Get rid of missing docs in a number of modules (#1967)

* Get rid of missing docs in a number of modules

* address reviews

* Address the rest of reviews

* remove all remaining `allows`

* are you serious?
This commit is contained in:
Kirill Mikhailov 2024-08-23 11:22:37 +02:00 committed by GitHub
parent f829c8f2ac
commit 19db509403
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
90 changed files with 1697 additions and 178 deletions

View File

@ -12,45 +12,93 @@ pub(super) const RA_OFFSET: usize = 4;
/// Registers saved in trap handler
#[doc(hidden)]
#[allow(missing_docs)]
#[derive(Default, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[repr(C)]
pub(crate) struct TrapFrame {
/// Return address, stores the address to return to after a function call or
/// interrupt.
pub ra: usize,
/// Temporary register t0, used for intermediate values.
pub t0: usize,
/// Temporary register t1, used for intermediate values.
pub t1: usize,
/// Temporary register t2, used for intermediate values.
pub t2: usize,
/// Temporary register t3, used for intermediate values.
pub t3: usize,
/// Temporary register t4, used for intermediate values.
pub t4: usize,
/// Temporary register t5, used for intermediate values.
pub t5: usize,
/// Temporary register t6, used for intermediate values.
pub t6: usize,
/// Argument register a0, typically used to pass the first argument to a
/// function.
pub a0: usize,
/// Argument register a1, typically used to pass the second argument to a
/// function.
pub a1: usize,
/// Argument register a2, typically used to pass the third argument to a
/// function.
pub a2: usize,
/// Argument register a3, typically used to pass the fourth argument to a
/// function.
pub a3: usize,
/// Argument register a4, typically used to pass the fifth argument to a
/// function.
pub a4: usize,
/// Argument register a5, typically used to pass the sixth argument to a
/// function.
pub a5: usize,
/// Argument register a6, typically used to pass the seventh argument to a
/// function.
pub a6: usize,
/// Argument register a7, typically used to pass the eighth argument to a
/// function.
pub a7: usize,
/// Saved register s0, used to hold values across function calls.
pub s0: usize,
/// Saved register s1, used to hold values across function calls.
pub s1: usize,
/// Saved register s2, used to hold values across function calls.
pub s2: usize,
/// Saved register s3, used to hold values across function calls.
pub s3: usize,
/// Saved register s4, used to hold values across function calls.
pub s4: usize,
/// Saved register s5, used to hold values across function calls.
pub s5: usize,
/// Saved register s6, used to hold values across function calls.
pub s6: usize,
/// Saved register s7, used to hold values across function calls.
pub s7: usize,
/// Saved register s8, used to hold values across function calls.
pub s8: usize,
/// Saved register s9, used to hold values across function calls.
pub s9: usize,
/// Saved register s10, used to hold values across function calls.
pub s10: usize,
/// Saved register s11, used to hold values across function calls.
pub s11: usize,
/// Global pointer register, holds the address of the global data area.
pub gp: usize,
/// Thread pointer register, holds the address of the thread-local storage
/// area.
pub tp: usize,
/// Stack pointer register, holds the address of the top of the stack.
pub sp: usize,
/// Program counter, stores the address of the next instruction to be
/// executed.
pub pc: usize,
/// Machine status register, holds the current status of the processor,
/// including interrupt enable bits and privilege mode.
pub mstatus: usize,
/// Machine cause register, contains the reason for the trap (e.g.,
/// exception or interrupt number).
pub mcause: usize,
/// Machine trap value register, contains additional information about the
/// trap (e.g., faulting address).
pub mtval: usize,
}

View File

@ -9,8 +9,8 @@ use crate::MAX_BACKTRACE_ADDRESSES;
#[cfg(feature = "panic-handler")]
pub(super) const RA_OFFSET: usize = 3;
/// Exception Cause
#[doc(hidden)]
#[allow(missing_docs)]
#[derive(Debug, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[repr(C)]
@ -95,89 +95,165 @@ pub enum ExceptionCause {
Cp6Disabled = 38,
/// Access To Coprocessor 7 When Disabled
Cp7Disabled = 39,
/// None
None = 255,
}
#[doc(hidden)]
#[allow(missing_docs, non_snake_case)]
#[allow(non_snake_case)]
#[derive(Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[repr(C)]
pub struct Context {
/// Program counter, stores the address of the next instruction to be
/// executed.
pub PC: u32,
/// Processor status, holds various status flags for the CPU.
pub PS: u32,
/// General-purpose register A0 used for data storage and manipulation.
pub A0: u32,
/// General-purpose register A1 used for data storage and manipulation.
pub A1: u32,
/// General-purpose register A2 used for data storage and manipulation.
pub A2: u32,
/// General-purpose register A3 used for data storage and manipulation.
pub A3: u32,
/// General-purpose register A4 used for data storage and manipulation.
pub A4: u32,
/// General-purpose register A5 used for data storage and manipulation.
pub A5: u32,
/// General-purpose register A6 used for data storage and manipulation.
pub A6: u32,
/// General-purpose register A7 used for data storage and manipulation.
pub A7: u32,
/// General-purpose register A8 used for data storage and manipulation.
pub A8: u32,
/// General-purpose register A9 used for data storage and manipulation.
pub A9: u32,
/// General-purpose register A10 used for data storage and manipulation.
pub A10: u32,
/// General-purpose register A11 used for data storage and manipulation.
pub A11: u32,
/// General-purpose register A12 used for data storage and manipulation.
pub A12: u32,
/// General-purpose register A13 used for data storage and manipulation.
pub A13: u32,
/// General-purpose register A14 used for data storage and manipulation.
pub A14: u32,
/// General-purpose register A15 used for data storage and manipulation.
pub A15: u32,
/// Shift amount register, used for shift and rotate instructions.
pub SAR: u32,
/// Exception cause, indicates the reason for the last exception.
pub EXCCAUSE: u32,
/// Exception address, holds the address related to the exception.
pub EXCVADDR: u32,
/// Loop start address, used in loop instructions.
pub LBEG: u32,
/// Loop end address, used in loop instructions.
pub LEND: u32,
/// Loop counter, used to count iterations in loop instructions.
pub LCOUNT: u32,
/// Thread pointer, used for thread-local storage.
pub THREADPTR: u32,
/// Compare register, used for certain compare instructions.
pub SCOMPARE1: u32,
/// Break register, used for breakpoint-related operations.
pub BR: u32,
/// Accumulator low register, used for extended arithmetic operations.
pub ACCLO: u32,
/// Accumulator high register, used for extended arithmetic operations.
pub ACCHI: u32,
/// Additional register M0 used for special operations.
pub M0: u32,
/// Additional register M1 used for special operations.
pub M1: u32,
/// Additional register M2 used for special operations.
pub M2: u32,
/// Additional register M3 used for special operations.
pub M3: u32,
/// 64-bit floating-point register (low part), available if the
/// `print-float-registers` feature is enabled.
#[cfg(feature = "print-float-registers")]
pub F64R_LO: u32,
/// 64-bit floating-point register (high part), available if the
/// `print-float-registers` feature is enabled.
#[cfg(feature = "print-float-registers")]
pub F64R_HI: u32,
/// Floating-point status register, available if the `print-float-registers`
/// feature is enabled.
#[cfg(feature = "print-float-registers")]
pub F64S: u32,
/// Floating-point control register, available if the
/// `print-float-registers` feature is enabled.
#[cfg(feature = "print-float-registers")]
pub FCR: u32,
/// Floating-point status register, available if the `print-float-registers`
/// feature is enabled.
#[cfg(feature = "print-float-registers")]
pub FSR: u32,
/// Floating-point register F0, available if the `print-float-registers`
/// feature is enabled.
#[cfg(feature = "print-float-registers")]
pub F0: u32,
/// Floating-point register F1, available if the `print-float-registers`
/// feature is enabled.
#[cfg(feature = "print-float-registers")]
pub F1: u32,
/// Floating-point register F2, available if the `print-float-registers`
/// feature is enabled.
#[cfg(feature = "print-float-registers")]
pub F2: u32,
/// Floating-point register F3, available if the `print-float-registers`
/// feature is enabled.
#[cfg(feature = "print-float-registers")]
pub F3: u32,
/// Floating-point register F4, available if the `print-float-registers`
/// feature is enabled.
#[cfg(feature = "print-float-registers")]
pub F4: u32,
/// Floating-point register F5, available if the `print-float-registers`
/// feature is enabled.
#[cfg(feature = "print-float-registers")]
pub F5: u32,
/// Floating-point register F6, available if the `print-float-registers`
/// feature is enabled.
#[cfg(feature = "print-float-registers")]
pub F6: u32,
/// Floating-point register F7, available if the `print-float-registers`
/// feature is enabled.
#[cfg(feature = "print-float-registers")]
pub F7: u32,
/// Floating-point register F8, available if the `print-float-registers`
/// feature is enabled.
#[cfg(feature = "print-float-registers")]
pub F8: u32,
/// Floating-point register F9, available if the `print-float-registers`
/// feature is enabled.
#[cfg(feature = "print-float-registers")]
pub F9: u32,
/// Floating-point register F10, available if the `print-float-registers`
/// feature is enabled.
#[cfg(feature = "print-float-registers")]
pub F10: u32,
/// Floating-point register F11, available if the `print-float-registers`
/// feature is enabled.
#[cfg(feature = "print-float-registers")]
pub F11: u32,
/// Floating-point register F12, available if the `print-float-registers`
/// feature is enabled.
#[cfg(feature = "print-float-registers")]
pub F12: u32,
/// Floating-point register F13, available if the `print-float-registers`
/// feature is enabled.
#[cfg(feature = "print-float-registers")]
pub F13: u32,
/// Floating-point register F14, available if the `print-float-registers`
/// feature is enabled.
#[cfg(feature = "print-float-registers")]
pub F14: u32,
/// Floating-point register F15, available if the `print-float-registers`
/// feature is enabled.
#[cfg(feature = "print-float-registers")]
pub F15: u32,
}

View File

@ -523,17 +523,26 @@ pub enum DmaError {
#[cfg(gdma)]
#[derive(Debug, Clone, Copy, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[allow(missing_docs)]
pub enum DmaPriority {
/// The lowest priority level (Priority 0).
Priority0 = 0,
/// Priority level 1.
Priority1 = 1,
/// Priority level 2.
Priority2 = 2,
/// Priority level 3.
Priority3 = 3,
/// Priority level 4.
Priority4 = 4,
/// Priority level 5.
Priority5 = 5,
/// Priority level 6.
Priority6 = 6,
/// Priority level 7.
Priority7 = 7,
/// Priority level 8.
Priority8 = 8,
/// The highest priority level (Priority 9).
Priority9 = 9,
}
@ -542,8 +551,8 @@ pub enum DmaPriority {
#[cfg(pdma)]
#[derive(Debug, Clone, Copy, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[allow(missing_docs)]
pub enum DmaPriority {
/// The lowest priority level (Priority 0).
Priority0 = 0,
}
@ -860,10 +869,12 @@ impl DescriptorChain {
/// Block size for transfers to/from psram
#[derive(Copy, Clone, Debug, PartialEq)]
#[allow(missing_docs)]
pub enum DmaExtMemBKSize {
/// External memory block size of 16 bytes.
Size16 = 0,
/// External memory block size of 32 bytes.
Size32 = 1,
/// External memory block size of 64 bytes.
Size64 = 2,
}

