
self.async_inner(read, write).await
|
|
}
|
|
|
|
/// Same as [`transfer`](Spim::transfer) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
|
|
pub async fn transfer_from_ram(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Error> {
|
|
self.async_inner_from_ram(read, write).await
|
|
}
|
|
|
|
/// Simultaneously sends and receives data. Places the received data into the same buffer.
|
|
pub async fn transfer_in_place(&mut self, data: &mut [u8]) -> Result<(), Error> {
|
|
self.async_inner_from_ram(data, data).await
|
|
}
|
|
|
|
/// Sends data, discarding any received data.
|
|
/// If necessary, the write buffer will be copied into RAM (see struct description for detail).
|
|
pub async fn write(&mut self, data: &[u8]) -> Result<(), Error> {
|
|
self.async_inner(&mut [], data).await
|
|
}
|
|
|
|
/// Same as [`write`](Spim::write) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
|
|
pub async fn write_from_ram(&mut self, data: &[u8]) -> Result<(), Error> {
|
|
self.async_inner_from_ram(&mut [], data).await
|
|
}
|
|
|
|
#[cfg(feature = "_nrf52832_anomaly_109")]
|
|
fn nrf52832_dma_workaround_status(&mut self) -> Poll<()> {
|
|
let r = self.r;
|
|
if r.events_started().read() != 0 {
|
|
let s = self.state;
|
|
|
|
// Handle the first "fake" transmission
|
|
r.events_started().write_value(0);
|
|
r.events_end().write_value(0);
|
|
|
|
// Update DMA registers with correct rx/tx buffer sizes
|
|
r.rxd().maxcnt().write(|w| w.set_maxcnt(s.rx.load(Ordering::Relaxed)));
|
|
r.txd().maxcnt().write(|w| w.set_maxcnt(s.tx.load(Ordering::Relaxed)));
|
|
|
|
r.intenset().write(|w| w.set_end(true));
|
|
// ... and start actual, hopefully glitch-free transmission
|
|
r.tasks_start().write_value(1);
|
|
return Poll::Ready(());
|
|
}
|
|
Poll::Pending
|
|
}
|
|
}
|
|
|
|
impl<'d> Drop for Spim<'d> {
|
|
fn drop(&mut self) {
|
|
trace!("spim drop");
|
|
|
|
// TODO check for abort, wait for xxxstopped
|
|
|
|
// disable!
|
|
let r = self.r;
|
|
r.enable().write(|w| w.set_enable(vals::Enable::DISABLED));
|
|
|
|
gpio::deconfigure_pin(r.psel().sck().read());
|
|
gpio::deconfigure_pin(r.psel().miso().read());
|
|
gpio::deconfigure_pin(r.psel().mosi().read());
|
|
|
|
// Disable all events interrupts
|
|
cortex_m::peripheral::NVIC::mask(self.irq);
|
|
|
|
trace!("spim drop: done");
|
|
}
|
|
}
|
|
|
|
pub(crate) struct State {
|
|
waker: AtomicWaker,
|
|
#[cfg(feature = "_nrf52832_anomaly_109")]
|
|
rx: AtomicU8,
|
|
#[cfg(feature = "_nrf52832_anomaly_109")]
|
|
tx: AtomicU8,
|
|
}
|
|
|
|
impl State {
|
|
pub(crate) const fn new() -> Self {
|
|
Self {
|
|
waker: AtomicWaker::new(),
|
|
#[cfg(feature = "_nrf52832_anomaly_109")]
|
|
rx: AtomicU8::new(0),
|
|
#[cfg(feature = "_nrf52832_anomaly_109")]
|
|
tx: AtomicU8::new(0),
|
|
}
|
|
}
|
|
}
|
|
|
|
pub(crate) trait SealedInstance {
|
|
fn regs() -> pac::spim::Spim;
|
|
fn state() -> &'static State;
|
|
}
|
|
|
|
/// SPIM peripheral instance
|
|
#[allow(private_bounds)]
|
|
pub trait Instance: SealedInstance + PeripheralType + 'static {
|
|
/// Interrupt for this peripheral.