View File

@ -25,8 +25,6 @@
//!
//! [ECC]: https://github.com/esp-rs/esp-hal/blob/main/hil-test/tests/ecc.rs
#![allow(missing_docs)] // TODO: Remove when able
use core::marker::PhantomData;
use crate::{
@ -55,30 +53,47 @@ pub enum Error {
PointNotOnSelectedCurve,
}
/// Represents supported elliptic curves for cryptographic operations.
pub enum EllipticCurve {
/// The P-192 elliptic curve, a 192-bit curve.
P192 = 0,
/// The P-256 elliptic curve. a 256-bit curve.
P256 = 1,
}
#[derive(Clone)]
/// Represents the operational modes for elliptic curve or modular arithmetic
/// computations.
pub enum WorkMode {
/// Point multiplication mode.
PointMultiMode = 0,
#[cfg(esp32c2)]
/// Division mode.
DivisionMode = 1,
/// Point verification mode.
PointVerif = 2,
/// Point verification and multiplication mode.
PointVerifMulti = 3,
/// Jacobian point multiplication mode.
JacobianPointMulti = 4,
#[cfg(esp32h2)]
/// Point addition mode.
PointAdd = 5,
/// Jacobian point verification mode.
JacobianPointVerif = 6,
/// Point verification and multiplication in Jacobian coordinates.
PointVerifJacobianMulti = 7,
#[cfg(esp32h2)]
/// Modular addition mode.
ModAdd = 8,
#[cfg(esp32h2)]
/// Modular subtraction mode.
ModSub = 9,
#[cfg(esp32h2)]
/// Modular multiplication mode.
ModMulti = 10,
#[cfg(esp32h2)]
/// Modular division mode.
ModDiv = 11,
}
@ -111,6 +126,7 @@ impl<'d> InterruptConfigurable for Ecc<'d, crate::Blocking> {
}
impl<'d, DM: crate::Mode> Ecc<'d, DM> {
/// Resets the ECC peripheral.
pub fn reset(&mut self) {
self.ecc.mult_conf().reset()
}

View File

@ -61,8 +61,6 @@
//! # }
//! ```
#![allow(missing_docs)] // TODO: Remove when able
use crate::{
peripheral::{Peripheral, PeripheralRef},
system::PeripheralClockControl,
@ -144,10 +142,14 @@ macro_rules! create_etm {
/// Provides access to all the [EtmChannel]
pub struct Etm<'d> {
_peripheral: PeripheralRef<'d, crate::peripherals::SOC_ETM>,
$(pub [< channel $num >]: EtmChannel<$num>,)+
$(
/// An individual ETM channel, identified by its index number.
pub [< channel $num >]: EtmChannel<$num>,
)+
}
impl<'d> Etm<'d> {
/// Creates a new `Etm` instance.
pub fn new(peripheral: impl Peripheral<P = crate::peripherals::SOC_ETM> + 'd) -> Self {
crate::into_ref!(peripheral);

View File

@ -60,24 +60,39 @@ use crate::{
/// All the GPIO ETM channels
#[non_exhaustive]
#[allow(missing_docs)]
pub struct GpioEtmChannels<'d> {
_gpio_sd: PeripheralRef<'d, crate::peripherals::GPIO_SD>,
/// Task channel 0 for triggering GPIO tasks.
pub channel0_task: GpioEtmTaskChannel<0>,
/// Event channel 0 for handling GPIO events.
pub channel0_event: GpioEtmEventChannel<0>,
/// Task channel 1 for triggering GPIO tasks.
pub channel1_task: GpioEtmTaskChannel<1>,
/// Event channel 1 for handling GPIO events.
pub channel1_event: GpioEtmEventChannel<1>,
/// Task channel 2 for triggering GPIO tasks.
pub channel2_task: GpioEtmTaskChannel<2>,
/// Event channel 2 for handling GPIO events.
pub channel2_event: GpioEtmEventChannel<2>,
/// Task channel 3 for triggering GPIO tasks.
pub channel3_task: GpioEtmTaskChannel<3>,
/// Event channel 3 for handling GPIO events.
pub channel3_event: GpioEtmEventChannel<3>,
/// Task channel 4 for triggering GPIO tasks.
pub channel4_task: GpioEtmTaskChannel<4>,
/// Event channel 4 for handling GPIO events.
pub channel4_event: GpioEtmEventChannel<4>,
/// Task channel 5 for triggering GPIO tasks.
pub channel5_task: GpioEtmTaskChannel<5>,
/// Event channel 5 for handling GPIO events.
pub channel5_event: GpioEtmEventChannel<5>,
/// Task channel 6 for triggering GPIO tasks.
pub channel6_task: GpioEtmTaskChannel<6>,
/// Event channel 6 for handling GPIO events.
pub channel6_event: GpioEtmEventChannel<6>,
/// Task channel 7 for triggering GPIO tasks.
pub channel7_task: GpioEtmTaskChannel<7>,
/// Event channel 7 for handling GPIO events.
pub channel7_event: GpioEtmEventChannel<7>,
}

View File

@ -170,31 +170,46 @@ pub struct RtcOutput;
pub struct Analog;
/// Drive strength (values are approximates)
#[allow(missing_docs)]
pub enum DriveStrength {
/// Drive strength of approximately 5mA.
I5mA = 0,
/// Drive strength of approximately 10mA.
I10mA = 1,
/// Drive strength of approximately 20mA.
I20mA = 2,
/// Drive strength of approximately 40mA.
I40mA = 3,
}
/// Alternate functions
///
/// GPIO pins can be configured for various functions, such as GPIO
/// or being directly connected to a peripheral's signal like UART, SPI, etc.
/// The `AlternateFunction` enum allows to select one of several functions that
/// a pin can perform, rather than using it as a general-purpose input or
/// output.
#[derive(PartialEq)]
#[allow(missing_docs)]
pub enum AlternateFunction {
/// Alternate function 0.
Function0 = 0,
/// Alternate function 1.
Function1 = 1,
/// Alternate function 2.
Function2 = 2,
/// Alternate function 3.
Function3 = 3,
/// Alternate function 4.
Function4 = 4,
/// Alternate function 5.
Function5 = 5,
}
/// RTC function
#[derive(PartialEq)]
#[allow(missing_docs)]
pub enum RtcFunction {
/// RTC mode.
Rtc = 0,
/// Digital mode.
Digital = 1,
}
@ -1390,9 +1405,9 @@ macro_rules! gpio {
)+
/// Pins available on this chip
#[allow(missing_docs)]
pub struct Pins {
$(
/// GPIO pin number `$gpionum`.
pub [< gpio $gpionum >] : GpioPin<$gpionum>,
)+
}

View File

@ -34,8 +34,6 @@
//!
//! [HMAC]: https://github.com/esp-rs/esp-hal/blob/main/examples/src/bin/hmac.rs
#![allow(missing_docs)] // TODO: Remove when able
use core::convert::Infallible;
use crate::{
@ -45,6 +43,9 @@ use crate::{
system::{Peripheral as PeripheralEnable, PeripheralClockControl},
};
/// Provides an interface for interacting with the HMAC hardware peripheral.
/// It allows users to compute HMACs for cryptographic purposes, ensuring data
/// integrity and authenticity.
pub struct Hmac<'d> {
hmac: PeripheralRef<'d, HMAC>,
alignment_helper: AlignmentHelper<SocDependentEndianess>,
@ -79,12 +80,19 @@ pub enum HmacPurpose {
#[derive(Debug, Clone, Copy, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Represents the key identifiers for the HMAC peripheral.
pub enum KeyId {
/// Key 0.
Key0 = 0,
/// Key 1.
Key1 = 1,
/// Key 2.
Key2 = 2,
/// Key 3.
Key3 = 3,
/// Key 4.
Key4 = 4,
/// Key 5.
Key5 = 5,
}
@ -95,6 +103,7 @@ enum NextCommand {
}
impl<'d> Hmac<'d> {
/// Creates a new instance of the HMAC peripheral.
pub fn new(hmac: impl Peripheral<P = HMAC> + 'd) -> Self {
crate::into_ref!(hmac);
@ -155,6 +164,7 @@ impl<'d> Hmac<'d> {
Ok(remaining)
}
/// Finalizes the HMAC computation and retrieves the resulting hash output.
pub fn finalize(&mut self, output: &mut [u8]) -> nb::Result<(), Infallible> {
if self.is_busy() {
return Err(nb::Error::WouldBlock);

View File

@ -69,8 +69,6 @@
//! # }
//! ```
#![allow(missing_docs)] // TODO: Remove when able
use core::marker::PhantomData;
use fugit::HertzU32;
@ -100,11 +98,17 @@ const MAX_ITERATIONS: u32 = 1_000_000;
#[derive(Debug, Clone, Copy, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
/// The transmission exceeded the FIFO size.
ExceedingFifo,
/// The acknowledgment check failed.
AckCheckFailed,
/// A timeout occurred during transmission.
TimeOut,
/// The arbitration for the bus was lost.
ArbitrationLost,
/// The execution of the I2C command was incomplete.
ExecIncomplete,
/// The number of commands issued exceeded the limit.
CommandNrExceeded,
}
@ -1010,19 +1014,29 @@ mod asynch {
/// I2C Peripheral Instance
pub trait Instance: crate::private::Sealed {
/// The identifier number for this I2C instance.
const I2C_NUMBER: usize;
/// Returns the interrupt associated with this I2C peripheral.
fn interrupt() -> crate::peripherals::Interrupt;
/// Returns the SCL output signal for this I2C peripheral.
fn scl_output_signal(&self) -> OutputSignal;
/// Returns the SCL input signal for this I2C peripheral.
fn scl_input_signal(&self) -> InputSignal;
/// Returns the SDA output signal for this I2C peripheral.
fn sda_output_signal(&self) -> OutputSignal;
/// Returns the SDA input signal for this I2C peripheral.
fn sda_input_signal(&self) -> InputSignal;
/// Returns a reference to the register block of the I2C peripheral.
fn register_block(&self) -> &RegisterBlock;
/// Returns the I2C peripheral's index number.
fn i2c_number(&self) -> usize;
/// Configures the I2C peripheral with the specified frequency, clocks, and
/// optional timeout.
fn setup(&mut self, frequency: HertzU32, clocks: &Clocks<'_>, timeout: Option<u32>) {
self.register_block().ctr().modify(|_, w| unsafe {
// Clear register
@ -1339,6 +1353,7 @@ pub trait Instance: crate::private::Sealed {
}
#[allow(clippy::too_many_arguments, unused)]
/// Configures the clock and timing parameters for the I2C peripheral.
fn configure_clock(
&mut self,
sclk_div: u32,
@ -1445,6 +1460,7 @@ pub trait Instance: crate::private::Sealed {
}
}
/// Configures the I2C peripheral for a write operation.
fn setup_write<'a, I>(&self, addr: u8, bytes: &[u8], cmd_iterator: &mut I) -> Result<(), Error>
where
I: Iterator<Item = &'a COMD>,
@ -1475,6 +1491,7 @@ pub trait Instance: crate::private::Sealed {
Ok(())
}
/// Configures the I2C peripheral for a read operation.
fn setup_read<'a, I>(
&self,
addr: u8,
@ -1528,6 +1545,7 @@ pub trait Instance: crate::private::Sealed {
}
#[cfg(not(any(esp32, esp32s2)))]
/// Reads all bytes from the RX FIFO.
fn read_all_from_fifo(&self, buffer: &mut [u8]) -> Result<(), Error> {
// Read bytes from FIFO
// FIXME: Handle case where less data has been provided by the slave than
@ -1549,6 +1567,7 @@ pub trait Instance: crate::private::Sealed {
}
#[cfg(any(esp32, esp32s2))]
/// Reads all bytes from the RX FIFO.
fn read_all_from_fifo(&self, buffer: &mut [u8]) -> Result<(), Error> {
// on ESP32/ESP32-S2 we currently don't support I2C transactions larger than the
// FIFO apparently it would be possible by using non-fifo mode
@ -1573,12 +1592,14 @@ pub trait Instance: crate::private::Sealed {
Ok(())
}
/// Clears all pending interrupts for the I2C peripheral.
fn clear_all_interrupts(&self) {
self.register_block()
.int_clr()
.write(|w| unsafe { w.bits(I2C_LL_INTR_MASK) });
}
/// Waits for the completion of an I2C transaction.
fn wait_for_completion(&self, end_only: bool) -> Result<(), Error> {
let mut tout = MAX_ITERATIONS;
loop {
@ -1604,6 +1625,7 @@ pub trait Instance: crate::private::Sealed {
Ok(())
}
/// Checks whether all I2C commands have completed execution.
fn check_all_commands_done(&self) -> Result<(), Error> {
// NOTE: on esp32 executing the end command generates the end_detect interrupt
// but does not seem to clear the done bit! So we don't check the done
@ -1618,6 +1640,14 @@ pub trait Instance: crate::private::Sealed {
Ok(())
}
/// Checks for I2C transmission errors and handles them.
///
/// This function inspects specific I2C-related interrupts to detect errors
/// during communication, such as timeouts, failed acknowledgments, or
/// arbitration loss. If an error is detected, the function handles it
/// by resetting the I2C peripheral to clear the error condition and then
/// returns an appropriate error.
fn check_errors(&self) -> Result<(), Error> {
let interrupts = self.register_block().int_raw().read();
@ -1658,6 +1688,15 @@ pub trait Instance: crate::private::Sealed {
Ok(())
}
/// Updates the configuration of the I2C peripheral.
///
/// This function ensures that the configuration values, such as clock
/// settings, SDA/SCL filtering, timeouts, and other operational
/// parameters, which are configured in other functions, are properly
/// propagated to the I2C hardware. This step is necessary to synchronize
/// the software-configured settings with the peripheral's internal
/// registers, ensuring that the hardware behaves according to the
/// current configuration.
fn update_config(&self) {
// Ensure that the configuration of the peripheral is correctly propagated
// (only necessary for C2, C3, C6, H2 and S3 variant)
@ -1667,6 +1706,7 @@ pub trait Instance: crate::private::Sealed {
.modify(|_, w| w.conf_upgate().set_bit());
}
/// Starts an I2C transmission.
fn start_transmission(&self) {
// Start transmission
self.register_block()
@ -1675,6 +1715,7 @@ pub trait Instance: crate::private::Sealed {
}
#[cfg(not(any(esp32, esp32s2)))]
/// Fills the TX FIFO with data from the provided slice.
fn fill_tx_fifo(&self, bytes: &[u8]) -> usize {
let mut index = 0;
while index < bytes.len()
@ -1704,6 +1745,8 @@ pub trait Instance: crate::private::Sealed {
}
#[cfg(not(any(esp32, esp32s2)))]
/// Writes remaining data from byte slice to the TX FIFO from the specified
/// index.
fn write_remaining_tx_fifo(&self, start_index: usize, bytes: &[u8]) -> Result<(), Error> {
let mut index = start_index;
loop {
@ -1743,6 +1786,7 @@ pub trait Instance: crate::private::Sealed {
}
#[cfg(any(esp32, esp32s2))]
/// Fills the TX FIFO with data from the provided slice.
fn fill_tx_fifo(&self, bytes: &[u8]) -> usize {
// on ESP32/ESP32-S2 we currently don't support I2C transactions larger than the
// FIFO apparently it would be possible by using non-fifo mode
@ -1760,6 +1804,8 @@ pub trait Instance: crate::private::Sealed {
}
#[cfg(any(esp32, esp32s2))]
/// Writes remaining data from byte slice to the TX FIFO from the specified
/// index.
fn write_remaining_tx_fifo(&self, start_index: usize, bytes: &[u8]) -> Result<(), Error> {
// on ESP32/ESP32-S2 we currently don't support I2C transactions larger than the
// FIFO apparently it would be possible by using non-fifo mode
@ -1838,6 +1884,7 @@ pub trait Instance: crate::private::Sealed {
.write(|w| w.rxfifo_full().clear_bit_by_one());
}
/// Executes an I2C write operation.
fn write_operation<'a, I>(
&self,
address: u8,
@ -1870,6 +1917,7 @@ pub trait Instance: crate::private::Sealed {
Ok(())
}
/// Executes an I2C read operation.
fn read_operation<'a, I>(
&self,
address: u8,
@ -1964,6 +2012,7 @@ pub trait Instance: crate::private::Sealed {
}
}
/// Adds a command to the I2C command sequence.
fn add_cmd<'a, I>(cmd_iterator: &mut I, command: Command) -> Result<(), Error>
where
I: Iterator<Item = &'a COMD>,
@ -2139,12 +2188,19 @@ pub mod lp_i2c {
#[derive(Debug, Clone, Copy, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
/// The transmission exceeded the FIFO size.
ExceedingFifo,
/// The acknowledgment check failed.
AckCheckFailed,
/// A timeout occurred during transmission.
TimeOut,
/// The arbitration for the bus was lost.
ArbitrationLost,
/// The execution of the I2C command was incomplete.
ExecIncomplete,
/// The number of commands issued exceeded the limit.
CommandNrExceeded,
/// The response received from the I2C device was invalid.
InvalidResponse,
}
@ -2197,11 +2253,13 @@ pub mod lp_i2c {
// Configure LP_EXT_I2C_CK_EN high to enable the clock source of I2C_SCLK.
// Adjust the timing registers accordingly when the clock frequency changes.
/// Represents a Low-Power I2C peripheral.
pub struct LpI2c {
i2c: LP_I2C0,
}
impl LpI2c {
/// Creates a new instance of the `LpI2c` peripheral.
pub fn new(
i2c: LP_I2C0,
_sda: LowPowerOutputOpenDrain<'_, 6>,
@ -2444,6 +2502,7 @@ pub mod lp_i2c {
self.i2c.ctr().modify(|_, w| w.conf_upgate().set_bit());
}
/// Resets the transmit and receive FIFO buffers.
fn reset_fifo(&self) {
self.i2c
.fifo_conf()

View File

@ -80,8 +80,6 @@
//! - Only master mode is supported.
//! - Only TDM Philips standard is supported.
#![allow(missing_docs)] // TODO: Remove when able
use core::marker::PhantomData;
use enumset::{EnumSet, EnumSetType};
@ -121,12 +119,17 @@ use crate::{
};
#[derive(EnumSetType)]
/// Represents the various interrupt types for the I2S peripheral.
pub enum I2sInterrupt {
/// Transmit buffer hung, indicating a stall in data transmission.
TxHung,
/// Receive buffer hung, indicating a stall in data reception.
RxHung,
#[cfg(not(any(esp32, esp32s2)))]
/// Transmission of data is complete.
TxDone,
#[cfg(not(any(esp32, esp32s2)))]
/// Reception of data is complete.
RxDone,
}
@ -150,8 +153,11 @@ impl AcceptedWord for i32 {}
#[derive(Debug, Clone, Copy, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
/// An unspecified or unknown error occurred during an I2S operation.
Unknown,
/// A DMA-related error occurred during I2S operations.
DmaError(DmaError),
/// An illegal or invalid argument was passed to an I2S function or method.
IllegalArgument,
}
@ -165,6 +171,7 @@ impl From<DmaError> for Error {
#[derive(Debug, Clone, Copy, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Standard {
/// The Philips I2S standard.
Philips,
// Tdm,
// Pdm,
@ -175,12 +182,19 @@ pub enum Standard {
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[cfg(not(any(esp32, esp32s2)))]
pub enum DataFormat {
/// 32-bit data width and 32-bit channel width.
Data32Channel32,
/// 32-bit data width and 24-bit channel width.
Data32Channel24,
/// 32-bit data width and 16-bit channel width.
Data32Channel16,
/// 32-bit data width and 8-bit channel width.
Data32Channel8,
/// 16-bit data width and 16-bit channel width.
Data16Channel16,
/// 16-bit data width and 8-bit channel width.
Data16Channel8,
/// 8-bit data width and 8-bit channel width.
Data8Channel8,
}
@ -189,12 +203,15 @@ pub enum DataFormat {
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[cfg(any(esp32, esp32s2))]
pub enum DataFormat {
/// 32-bit data width and 32-bit channel width.
Data32Channel32,
/// 16-bit data width and 16-bit channel width.
Data16Channel16,
}
#[cfg(not(any(esp32, esp32s2)))]
impl DataFormat {
/// Returns the number of data bits for the selected data format.
pub fn data_bits(&self) -> u8 {
match self {
DataFormat::Data32Channel32 => 32,
@ -207,6 +224,7 @@ impl DataFormat {
}
}
/// Returns the number of channel bits for the selected data format.
pub fn channel_bits(&self) -> u8 {
match self {
DataFormat::Data32Channel32 => 32,
@ -222,6 +240,7 @@ impl DataFormat {
#[cfg(any(esp32, esp32s2))]
impl DataFormat {
/// Returns the number of data bits for the selected data format.
pub fn data_bits(&self) -> u8 {
match self {
DataFormat::Data32Channel32 => 32,
@ -229,6 +248,7 @@ impl DataFormat {
}
}
/// Returns the number of channel bits for the selected data format.
pub fn channel_bits(&self) -> u8 {
match self {
DataFormat::Data32Channel32 => 32,
@ -239,6 +259,7 @@ impl DataFormat {
/// Blocking I2s Write
pub trait I2sWrite<W> {
/// Writes a slice of data to the I2S peripheral.
fn write(&mut self, words: &[W]) -> Result<(), Error>;
}
@ -269,6 +290,8 @@ where
/// Blocking I2S Read
pub trait I2sRead<W> {
/// Reads a slice of data from the I2S peripheral and stores it in the
/// provided buffer.
fn read(&mut self, words: &mut [W]) -> Result<(), Error>;
}
@ -305,7 +328,9 @@ where
CH: DmaChannel,
DmaMode: Mode,
{
/// Handles the transmission (TX) side of the I2S peripheral.
pub i2s_tx: TxCreator<'d, I, CH, DmaMode>,
/// Handles the reception (RX) side of the I2S peripheral.
pub i2s_rx: RxCreator<'d, I, CH, DmaMode>,
phantom: PhantomData<DmaMode>,
}
@ -481,6 +506,7 @@ where
)
}
/// Configures the I2S peripheral to use a master clock (MCLK) output pin.
pub fn with_mclk<P: OutputPin>(self, pin: impl Peripheral<P = P> + 'd) -> Self {
into_ref!(pin);
pin.set_to_push_pull_output(crate::private::Internal);
@ -850,6 +876,7 @@ where
}
}
/// Provides an abstraction for accessing the I2S peripheral registers.
pub trait RegisterAccess: RegisterAccessPrivate {}
mod private {
@ -2153,6 +2180,7 @@ mod private {
}
}
/// Async functionality
#[cfg(feature = "async")]
pub mod asynch {
use super::{Error, I2sRx, I2sTx, RegisterAccess};

View File

@ -53,38 +53,68 @@ pub enum InterruptKind {
#[repr(u32)]
#[derive(Debug, Copy, Clone)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[allow(missing_docs)]
pub enum CpuInterrupt {
/// Interrupt number 1.
Interrupt1 = 1,
/// Interrupt number 2.
Interrupt2,
/// Interrupt number 3.
Interrupt3,
/// Interrupt number 4.
Interrupt4,
/// Interrupt number 5.
Interrupt5,
/// Interrupt number 6.
Interrupt6,
/// Interrupt number 7.
Interrupt7,
/// Interrupt number 8.
Interrupt8,
/// Interrupt number 9.
Interrupt9,
/// Interrupt number 10.
Interrupt10,
/// Interrupt number 11.
Interrupt11,
/// Interrupt number 12.
Interrupt12,
/// Interrupt number 13.
Interrupt13,
/// Interrupt number 14.
Interrupt14,
/// Interrupt number 15.
Interrupt15,
/// Interrupt number 16.
Interrupt16,
/// Interrupt number 17.
Interrupt17,
/// Interrupt number 18.
Interrupt18,
/// Interrupt number 19.
Interrupt19,
/// Interrupt number 20.
Interrupt20,
/// Interrupt number 21.
Interrupt21,
/// Interrupt number 22.
Interrupt22,
/// Interrupt number 23.
Interrupt23,
/// Interrupt number 24.
Interrupt24,
/// Interrupt number 25.
Interrupt25,
/// Interrupt number 26.
Interrupt26,
/// Interrupt number 27.
Interrupt27,
/// Interrupt number 28.
Interrupt28,
/// Interrupt number 29.
Interrupt29,
/// Interrupt number 30.
Interrupt30,
/// Interrupt number 31.
Interrupt31,
}
@ -92,30 +122,45 @@ pub enum CpuInterrupt {
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[repr(u8)]
#[allow(missing_docs)]
pub enum Priority {
/// No priority.
None = 0,
/// Priority level 1.
Priority1,
/// Priority level 2.
Priority2,
/// Priority level 3.
Priority3,
/// Priority level 4.
Priority4,
/// Priority level 5.
Priority5,
/// Priority level 6.
Priority6,
/// Priority level 7.
Priority7,
/// Priority level 8.
#[cfg(not(clic))]
Priority8,
/// Priority level 9.
#[cfg(not(clic))]
Priority9,
/// Priority level 10.
#[cfg(not(clic))]
Priority10,
/// Priority level 11.
#[cfg(not(clic))]
Priority11,
/// Priority level 12.
#[cfg(not(clic))]
Priority12,
/// Priority level 13.
#[cfg(not(clic))]
Priority13,
/// Priority level 14.
#[cfg(not(clic))]
Priority14,
/// Priority level 15.
#[cfg(not(clic))]
Priority15,
}