|
|
type Interrupt: interrupt::typelevel::Interrupt;
|
|
}
|
|
|
|
macro_rules! impl_spim {
|
|
($type:ident, $pac_type:ident, $irq:ident) => {
|
|
impl crate::spim::SealedInstance for peripherals::$type {
|
|
fn regs() -> pac::spim::Spim {
|
|
pac::$pac_type
|
|
}
|
|
fn state() -> &'static crate::spim::State {
|
|
static STATE: crate::spim::State = crate::spim::State::new();
|
|
&STATE
|
|
}
|
|
}
|
|
impl crate::spim::Instance for peripherals::$type {
|
|
type Interrupt = crate::interrupt::typelevel::$irq;
|
|
}
|
|
};
|
|
}
|
|
|
|
// ====================
|
|
|
|
mod eh02 {
|
|
use super::*;
|
|
|
|
impl<'d> embedded_hal_02::blocking::spi::Transfer<u8> for Spim<'d> {
|
|
type Error = Error;
|
|
fn transfer<'w>(&mut self, words: &'w mut [u8]) -> Result<&'w [u8], Self::Error> {
|
|
self.blocking_transfer_in_place(words)?;
|
|
Ok(words)
|
|
}
|
|
}
|
|
|
|
impl<'d> embedded_hal_02::blocking::spi::Write<u8> for Spim<'d> {
|
|
type Error = Error;
|
|
|
|
fn write(&mut self, words: &[u8]) -> Result<(), Self::Error> {
|
|
self.blocking_write(words)
|
|
}
|
|
}
|
|
}
|
|
|
|
impl embedded_hal_1::spi::Error for Error {
|
|
fn kind(&self) -> embedded_hal_1::spi::ErrorKind {
|
|
match *self {
|
|
Self::BufferNotInRAM => embedded_hal_1::spi::ErrorKind::Other,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'d> embedded_hal_1::spi::ErrorType for Spim<'d> {
|
|
type Error = Error;
|
|
}
|
|
|
|
impl<'d> embedded_hal_1::spi::SpiBus<u8> for Spim<'d> {
|
|
fn flush(&mut self) -> Result<(), Self::Error> {
|
|
Ok(())
|
|
}
|
|
|
|
fn read(&mut self, words: &mut [u8]) -> Result<(), Self::Error> {
|
|
self.blocking_transfer(words, &[])
|
|
}
|
|
|
|
fn write(&mut self, words: &[u8]) -> Result<(), Self::Error> {
|
|
self.blocking_write(words)
|
|
}
|
|
|
|
fn transfer(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Self::Error> {
|
|
self.blocking_transfer(read, write)
|
|
}
|
|
|
|
fn transfer_in_place(&mut self, words: &mut [u8]) -> Result<(), Self::Error> {
|
|
self.blocking_transfer_in_place(words)
|
|
}
|
|
}
|
|
|
|
impl<'d> embedded_hal_async::spi::SpiBus<u8> for Spim<'d> {
|
|
async fn flush(&mut self) -> Result<(), Error> {
|
|
Ok(())
|
|
}
|
|
|
|
async fn read(&mut self, words: &mut [u8]) -> Result<(), Error> {
|
|
self.read(words).await
|
|
}
|
|
|
|
async fn write(&mut self, data: &[u8]) -> Result<(), Error> {
|
|
self.write(data).await
|
|
}
|
|
|
|
async fn transfer(&mut self, rx: &mut [u8], tx: &[u8]) -> Result<(), Error> {
|
|
self.transfer(rx, tx).await
|
|
}
|
|
|
|
async fn transfer_in_place(&mut self, words: &mut [u8]) -> Result<(), Error> {
|
|
self.transfer_in_place(words).await
|
|
}
|
|
}
|
|
|
|
impl<'d> SetConfig for Spim<'d> {
|
|
type Config = Config;
|
|
type ConfigError = ();
|
|
fn set_config(&mut self, config: &Self::Config) -> Result<(), Self::ConfigError> {
|
|
let r = self.r;
|
|
// Configure mode.
|
|
let mode = config.mode;
|
|
r.config().write(|w| {
|
|
w.set_order(config.bit_order);
|
|
match mode {
|
|
MODE_0 => {
|
|
w.set_cpol(vals::Cpol::ACTIVE_HIGH);
|
|
w.set_cpha(vals::Cpha::LEADING);
|
|
}
|
|
MODE_1 => {
|
|
w.set_cpol(vals::Cpol::ACTIVE_HIGH);
|
|
w.set_cpha(vals::Cpha::TRAILING);
|
|
}
|
|
MODE_2 => {
|
|
w.set_cpol(vals::Cpol::ACTIVE_LOW);
|
|
w.set_cpha(vals::Cpha::LEADING);
|
|
}
|
|
MODE_3 => {
|
|
w.set_cpol(vals::Cpol::ACTIVE_LOW);
|
|
w.set_cpha(vals::Cpha::TRAILING);
|
|
}
|
|
}
|
|
});
|
|
|
|
// Configure frequency.
|
|
let frequency = config.frequency;
|
|
r.frequency().write(|w| w.set_frequency(frequency));
|
|
|
|
// Set over-read character
|
|
let orc = config.orc;
|
|
r.orc().write(|w| w.set_orc(orc));
|
|
|
|
Ok(())
|
|
}
|
|
}
|