View File

@ -27,39 +27,70 @@ pub enum Error {
#[derive(Debug, Copy, Clone)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[repr(u32)]
#[allow(missing_docs)]
pub enum CpuInterrupt {
/// Level-triggered interrupt with priority 1.
Interrupt0LevelPriority1 = 0,
/// Level-triggered interrupt with priority 1.
Interrupt1LevelPriority1,
/// Level-triggered interrupt with priority 1.
Interrupt2LevelPriority1,
/// Level-triggered interrupt with priority 1.
Interrupt3LevelPriority1,
/// Level-triggered interrupt with priority 1.
Interrupt4LevelPriority1,
/// Level-triggered interrupt with priority 1.
Interrupt5LevelPriority1,
/// Timer 0 interrupt with priority 1.
Interrupt6Timer0Priority1,
/// Software-triggered interrupt with priority 1.
Interrupt7SoftwarePriority1,
/// Level-triggered interrupt with priority 1.
Interrupt8LevelPriority1,
/// Level-triggered interrupt with priority 1.
Interrupt9LevelPriority1,
/// Edge-triggered interrupt with priority 1.
Interrupt10EdgePriority1,
/// Profiling-related interrupt with priority 3.
Interrupt11ProfilingPriority3,
/// Level-triggered interrupt with priority 1.
Interrupt12LevelPriority1,
/// Level-triggered interrupt with priority 1.
Interrupt13LevelPriority1,
/// Non-maskable interrupt (NMI) with priority 7.
Interrupt14NmiPriority7,
/// Timer 1 interrupt with priority 3.
Interrupt15Timer1Priority3,
/// Timer 2 interrupt with priority 5.
Interrupt16Timer2Priority5,
/// Level-triggered interrupt with priority 1.
Interrupt17LevelPriority1,
/// Level-triggered interrupt with priority 1.
Interrupt18LevelPriority1,
/// Level-triggered interrupt with priority 2.
Interrupt19LevelPriority2,
/// Level-triggered interrupt with priority 2.
Interrupt20LevelPriority2,
/// Level-triggered interrupt with priority 2.
Interrupt21LevelPriority2,
/// Edge-triggered interrupt with priority 3.
Interrupt22EdgePriority3,
/// Level-triggered interrupt with priority 3.
Interrupt23LevelPriority3,
/// Level-triggered interrupt with priority 4.
Interrupt24LevelPriority4,
/// Level-triggered interrupt with priority 4.
Interrupt25LevelPriority4,
/// Level-triggered interrupt with priority 5.
Interrupt26LevelPriority5,
/// Level-triggered interrupt with priority 3.
Interrupt27LevelPriority3,
/// Edge-triggered interrupt with priority 4.
Interrupt28EdgePriority4,
/// Software-triggered interrupt with priority 3.
Interrupt29SoftwarePriority3,
/// Edge-triggered interrupt with priority 4.
Interrupt30EdgePriority4,
/// Edge-triggered interrupt with priority 5.
Interrupt31EdgePriority5,
}
@ -267,11 +298,14 @@ mod vectored {
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[repr(u8)]
#[allow(missing_docs)]
pub enum Priority {
/// No priority.
None = 0,
/// Priority level 1.
Priority1,
/// Priority level 2.
Priority2,
/// Priority level 3.
Priority3,
}

View File

@ -102,20 +102,31 @@ pub enum EofMode {
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum VsyncFilterThreshold {
/// Requires 1 valid VSYNC pulse to trigger synchronization.
One,
/// Requires 2 valid VSYNC pulse to trigger synchronization.
Two,
/// Requires 3 valid VSYNC pulse to trigger synchronization.
Three,
/// Requires 4 valid VSYNC pulse to trigger synchronization.
Four,
/// Requires 5 valid VSYNC pulse to trigger synchronization.
Five,
/// Requires 6 valid VSYNC pulse to trigger synchronization.
Six,
/// Requires 7 valid VSYNC pulse to trigger synchronization.
Seven,
/// Requires 8 valid VSYNC pulse to trigger synchronization.
Eight,
}
/// Represents the camera interface.
pub struct Cam<'d> {
/// The LCD_CAM peripheral reference for managing the camera functionality.
pub(crate) lcd_cam: PeripheralRef<'d, LCD_CAM>,
}
/// Represents the camera interface with DMA support.
pub struct Camera<'d, CH: DmaChannel> {
lcd_cam: PeripheralRef<'d, LCD_CAM>,
rx_channel: ChannelRx<'d, CH>,
@ -128,6 +139,7 @@ impl<'d, CH: DmaChannel> Camera<'d, CH>
where
CH::P: LcdCamPeripheral,
{
/// Creates a new `Camera` instance with DMA support.
pub fn new<P: RxPins>(
cam: Cam<'d>,
mut channel: ChannelRx<'d, CH>,
@ -244,6 +256,7 @@ impl<'d, CH: DmaChannel> DmaSupportRx for Camera<'d, CH> {
}
impl<'d, CH: DmaChannel> Camera<'d, CH> {
/// Configures the byte order for the camera data.
pub fn set_byte_order(&mut self, byte_order: ByteOrder) -> &mut Self {
self.lcd_cam
.cam_ctrl()
@ -251,6 +264,7 @@ impl<'d, CH: DmaChannel> Camera<'d, CH> {
self
}
/// Configures the bit order for the camera data.
pub fn set_bit_order(&mut self, bit_order: BitOrder) -> &mut Self {
self.lcd_cam
.cam_ctrl()
@ -258,6 +272,7 @@ impl<'d, CH: DmaChannel> Camera<'d, CH> {
self
}
/// Configures the VSYNC filter threshold.
pub fn set_vsync_filter(&mut self, threshold: Option<VsyncFilterThreshold>) -> &mut Self {
if let Some(threshold) = threshold {
let value = match threshold {
@ -285,6 +300,7 @@ impl<'d, CH: DmaChannel> Camera<'d, CH> {
self
}
/// Configures the master clock (MCLK) pin for the camera interface.
pub fn with_master_clock<MCLK: OutputPin>(self, mclk: impl Peripheral<P = MCLK> + 'd) -> Self {
crate::into_ref!(mclk);
mclk.set_to_push_pull_output(crate::private::Internal);
@ -292,6 +308,7 @@ impl<'d, CH: DmaChannel> Camera<'d, CH> {
self
}
/// Configures the pixel clock (PCLK) pin for the camera interface.
pub fn with_pixel_clock<PCLK: InputPin>(self, pclk: impl Peripheral<P = PCLK> + 'd) -> Self {
crate::into_ref!(pclk);
@ -301,6 +318,8 @@ impl<'d, CH: DmaChannel> Camera<'d, CH> {
self
}
/// Configures the control pins for the camera interface (VSYNC and
/// HENABLE).
pub fn with_ctrl_pins<VSYNC: InputPin, HENABLE: InputPin>(
self,
vsync: impl Peripheral<P = VSYNC> + 'd,
@ -321,6 +340,8 @@ impl<'d, CH: DmaChannel> Camera<'d, CH> {
self
}
/// Configures the control pins for the camera interface (VSYNC, HSYNC, and
/// HENABLE) with DE (data enable).
pub fn with_ctrl_pins_and_de<VSYNC: InputPin, HSYNC: InputPin, HENABLE: InputPin>(
self,
vsync: impl Peripheral<P = VSYNC> + 'd,
@ -388,6 +409,7 @@ impl<'d, CH: DmaChannel> Camera<'d, CH> {
self.rx_channel.start_transfer()
}
/// Starts a DMA transfer to receive data from the camera peripheral.
pub fn read_dma<'t, RXBUF: WriteBuffer>(
&'t mut self,
buf: &'t mut RXBUF,
@ -400,6 +422,8 @@ impl<'d, CH: DmaChannel> Camera<'d, CH> {
Ok(DmaTransferRx::new(self))
}
/// Starts a circular DMA transfer to receive data from the camera
/// peripheral.
pub fn read_dma_circular<'t, RXBUF: WriteBuffer>(
&'t mut self,
buf: &'t mut RXBUF,
@ -413,12 +437,16 @@ impl<'d, CH: DmaChannel> Camera<'d, CH> {
}
}
/// Represents an 8-bit wide camera data bus.
/// Is used to configure the camera interface to receive 8-bit data.
pub struct RxEightBits {
_pins: (),
}
impl RxEightBits {
#[allow(clippy::too_many_arguments)]
/// Creates a new instance of `RxEightBits`, configuring the specified pins
/// as the 8-bit data bus.
pub fn new<'d, P0, P1, P2, P3, P4, P5, P6, P7>(
pin_0: impl Peripheral<P = P0> + 'd,
pin_1: impl Peripheral<P = P1> + 'd,
@ -473,12 +501,16 @@ impl RxPins for RxEightBits {
const BUS_WIDTH: usize = 1;
}
/// Represents a 16-bit wide camera data bus.
/// Is used to configure the camera interface to receive 16-bit data.
pub struct RxSixteenBits {
_pins: (),
}
impl RxSixteenBits {
#[allow(clippy::too_many_arguments)]
/// Creates a new instance of `RxSixteenBits`, configuring the specified
/// pins as the 16-bit data bus.
pub fn new<'d, P0, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15>(
pin_0: impl Peripheral<P = P0> + 'd,
pin_1: impl Peripheral<P = P1> + 'd,

View File

@ -91,6 +91,7 @@ use crate::{
Mode,
};
/// Represents the I8080 LCD interface.
pub struct I8080<'d, CH: DmaChannel, P, DM: Mode> {
lcd_cam: PeripheralRef<'d, LCD_CAM>,
tx_channel: ChannelTx<'d, CH>,
@ -104,6 +105,7 @@ where
CH::P: LcdCamPeripheral,
P::Word: Into<u16>,
{
/// Creates a new instance of the I8080 LCD interface.
pub fn new(
lcd: Lcd<'d, DM>,
mut channel: ChannelTx<'d, CH>,
@ -287,6 +289,7 @@ impl<'d, CH: DmaChannel, P: TxPins, DM: Mode> I8080<'d, CH, P, DM>
where
P::Word: Into<u16>,
{
/// Configures the byte order for data transmission.
pub fn set_byte_order(&mut self, byte_order: ByteOrder) -> &mut Self {
let is_inverted = byte_order != ByteOrder::default();
self.lcd_cam.lcd_user().modify(|_, w| {
@ -299,6 +302,7 @@ where
self
}
/// Configures the bit order for data transmission.
pub fn set_bit_order(&mut self, bit_order: BitOrder) -> &mut Self {
self.lcd_cam
.lcd_user()
@ -306,6 +310,7 @@ where
self
}
/// Associates a CS pin with the I8080 interface.
pub fn with_cs<CS: OutputPin>(self, cs: impl Peripheral<P = CS> + 'd) -> Self {
crate::into_ref!(cs);
cs.set_to_push_pull_output(crate::private::Internal);
@ -314,6 +319,7 @@ where
self
}
/// Configures the control pins for the I8080 interface.
pub fn with_ctrl_pins<DC: OutputPin, WRX: OutputPin>(
self,
dc: impl Peripheral<P = DC> + 'd,
@ -331,6 +337,7 @@ where
self
}
/// Sends a command and data to the LCD using the I8080 interface.
pub fn send(
&mut self,
cmd: impl Into<Command<P::Word>>,
@ -350,6 +357,7 @@ where
Ok(())
}
/// Sends a command and data to the LCD using DMA.
pub fn send_dma<'t, TXBUF>(
&'t mut self,
cmd: impl Into<Command<P::Word>>,
@ -374,6 +382,7 @@ impl<'d, CH: DmaChannel, P: TxPins> I8080<'d, CH, P, crate::Async>
where
P::Word: Into<u16>,
{
/// Asynchronously sends a command and data to the LCD using DMA.
pub async fn send_dma_async<'t, TXBUF>(
&'t mut self,
cmd: impl Into<Command<P::Word>>,
@ -517,7 +526,9 @@ impl<'d, CH: DmaChannel, P, DM: Mode> core::fmt::Debug for I8080<'d, CH, P, DM>
#[derive(Debug, Clone, Copy, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Configuration settings for the I8080 interface.
pub struct Config {
/// Specifies the clock mode, including polarity and phase settings.
pub clock_mode: ClockMode,
/// Setup cycles expected, must be at least 1. (6 bits)
@ -563,8 +574,11 @@ impl Default for Config {
#[derive(Debug, Clone, Copy, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Command<T> {
/// Suppresses the command phase. No command is sent.
None,
/// Sends a single-word command.
One(T),
/// Sends a two-word command.
Two(T, T),
}
@ -574,6 +588,8 @@ impl<T> From<T> for Command<T> {
}
}
/// Represents a group of 8 output pins configured for 8-bit parallel data
/// transmission.
pub struct TxEightBits<'d, P0, P1, P2, P3, P4, P5, P6, P7> {
pin_0: PeripheralRef<'d, P0>,
pin_1: PeripheralRef<'d, P1>,
@ -597,6 +613,7 @@ where
P7: OutputPin,
{
#[allow(clippy::too_many_arguments)]
/// Creates a new `TxEightBits` instance with the provided output pins.
pub fn new(
pin_0: impl Peripheral<P = P0> + 'd,
pin_1: impl Peripheral<P = P1> + 'd,
@ -670,6 +687,8 @@ where
}
}
/// Represents a group of 16 output pins configured for 16-bit parallel data
/// transmission.
pub struct TxSixteenBits<'d, P0, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15> {
pin_0: PeripheralRef<'d, P0>,
pin_1: PeripheralRef<'d, P1>,
@ -710,6 +729,7 @@ where
P15: OutputPin,
{
#[allow(clippy::too_many_arguments)]
/// Creates a new `TxSixteenBits` instance with the provided output pins.
pub fn new(
pin_0: impl Peripheral<P = P0> + 'd,
pin_1: impl Peripheral<P = P1> + 'd,

View File

@ -14,36 +14,53 @@ use crate::{peripheral::PeripheralRef, peripherals::LCD_CAM};
pub mod i8080;
/// Represents an LCD interface.
pub struct Lcd<'d, DM: crate::Mode> {
/// The `LCD_CAM` peripheral reference for managing the LCD functionality.
pub(crate) lcd_cam: PeripheralRef<'d, LCD_CAM>,
/// A marker for the mode of operation (blocking or asynchronous).
pub(crate) _mode: core::marker::PhantomData<DM>,
}
#[derive(Debug, Clone, Copy, PartialEq, Default)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Represents the clock mode configuration for the LCD interface.
pub struct ClockMode {
/// The polarity of the clock signal (idle high or low).
pub polarity: Polarity,
/// The phase of the clock signal (shift on the rising or falling edge).
pub phase: Phase,
}
#[derive(Debug, Clone, Copy, PartialEq, Default)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Represents the polarity of the clock signal for the LCD interface.
pub enum Polarity {
/// The clock signal is low when idle.
#[default]
IdleLow,
/// The clock signal is high when idle.
IdleHigh,
}
#[derive(Debug, Clone, Copy, PartialEq, Default)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Represents the phase of the clock signal for the LCD interface.
pub enum Phase {
/// Data is shifted on the low (falling) edge of the clock signal.
#[default]
ShiftLow,
/// Data is shifted on the high (rising) edge of the clock signal.
ShiftHigh,
}
#[derive(Debug, Clone, Copy, PartialEq, Default)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Represents the delay mode for the LCD signal output.
pub enum DelayMode {
/// Output without delay.
#[default]

View File

@ -5,8 +5,6 @@
//! used simultaneously. For more information on these modules, please refer to
//! the documentation in their respective modules.
#![allow(missing_docs)] // TODO: Remove when able
pub mod cam;
pub mod lcd;
@ -21,12 +19,16 @@ use crate::{
InterruptConfigurable,
};
/// Represents a combined LCD and Camera interface.
pub struct LcdCam<'d, DM: crate::Mode> {
/// The LCD interface.
pub lcd: Lcd<'d, DM>,
/// The Camera interface.
pub cam: Cam<'d>,
}
impl<'d> LcdCam<'d, crate::Blocking> {
/// Creates a new `LcdCam` instance.
pub fn new(lcd_cam: impl Peripheral<P = LCD_CAM> + 'd) -> Self {
crate::into_ref!(lcd_cam);
@ -63,6 +65,7 @@ impl<'d> InterruptConfigurable for LcdCam<'d, crate::Blocking> {
#[cfg(feature = "async")]
impl<'d> LcdCam<'d, crate::Async> {
/// Creates a new `LcdCam` instance for asynchronous operation.
pub fn new_async(lcd_cam: impl Peripheral<P = LCD_CAM> + 'd) -> Self {
crate::into_ref!(lcd_cam);

View File

@ -48,15 +48,23 @@ pub enum Error {
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Number {
/// Channel 0
Channel0 = 0,
/// Channel 1
Channel1 = 1,
/// Channel 2
Channel2 = 2,
/// Channel 3
Channel3 = 3,
/// Channel 4
Channel4 = 4,
/// Channel 5
Channel5 = 5,
#[cfg(not(any(esp32c2, esp32c3, esp32c6, esp32h2)))]
/// Channel 6
Channel6 = 6,
#[cfg(not(any(esp32c2, esp32c3, esp32c6, esp32h2)))]
/// Channel 7
Channel7 = 7,
}
@ -66,16 +74,22 @@ pub mod config {
#[derive(Debug, Clone, Copy, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Pin configuration for the LEDC channel.
pub enum PinConfig {
/// Push-pull pin configuration.
PushPull,
/// Open-drain pin configuration.
OpenDrain,
}
/// Channel configuration
#[derive(Copy, Clone)]
pub struct Config<'a, S: TimerSpeed> {
/// A reference to the timer associated with this channel.
pub timer: &'a dyn TimerIFace<S>,
/// The duty cycle percentage (0-100).
pub duty_pct: u8,
/// The pin configuration (PushPull or OpenDrain).
pub pin_config: PinConfig,
}
}
@ -108,6 +122,8 @@ pub trait ChannelHW<O: OutputPin> {
/// Configure Channel HW except for the duty which is set via
/// [`Self::set_duty_hw`].
fn configure_hw(&mut self) -> Result<(), Error>;
/// Configure the hardware for the channel with a specific pin
/// configuration.
fn configure_hw_with_pin_config(&mut self, cfg: config::PinConfig) -> Result<(), Error>;
/// Set channel duty HW

View File

@ -60,8 +60,6 @@
//! - Source clock selection is not supported
//! - Interrupts are not supported
#![allow(missing_docs)] // TODO: Remove when able
use self::{
channel::Channel,
timer::{Timer, TimerSpeed},
@ -79,6 +77,7 @@ pub mod timer;
/// Global slow clock source
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
pub enum LSGlobalClkSource {
/// APB clock.
APBClk,
}
@ -96,7 +95,9 @@ pub struct HighSpeed {}
/// Used to specify LowSpeed Timer/Channel
pub struct LowSpeed {}
/// Trait representing the speed mode of a clock or peripheral.
pub trait Speed {
/// Boolean constant indicating whether the speed is high-speed.
const IS_HS: bool;
}

View File

@ -33,6 +33,7 @@ pub enum Error {
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum HSClockSource {
/// APB clock.
APBClk,
// TODO RefTick,
}
@ -41,6 +42,7 @@ pub enum HSClockSource {
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum LSClockSource {
/// APB clock.
APBClk,
// TODO SLOWClk
}
@ -49,9 +51,13 @@ pub enum LSClockSource {
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Number {
/// Timer 0.
Timer0 = 0,
/// Timer 1.
Timer1 = 1,
/// Timer 2.
Timer2 = 2,
/// Timer 3.
Timer3 = 3,
}
@ -63,56 +69,82 @@ pub mod config {
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Duty {
/// 1-bit resolution for duty cycle adjustment.
Duty1Bit = 1,
/// 2-bit resolution for duty cycle adjustment.
Duty2Bit,
/// 3-bit resolution for duty cycle adjustment.
Duty3Bit,
/// 4-bit resolution for duty cycle adjustment.
Duty4Bit,
/// 5-bit resolution for duty cycle adjustment.
Duty5Bit,
/// 6-bit resolution for duty cycle adjustment.
Duty6Bit,
/// 7-bit resolution for duty cycle adjustment.
Duty7Bit,
/// 8-bit resolution for duty cycle adjustment.
Duty8Bit,
/// 9-bit resolution for duty cycle adjustment.
Duty9Bit,
/// 10-bit resolution for duty cycle adjustment.
Duty10Bit,
/// 11-bit resolution for duty cycle adjustment.
Duty11Bit,
/// 12-bit resolution for duty cycle adjustment.
Duty12Bit,
/// 13-bit resolution for duty cycle adjustment.
Duty13Bit,
/// 14-bit resolution for duty cycle adjustment.
Duty14Bit,
#[cfg(esp32)]
/// 15-bit resolution for duty cycle adjustment.
Duty15Bit,
#[cfg(esp32)]
/// 16-bit resolution for duty cycle adjustment.
Duty16Bit,
#[cfg(esp32)]
/// 17-bit resolution for duty cycle adjustment.
Duty17Bit,
#[cfg(esp32)]
/// 18-bit resolution for duty cycle adjustment.
Duty18Bit,
#[cfg(esp32)]
/// 19-bit resolution for duty cycle adjustment.
Duty19Bit,
#[cfg(esp32)]
/// 20-bit resolution for duty cycle adjustment.
Duty20Bit,
}
/// Timer configuration
#[derive(Copy, Clone)]
pub struct Config<CS> {
/// The duty cycle resolution.
pub duty: Duty,
/// The clock source for the timer.
pub clock_source: CS,
/// The frequency of the PWM signal in Hertz.
pub frequency: HertzU32,
}
}
/// Trait defining the type of timer source
pub trait TimerSpeed: Speed {
/// The type of clock source used by the timer in this speed mode.
type ClockSourceType;
}
/// Timer source type for LowSpeed timers
impl TimerSpeed for LowSpeed {
/// The clock source type for low-speed timers.
type ClockSourceType = LSClockSource;
}
#[cfg(esp32)]
/// Timer source type for HighSpeed timers
impl TimerSpeed for HighSpeed {
/// The clock source type for high-speed timers.
type ClockSourceType = HSClockSource;
}

View File

@ -36,8 +36,6 @@
//! ## Implementation State
//! - Low-speed (LS) is not supported.
#![allow(missing_docs)] // TODO: Remove when able
pub use esp_synopsys_usb_otg::UsbBus;
use esp_synopsys_usb_otg::UsbPeripheral;
@ -49,16 +47,20 @@ use crate::{
};
#[doc(hidden)]
/// Trait representing the USB D+ (data plus) pin.
pub trait UsbDp: crate::private::Sealed {}
#[doc(hidden)]
/// Trait representing the USB D- (data minus) pin.
pub trait UsbDm: crate::private::Sealed {}
/// USB peripheral.
pub struct Usb<'d> {
_usb0: PeripheralRef<'d, peripherals::USB0>,
}
impl<'d> Usb<'d> {
/// Creates a new `Usb` instance.
pub fn new<P, M>(
usb0: impl Peripheral<P = peripherals::USB0> + 'd,
_usb_dp: impl Peripheral<P = P> + 'd,
@ -129,7 +131,7 @@ unsafe impl<'d> UsbPeripheral for Usb<'d> {
80_000_000
}
}
/// Async functionality
#[cfg(feature = "async")]
pub mod asynch {
use embassy_usb_driver::{

View File

@ -1096,14 +1096,17 @@ fn internal_clear_interrupts(interrupts: EnumSet<ParlIoInterrupt>) {
/// Parallel IO in full duplex mode
///
/// Full duplex mode might limit the maximum possible bit width.
#[allow(missing_docs)]
pub struct ParlIoFullDuplex<'d, CH, DM>
where
CH: DmaChannel,
CH::P: ParlIoPeripheral,
DM: Mode,
{
/// The transmitter (TX) channel responsible for handling DMA transfers in
/// the parallel I/O full-duplex operation.
pub tx: TxCreatorFullDuplex<'d, CH, DM>,
/// The receiver (RX) channel responsible for handling DMA transfers in the
/// parallel I/O full-duplex operation.
pub rx: RxCreatorFullDuplex<'d, CH, DM>,
}
@ -1191,13 +1194,14 @@ where
}
/// Parallel IO in half duplex / TX only mode
#[allow(missing_docs)]
pub struct ParlIoTxOnly<'d, CH, DM>
where
CH: DmaChannel,
CH::P: ParlIoPeripheral,
DM: Mode,
{
/// The transmitter (TX) channel responsible for handling DMA transfers in
/// the parallel I/O operation.
pub tx: TxCreator<'d, CH, DM>,
}
@ -1279,13 +1283,14 @@ where
}
/// Parallel IO in half duplex / RX only mode
#[allow(missing_docs)]
pub struct ParlIoRxOnly<'d, CH, DM>
where
CH: DmaChannel,
CH::P: ParlIoPeripheral,
DM: Mode,
{
/// The receiver (RX) channel responsible for handling DMA transfers in the
/// parallel I/O operation.
pub rx: RxCreator<'d, CH, DM>,
}

View File

@ -39,6 +39,8 @@ pub struct PcntSource {
}
impl PcntSource {
/// Creates a `PcntSource` from an input pin with the specified
/// configuration.
pub fn from_pin<'a, P: InputPin>(
pin: impl Peripheral<P = P> + 'a,
pin_config: PcntInputConfig,
@ -56,12 +58,16 @@ impl PcntSource {
inverted: false,
}
}
/// Creates a `PcntSource` that is always high.
pub fn always_high() -> Self {
Self {
source: ONE_INPUT,
inverted: false,
}
}
/// Creates a `PcntSource` that is always low.
pub fn always_low() -> Self {
Self {
source: ZERO_INPUT,
@ -69,6 +75,7 @@ impl PcntSource {
}
}
/// Inverts the `PcntSource` signal.
pub fn invert(self) -> Self {
Self {
source: self.source,
@ -77,6 +84,7 @@ impl PcntSource {
}
}
/// Represents a channel within a pulse counter unit.
pub struct Channel<'d, const UNIT: usize, const NUM: usize> {
_phantom: PhantomData<&'d ()>,
// Individual channels are not Send, since they share registers.

View File

@ -20,8 +20,6 @@
//! [unit]: unit/index.html
//! [PCNT Encoder]: https://github.com/esp-rs/esp-hal/blob/main/examples/src/bin/pcnt_encoder.rs
#![allow(missing_docs)] // TODO: Remove when able
use self::unit::Unit;
use crate::{
interrupt::{self, InterruptHandler},
@ -34,6 +32,7 @@ use crate::{
pub mod channel;
pub mod unit;
/// Pulse Counter (PCNT) peripheral driver.
pub struct Pcnt<'d> {
_instance: PeripheralRef<'d, peripherals::PCNT>,

View File

@ -57,21 +57,30 @@ impl From<u8> for ZeroMode {
}
}
// Events
/// Events that can occur in a pulse counter unit.
#[derive(Copy, Clone, Debug, Default)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct Events {
/// Set when the pulse counter reaches the low limit.
pub low_limit: bool,
/// Set when the pulse counter reaches the high limit.
pub high_limit: bool,
/// Set when the pulse counter crosses threshold 0.
pub threshold0: bool,
/// Set when the pulse counter crosses threshold 1.
pub threshold1: bool,
/// Set when the pulse counter reaches zero.
pub zero: bool,
}
/// Represents a pulse counter unit.
#[non_exhaustive]
pub struct Unit<'d, const NUM: usize> {
/// The counter for PCNT unit.
pub counter: Counter<'d, NUM>,
/// The first channel in PCNT unit.
pub channel0: Channel<'d, NUM, 0>,
/// The second channel in PCNT unit.
pub channel1: Channel<'d, NUM, 1>,
}
@ -301,6 +310,7 @@ impl<'d, const NUM: usize> Drop for Unit<'d, NUM> {
// The entire Unit is Send but the individual channels are not.
unsafe impl<'d, const NUM: usize> Send for Unit<'d, NUM> {}
/// Represents the counter within a pulse counter unit.
#[derive(Clone)]
pub struct Counter<'d, const NUM: usize> {
_phantom: PhantomData<&'d ()>,

View File

@ -272,10 +272,12 @@ mod peripheral_macros {
$crate::impl_dma_eligible!(MEM2MEM15,Mem2Mem15);
}
/// The `Peripherals` struct provides access to all of the hardware peripherals on the chip.
#[allow(non_snake_case)]
pub struct Peripherals {
$(
$(#[$cfg])?
/// Each field represents a hardware peripheral.
pub $name: peripherals::$name,
)*
}
@ -325,6 +327,7 @@ mod peripheral_macros {
impl peripherals::$name {
$(
paste::paste!{
/// Binds an interrupt handler to the corresponding interrupt for this peripheral.
pub fn [<bind_ $interrupt:lower _interrupt >](&mut self, handler: unsafe extern "C" fn() -> ()) {
unsafe { $crate::interrupt::bind_interrupt($crate::peripherals::Interrupt::$interrupt, handler); }
}
@ -350,11 +353,16 @@ mod peripheral_macros {
#[doc(hidden)]
#[macro_export]
/// Macro to create a peripheral structure.
macro_rules! create_peripheral {
($(#[$cfg:meta])? $name:ident <= virtual) => {
$(#[$cfg])?
#[derive(Debug)]
#[allow(non_camel_case_types)]
/// Represents a virtual peripheral with no associated hardware.
///
/// This struct is generated by the `create_peripheral!` macro when the peripheral
/// is defined as virtual.
pub struct $name { _inner: () }
$(#[$cfg])?
@ -385,6 +393,10 @@ mod peripheral_macros {
$(#[$cfg])?
#[derive(Debug)]
#[allow(non_camel_case_types)]
/// Represents a concrete hardware peripheral.
///
/// This struct is generated by the `create_peripheral!` macro when the peripheral
/// is tied to an actual hardware device.
pub struct $name { _inner: () }
$(#[$cfg])?

View File

@ -642,15 +642,18 @@ mod impl_for_chip {
use crate::peripheral::{Peripheral, PeripheralRef};
/// RMT Instance
#[allow(missing_docs)]
pub struct Rmt<'d, M>
where
M: crate::Mode,
{
_peripheral: PeripheralRef<'d, crate::peripherals::RMT>,
/// RMT Channel 0.
pub channel0: ChannelCreator<M, 0>,
/// RMT Channel 1.
pub channel1: ChannelCreator<M, 1>,
/// RMT Channel 2.
pub channel2: ChannelCreator<M, 2>,
/// RMT Channel 3.
pub channel3: ChannelCreator<M, 3>,
phantom: PhantomData<M>,
}
@ -710,19 +713,26 @@ mod impl_for_chip {
use crate::peripheral::{Peripheral, PeripheralRef};
/// RMT Instance
#[allow(missing_docs)]
pub struct Rmt<'d, M>
where
M: crate::Mode,
{
_peripheral: PeripheralRef<'d, crate::peripherals::RMT>,
/// RMT Channel 0.
pub channel0: ChannelCreator<M, 0>,
/// RMT Channel 1.
pub channel1: ChannelCreator<M, 1>,
/// RMT Channel 2.
pub channel2: ChannelCreator<M, 2>,
/// RMT Channel 3.
pub channel3: ChannelCreator<M, 3>,
/// RMT Channel 4.
pub channel4: ChannelCreator<M, 4>,
/// RMT Channel 5.
pub channel5: ChannelCreator<M, 5>,
/// RMT Channel 6.
pub channel6: ChannelCreator<M, 6>,
/// RMT Channel 7.
pub channel7: ChannelCreator<M, 7>,
phantom: PhantomData<M>,
}
@ -818,15 +828,18 @@ mod impl_for_chip {
use crate::peripheral::{Peripheral, PeripheralRef};
/// RMT Instance
#[allow(missing_docs)]
pub struct Rmt<'d, M>
where
M: crate::Mode,
{
_peripheral: PeripheralRef<'d, crate::peripherals::RMT>,
/// RMT Channel 0.
pub channel0: ChannelCreator<M, 0>,
/// RMT Channel 1.
pub channel1: ChannelCreator<M, 1>,
/// RMT Channel 2.
pub channel2: ChannelCreator<M, 2>,
/// RMT Channel 3.
pub channel3: ChannelCreator<M, 3>,
phantom: PhantomData<M>,
}
@ -894,19 +907,26 @@ mod impl_for_chip {
use crate::peripheral::{Peripheral, PeripheralRef};
/// RMT Instance
#[allow(missing_docs)]
pub struct Rmt<'d, M>
where
M: crate::Mode,
{
_peripheral: PeripheralRef<'d, crate::peripherals::RMT>,
/// RMT Channel 0.
pub channel0: ChannelCreator<M, 0>,
/// RMT Channel 1.
pub channel1: ChannelCreator<M, 1>,
/// RMT Channel 2.
pub channel2: ChannelCreator<M, 2>,
/// RMT Channel 3.
pub channel3: ChannelCreator<M, 3>,
/// RMT Channel 4.
pub channel4: ChannelCreator<M, 4>,
/// RMT Channel 5.
pub channel5: ChannelCreator<M, 5>,
/// RMT Channel 6.
pub channel6: ChannelCreator<M, 6>,
/// RMT Channel 7.
pub channel7: ChannelCreator<M, 7>,
phantom: PhantomData<M>,
}

View File

@ -25,28 +25,35 @@ impl<'d, DM: crate::Mode> Rsa<'d, DM> {
Ok(())
}
/// Writes the multi-mode configuration to the RSA hardware.
pub(super) fn write_multi_mode(&mut self, mode: u32) {
self.rsa.mult_mode().write(|w| unsafe { w.bits(mode) });
}
/// Writes the modular exponentiation mode configuration to the RSA
/// hardware.
pub(super) fn write_modexp_mode(&mut self, mode: u32) {
self.rsa.modexp_mode().write(|w| unsafe { w.bits(mode) });
}
/// Starts the modular exponentiation operation.
pub(super) fn write_modexp_start(&mut self) {
self.rsa
.modexp_start()
.write(|w| w.modexp_start().set_bit());
}
/// Starts the multiplication operation.
pub(super) fn write_multi_start(&mut self) {
self.rsa.mult_start().write(|w| w.mult_start().set_bit());
}
/// Clears the RSA interrupt flag.
pub(super) fn clear_interrupt(&mut self) {
self.rsa.interrupt().write(|w| w.interrupt().set_bit());
}
/// Checks if the RSA peripheral is idle.
pub(super) fn is_idle(&mut self) -> bool {
self.rsa.interrupt().read().bits() == 1
}
@ -62,6 +69,7 @@ impl<'d, DM: crate::Mode> Rsa<'d, DM> {
}
}
/// Module defining marker types for various RSA operand sizes.
pub mod operand_sizes {
//! Marker types for the operand sizes
use paste::paste;
@ -165,10 +173,12 @@ where
}
}
/// Sets the modular exponentiation mode for the RSA hardware.
pub(super) fn set_mode(rsa: &mut Rsa<'d, DM>) {
rsa.write_modexp_mode((N / 16 - 1) as u32)
}
/// Starts the modular exponentiation operation on the RSA hardware.
pub(super) fn set_start(&mut self) {
self.rsa.write_modexp_start();
}
@ -196,10 +206,12 @@ where
self.set_start();
}
/// Sets the multiplication mode for the RSA hardware.
pub(super) fn set_mode(rsa: &mut Rsa<'d, DM>) {
rsa.write_multi_mode(((N * 2) / 16 + 7) as u32)
}
/// Starts the multiplication operation on the RSA hardware.
pub(super) fn set_start(&mut self) {
self.rsa.write_multi_start();
}

View File

@ -51,10 +51,12 @@ impl<'d, DM: crate::Mode> Rsa<'d, DM> {
}
}
/// Checks if the search functionality is enabled in the RSA hardware.
pub(super) fn is_search_enabled(&mut self) -> bool {
self.rsa.search_enable().read().search_enable().bit_is_set()
}
/// Sets the search position in the RSA hardware.
pub(super) fn write_search_position(&mut self, search_position: u32) {
self.rsa
.search_pos()
@ -79,28 +81,33 @@ impl<'d, DM: crate::Mode> Rsa<'d, DM> {
}
}
/// Starts the modular exponentiation operation.
pub(super) fn write_modexp_start(&mut self) {
self.rsa
.set_start_modexp()
.write(|w| w.set_start_modexp().set_bit());
}
/// Starts the multiplication operation.
pub(super) fn write_multi_start(&mut self) {
self.rsa
.set_start_mult()
.write(|w| w.set_start_mult().set_bit());
}
/// Starts the modular multiplication operation.
fn write_modmulti_start(&mut self) {
self.rsa
.set_start_modmult()
.write(|w| w.set_start_modmult().set_bit());
}
/// Clears the RSA interrupt flag.
pub(super) fn clear_interrupt(&mut self) {
self.rsa.int_clr().write(|w| w.clear_interrupt().set_bit());
}
/// Checks if the RSA peripheral is idle.
pub(super) fn is_idle(&mut self) -> bool {
self.rsa.query_idle().read().query_idle().bit_is_set()
}
@ -110,6 +117,7 @@ impl<'d, DM: crate::Mode> Rsa<'d, DM> {
}
}
/// Module defining marker types for various RSA operand sizes.
pub mod operand_sizes {
//! Marker types for the operand sizes
use paste::paste;
@ -255,10 +263,12 @@ where
0
}
/// Sets the modular exponentiation mode for the RSA hardware.
pub(super) fn set_mode(rsa: &mut Rsa<'d, DM>) {
rsa.write_mode((N - 1) as u32)
}
/// Starts the modular exponentiation operation on the RSA hardware.
pub(super) fn set_start(&mut self) {
self.rsa.write_modexp_start();
}
@ -335,10 +345,12 @@ where
self.set_start();
}
/// Sets the multiplication mode for the RSA hardware.
pub(super) fn set_mode(rsa: &mut Rsa<'d, DM>) {
rsa.write_mode((N * 2 - 1) as u32)
}
/// Starts the multiplication operation on the RSA hardware.
pub(super) fn set_start(&mut self) {
self.rsa.write_multi_start();
}

View File

@ -57,10 +57,12 @@ impl<'d, DM: crate::Mode> Rsa<'d, DM> {
}
}
/// Checks if the search functionality is enabled in the RSA hardware.
pub(super) fn is_search_enabled(&mut self) -> bool {
self.rsa.search_enable().read().search_enable().bit_is_set()
}
/// Sets the search position in the RSA hardware.
pub(super) fn write_search_position(&mut self, search_position: u32) {
self.rsa
.search_pos()
@ -85,28 +87,33 @@ impl<'d, DM: crate::Mode> Rsa<'d, DM> {
}
}
/// Starts the modular exponentiation operation.
pub(super) fn write_modexp_start(&mut self) {
self.rsa
.modexp_start()
.write(|w| w.modexp_start().set_bit());
}
/// Starts the multiplication operation.
pub(super) fn write_multi_start(&mut self) {
self.rsa.mult_start().write(|w| w.mult_start().set_bit());
}
/// Starts the modular multiplication operation.
fn write_modmulti_start(&mut self) {
self.rsa
.modmult_start()
.write(|w| w.modmult_start().set_bit());
}
/// Clears the RSA interrupt flag.
pub(super) fn clear_interrupt(&mut self) {
self.rsa
.clear_interrupt()
.write(|w| w.clear_interrupt().set_bit());
}
/// Checks if the RSA peripheral is idle.
pub(super) fn is_idle(&mut self) -> bool {
self.rsa.idle().read().idle().bit_is_set()
}
@ -296,10 +303,12 @@ where
0
}
/// Sets the modular exponentiation mode for the RSA hardware.
pub(super) fn set_mode(rsa: &mut Rsa<'d, DM>) {
rsa.write_mode((N - 1) as u32)
}
/// Starts the modular exponentiation operation on the RSA hardware.
pub(super) fn set_start(&mut self) {
self.rsa.write_modexp_start();
}
@ -376,10 +385,12 @@ where
self.set_start();
}
/// Sets the multiplication mode for the RSA hardware.
pub(super) fn set_mode(rsa: &mut Rsa<'d, DM>) {
rsa.write_mode((N * 2 - 1) as u32)
}
/// Starts the multiplication operation on the RSA hardware.
pub(super) fn set_start(&mut self) {
self.rsa.write_multi_start();
}

View File

@ -34,8 +34,6 @@
//! [nb]: https://docs.rs/nb/1.1.0/nb/
//! [the repository with corresponding example]: https://github.com/esp-rs/esp-hal/blob/main/hil-test/tests/rsa.rs
#![allow(missing_docs)] // TODO: Remove when able
use core::{marker::PhantomData, ptr::copy_nonoverlapping};
use crate::{
@ -141,38 +139,52 @@ impl<'d, DM: crate::Mode> Rsa<'d, DM> {
}
}
/// Defines an RSA operation mode.
pub trait RsaMode: crate::private::Sealed {
/// The input data type used for the RSA operation.
type InputType;
}
/// A trait for RSA operations that involve multiple inputs and outputs.
pub trait Multi: RsaMode {
/// The type of the output produced by the RSA operation.
type OutputType;
}
macro_rules! implement_op {
(($x:literal, multi)) => {
paste! {pub struct [<Op $x>];}
paste! {
impl Multi for [<Op $x>] {
type OutputType = [u32; $x*2 / 32];
}}
paste! {
impl crate::private::Sealed for [<Op $x>] {}
}
paste! {
impl RsaMode for [<Op $x>] {
type InputType = [u32; $x / 32];
}}
};
(($x:literal)) => {
paste! {pub struct [<Op $x>];}
paste! {
/// Represents an RSA operation for the given bit size with multi-output.
pub struct [<Op $x>];
}
paste! {
impl Multi for [<Op $x>] {
type OutputType = [u32; $x * 2 / 32];
}
}
paste! {
impl crate::private::Sealed for [<Op $x>] {}
}
paste!{
impl RsaMode for [<Op $x>] {
type InputType = [u32; $x / 32];
}}
paste! {
impl RsaMode for [<Op $x>] {
type InputType = [u32; $x / 32];
}
}
};
(($x:literal)) => {
paste! {
/// Represents an RSA operation for the given bit size.
pub struct [<Op $x>];
}
paste! {
impl crate::private::Sealed for [<Op $x>] {}
}
paste! {
impl RsaMode for [<Op $x>] {
type InputType = [u32; $x / 32];
}
}
};
($x:tt, $($y:tt),+) => {
@ -286,6 +298,7 @@ where
}
}
/// Async functionality
#[cfg(feature = "async")]
pub(crate) mod asynch {
use core::task::Poll;
@ -303,11 +316,13 @@ pub(crate) mod asynch {
static WAKER: AtomicWaker = AtomicWaker::new();
/// `Future` that waits for the RSA operation to complete.
pub(crate) struct RsaFuture<'d> {
instance: &'d crate::peripherals::RSA,
}
impl<'d> RsaFuture<'d> {
/// Asynchronously initializes the RSA peripheral.
pub async fn new(instance: &'d crate::peripherals::RSA) -> Self {
#[cfg(not(any(esp32, esp32s2, esp32s3)))]
instance.int_ena().modify(|_, w| w.int_ena().set_bit());
@ -360,6 +375,7 @@ pub(crate) mod asynch {
where
T: RsaMode<InputType = [u32; N]>,
{
/// Asynchronously performs an RSA modular exponentiation operation.
pub async fn exponentiation(
&mut self,
base: &T::InputType,
@ -377,6 +393,7 @@ pub(crate) mod asynch {
T: RsaMode<InputType = [u32; N]>,
{
#[cfg(not(esp32))]
/// Asynchronously performs an RSA modular multiplication operation.
pub async fn modular_multiplication(
&mut self,
r: &T::InputType,
@ -388,6 +405,7 @@ pub(crate) mod asynch {
}
#[cfg(esp32)]
/// Asynchronously performs an RSA modular multiplication operation.
pub async fn modular_multiplication(
&mut self,
operand_a: &T::InputType,
@ -407,6 +425,7 @@ pub(crate) mod asynch {
T: RsaMode<InputType = [u32; N]>,
{
#[cfg(not(esp32))]
/// Asynchronously performs an RSA multiplication operation.
pub async fn multiplication<'b, const O: usize>(
&mut self,
operand_b: &T::InputType,
@ -420,6 +439,7 @@ pub(crate) mod asynch {
}
#[cfg(esp32)]
/// Asynchronously performs an RSA multiplication operation.
pub async fn multiplication<'b, const O: usize>(
&mut self,
operand_a: &T::InputType,
@ -435,6 +455,7 @@ pub(crate) mod asynch {
}
#[handler]
/// Interrupt handler for RSA.
pub(super) fn rsa_interrupt_handler() {
#[cfg(not(any(esp32, esp32s2, esp32s3)))]
unsafe { &*crate::peripherals::RSA::ptr() }

View File

@ -69,8 +69,6 @@
//! }
//! ```
#![allow(missing_docs)] // TODO: Remove when able
#[cfg(not(any(esp32c6, esp32h2)))]
use fugit::HertzU32;
use fugit::MicrosDurationU64;
@ -186,8 +184,10 @@ pub(crate) enum RtcCalSel {
/// Low-power Management
pub struct Rtc<'d> {
_inner: PeripheralRef<'d, crate::peripherals::LPWR>,
/// Reset Watchdog Timer.
pub rwdt: Rwdt,
#[cfg(any(esp32c2, esp32c3, esp32c6, esp32h2, esp32s3))]
/// Super Watchdog
pub swd: Swd,
}

View File

@ -34,6 +34,7 @@ pub(crate) fn configure_clock() {
// Chip Reset: Reset the whole chip, including the analog part
#[derive(Debug, Clone, Copy, PartialEq, Eq, FromRepr)]
/// SOC Reset Reason.
pub enum SocResetReason {
/// Power on reset
ChipPowerOn = 0x01,

View File

@ -201,6 +201,7 @@ fn rtc_sleep_pu() {
// Chip Reset: Reset the whole chip, including the analog part
#[derive(Debug, Clone, Copy, PartialEq, Eq, FromRepr)]
/// SOC Reset Reason.
pub enum SocResetReason {
/// Power on reset
ChipPowerOn = 0x01,

View File

@ -259,6 +259,7 @@ fn rtc_sleep_pu() {
// System Reset: Reset the whole digital system, including RTC sub-system
// Chip Reset: Reset the whole chip, including the analog part
/// SOC Reset Reason.
#[derive(Debug, Clone, Copy, PartialEq, Eq, FromRepr)]
pub enum SocResetReason {
/// Power on reset

View File

@ -1305,6 +1305,7 @@ fn modem_clk_domain_active_state_icg_map_preinit() {
// System Reset: Reset the whole digital system, including RTC sub-system
// Chip Reset: Reset the whole chip, including the analog part
/// SOC Reset Reason.
#[derive(Debug, Clone, Copy, PartialEq, Eq, FromRepr)]
pub enum SocResetReason {
/// Power on reset

View File

@ -149,6 +149,7 @@ pub(crate) fn configure_clock() {
// System Reset: Reset the whole digital system, including RTC sub-system
// Chip Reset: Reset the whole chip, including the analog part
/// SOC Reset Reason.
#[derive(Debug, Clone, Copy, PartialEq, Eq, FromRepr)]
pub enum SocResetReason {
/// Power on reset

View File

@ -39,6 +39,7 @@ pub(crate) fn configure_clock() {
// System Reset: Reset the whole digital system, including RTC sub-system
// Chip Reset: Reset the whole chip, including the analog part
/// SOC Reset Reason.
#[derive(Debug, Clone, Copy, PartialEq, Eq, FromRepr)]
pub enum SocResetReason {
/// Power on reset

View File

@ -39,6 +39,7 @@ pub(crate) fn configure_clock() {
// System Reset: Reset the whole digital system, including RTC sub-system
// Chip Reset: Reset the whole chip, including the analog part
/// SOC Reset Reason.
#[derive(Debug, Clone, Copy, PartialEq, Eq, FromRepr)]
pub enum SocResetReason {
/// Power on reset

View File

@ -7,38 +7,66 @@ use crate::{
// Approximate mapping of voltages to RTC_CNTL_DBIAS_WAK, RTC_CNTL_DBIAS_SLP,
// RTC_CNTL_DIG_DBIAS_WAK, RTC_CNTL_DIG_DBIAS_SLP values.
// Valid if RTC_CNTL_DBG_ATTEN is 0.
/// RTC digital bias setting corresponding to 0.90V.
pub const RTC_CNTL_DBIAS_0V90: u8 = 0;
/// RTC digital bias setting corresponding to 0.95V.
pub const RTC_CNTL_DBIAS_0V95: u8 = 1;
/// RTC digital bias setting corresponding to 1.00V.
pub const RTC_CNTL_DBIAS_1V00: u8 = 2;
/// RTC digital bias setting corresponding to 1.05V.
pub const RTC_CNTL_DBIAS_1V05: u8 = 3;
/// RTC digital bias setting corresponding to 1.10V.
pub const RTC_CNTL_DBIAS_1V10: u8 = 4;
/// RTC digital bias setting corresponding to 1.15V.
pub const RTC_CNTL_DBIAS_1V15: u8 = 5;
/// RTC digital bias setting corresponding to 1.20V.
pub const RTC_CNTL_DBIAS_1V20: u8 = 6;
/// RTC digital bias setting corresponding to 1.25V.
pub const RTC_CNTL_DBIAS_1V25: u8 = 7;
// Various delays to be programmed into power control state machines
/// Time (in microseconds) for waiting the XTL buffer to stabilize during sleep.
pub const RTC_CNTL_XTL_BUF_WAIT_SLP_US: u32 = 1000;
/// Cycles to wait for PLL buffer stabilization.
pub const RTC_CNTL_PLL_BUF_WAIT_SLP_CYCLES: u8 = 1;
/// Cycles to wait for the 8MHz clock to stabilize.
pub const RTC_CNTL_CK8M_WAIT_SLP_CYCLES: u8 = 4;
/// Delay in cycles for wakeup signal to be applied.
pub const RTC_CNTL_WAKEUP_DELAY_CYCLES: u8 = 7;
/// Power-up cycles for other blocks.
pub const RTC_CNTL_OTHER_BLOCKS_POWERUP_CYCLES: u8 = 1;
/// Wait cycles for other blocks.
pub const RTC_CNTL_OTHER_BLOCKS_WAIT_CYCLES: u16 = 1;
/// Minimum sleep value (in cycles).
pub const RTC_CNTL_MIN_SLP_VAL_MIN: u8 = 128;
/// Default debug attenuation value.
pub const RTC_CNTL_DBG_ATTEN_DEFAULT: u8 = 3;
/// Power-up cycles for RTC memory.
pub const RTC_MEM_POWERUP_CYCLES: u8 = RTC_CNTL_OTHER_BLOCKS_POWERUP_CYCLES;
/// Wait cycles for RTC memory.
pub const RTC_MEM_WAIT_CYCLES: u16 = RTC_CNTL_OTHER_BLOCKS_WAIT_CYCLES;
/// Power-up cycles for ROM and RAM.
pub const ROM_RAM_POWERUP_CYCLES: u8 = RTC_CNTL_OTHER_BLOCKS_POWERUP_CYCLES;
/// Wait cycles for ROM and RAM.
pub const ROM_RAM_WAIT_CYCLES: u16 = RTC_CNTL_OTHER_BLOCKS_WAIT_CYCLES;
/// Power-up cycles for Wi-Fi.
pub const WIFI_POWERUP_CYCLES: u8 = RTC_CNTL_OTHER_BLOCKS_POWERUP_CYCLES;
/// Wait cycles for Wi-Fi.
pub const WIFI_WAIT_CYCLES: u16 = RTC_CNTL_OTHER_BLOCKS_WAIT_CYCLES;
/// Power-up cycles for RTC components.
pub const RTC_POWERUP_CYCLES: u8 = RTC_CNTL_OTHER_BLOCKS_POWERUP_CYCLES;
/// Wait cycles for RTC components.
pub const RTC_WAIT_CYCLES: u16 = RTC_CNTL_OTHER_BLOCKS_WAIT_CYCLES;
/// Power-up cycles for the digital wrap components.
pub const DG_WRAP_POWERUP_CYCLES: u8 = RTC_CNTL_OTHER_BLOCKS_POWERUP_CYCLES;
/// Wait cycles for the digital wrap components.
pub const DG_WRAP_WAIT_CYCLES: u16 = RTC_CNTL_OTHER_BLOCKS_WAIT_CYCLES;
/// Default wait cycles for the 8MHz clock.
pub const RTC_CNTL_CK8M_WAIT_DEFAULT: u8 = 20;
/// Default wait cycles to enable the 8MHz clock.
pub const RTC_CK8M_ENABLE_WAIT_DEFAULT: u8 = 5;
impl WakeSource for TimerWakeupSource {
fn apply(
&self,
@ -162,6 +190,7 @@ impl Drop for Ext1WakeupSource<'_, '_> {
bitfield::bitfield! {
#[derive(Clone, Copy)]
/// Configuration for the RTC sleep behavior.
pub struct RtcSleepConfig(u32);
impl Debug;
/// force normal voltage in sleep mode (digital domain memory)
@ -221,6 +250,7 @@ impl Default for RtcSleepConfig {
}
impl RtcSleepConfig {
/// Configures the RTC for deep sleep mode.
pub fn deep() -> Self {
let mut cfg = Self::default();
cfg.set_deep_slp(true);

View File

@ -42,46 +42,83 @@ const I2C_ULP_HOSTID: u8 = 0;
// Approximate mapping of voltages to RTC_CNTL_DBIAS_WAK, RTC_CNTL_DBIAS_SLP,
// RTC_CNTL_DIG_DBIAS_WAK, RTC_CNTL_DIG_DBIAS_SLP values.
// Valid if RTC_CNTL_DBG_ATTEN is 0.
/// Digital bias voltage level of 0.90V.
pub const RTC_CNTL_DBIAS_0V90: u32 = 13;
/// Digital bias voltage level of 0.95V.
pub const RTC_CNTL_DBIAS_0V95: u32 = 16;
/// Digital bias voltage level of 1.00V.
pub const RTC_CNTL_DBIAS_1V00: u32 = 18;
/// Digital bias voltage level of 1.05V.
pub const RTC_CNTL_DBIAS_1V05: u32 = 20;
/// Digital bias voltage level of 1.10V.
pub const RTC_CNTL_DBIAS_1V10: u32 = 23;
/// Digital bias voltage level of 1.15V.
pub const RTC_CNTL_DBIAS_1V15: u32 = 25;
/// Digital bias voltage level of 1.20V.
pub const RTC_CNTL_DBIAS_1V20: u32 = 28;
/// Digital bias voltage level of 1.25V.
pub const RTC_CNTL_DBIAS_1V25: u32 = 30;
pub const RTC_CNTL_DBIAS_1V30: u32 = 31; //< voltage is about 1.34v in fact
/// Digital bias voltage level of approximately 1.34V.
pub const RTC_CNTL_DBIAS_1V30: u32 = 31;
/// Default attenuation setting during light sleep, with a voltage drop.
pub const RTC_CNTL_DBG_ATTEN_LIGHTSLEEP_DEFAULT: u8 = 5;
/// No attenuation (no voltage drop) during light sleep.
pub const RTC_CNTL_DBG_ATTEN_LIGHTSLEEP_NODROP: u8 = 0;
/// Default attenuation setting during deep sleep, with maximum voltage drop.
pub const RTC_CNTL_DBG_ATTEN_DEEPSLEEP_DEFAULT: u8 = 15;
/// No attenuation (no voltage drop) during deep sleep.
pub const RTC_CNTL_DBG_ATTEN_DEEPSLEEP_NODROP: u8 = 0;
/// Default bias setting during sleep mode.
pub const RTC_CNTL_BIASSLP_SLEEP_DEFAULT: u8 = 1;
/// Keeps the bias for ultra-low power sleep mode always on.
pub const RTC_CNTL_BIASSLP_SLEEP_ON: u8 = 0;
/// Default power-down current setting during sleep mode.
pub const RTC_CNTL_PD_CUR_SLEEP_DEFAULT: u8 = 1;
/// Keeps the power-down current setting for sleep mode always on.
pub const RTC_CNTL_PD_CUR_SLEEP_ON: u8 = 0;
/// Default driver bias setting for the digital domain during sleep mode.
pub const RTC_CNTL_DG_VDD_DRV_B_SLP_DEFAULT: u8 = 254;
/// Default debug attenuation setting for the monitor mode.
pub const RTC_CNTL_DBG_ATTEN_MONITOR_DEFAULT: u8 = 0;
/// Default bias setting for sleep mode in the monitor mode.
pub const RTC_CNTL_BIASSLP_MONITOR_DEFAULT: bool = false;
/// Default power-down current setting for the monitor mode.
pub const RTC_CNTL_PD_CUR_MONITOR_DEFAULT: bool = false;
/// Default number of cycles to wait for the PLL buffer to stabilize.
pub const RTC_CNTL_PLL_BUF_WAIT_DEFAULT: u8 = 20;
/// Default number of cycles to wait for the XTL buffer to stabilize.
pub const RTC_CNTL_XTL_BUF_WAIT_DEFAULT: u8 = 100;
/// Default number of cycles to wait for the internal 8MHz clock to stabilize.
pub const RTC_CNTL_CK8M_WAIT_DEFAULT: u8 = 20;
/// Default number of cycles required to enable the internal 8MHz clock.
pub const RTC_CK8M_ENABLE_WAIT_DEFAULT: u8 = 5;
/// Minimum number of cycles for sleep duration.
pub const RTC_CNTL_MIN_SLP_VAL_MIN: u8 = 2;
/// Power-up cycles for other hardware blocks.
pub const OTHER_BLOCKS_POWERUP: u8 = 1;
/// Wait cycles for other hardware blocks to stabilize.
pub const OTHER_BLOCKS_WAIT: u16 = 1;
/// Disables GPIO interrupt.
pub const GPIO_INTR_DISABLE: u8 = 0;
/// Sets GPIO interrupt to trigger on a low level signal.
pub const GPIO_INTR_LOW_LEVEL: u8 = 4;
/// Sets GPIO interrupt to trigger on a high level signal.
pub const GPIO_INTR_HIGH_LEVEL: u8 = 5;
/// Specifies the function configuration for GPIO pins.
pub const PIN_FUNC_GPIO: u8 = 1;
/// Index for signaling GPIO output.
pub const SIG_GPIO_OUT_IDX: u32 = 128;
/// Maximum number of GPIO pins supported.
pub const GPIO_NUM_MAX: usize = 22;
impl WakeSource for TimerWakeupSource {
@ -256,6 +293,7 @@ impl WakeSource for RtcioWakeupSource<'_, '_> {
bitfield::bitfield! {
#[derive(Clone, Copy)]
/// RTC Configuration.
pub struct RtcConfig(u32);
impl Debug;
/// Number of rtc_fast_clk cycles to wait for 8M clock to be ready
@ -264,16 +302,19 @@ bitfield::bitfield! {
pub u8, xtal_wait, set_xtal_wait: 15, 8;
/// Number of rtc_fast_clk cycles to wait for PLL clock to be ready
pub u8, pll_wait, set_pll_wait: 23, 16;
// Perform clock control related initialization.
/// Perform clock control related initialization.
pub clkctl_init, set_clkctl_init: 24;
// Perform power control related initialization.
/// Perform power control related initialization.
pub pwrctl_init, set_pwrctl_init: 25;
// Force power down RTC_DBOOST
/// Force power down `RTC_DBOOST`.
pub rtc_dboost_fpd, set_rtc_dboost_fpd: 26;
/// Keep the XTAL oscillator powered up in sleep.
pub xtal_fpu, set_xtal_fpu: 27;
/// Keep the BBPLL oscillator powered up in sleep.
pub bbpll_fpu, set_bbpll_fpu: 28;
/// Enable clock gating when the CPU is in wait-for-interrupt state.
pub cpu_waiti_clk_gate, set_cpu_waiti_clk_gate: 29;
// Calibrate Ocode to make bandgap voltage more precise.
/// Calibrate Ocode to make bandgap voltage more precise.
pub cali_ocode, set_cali_ocode: 30;
}
@ -293,17 +334,28 @@ impl Default for RtcConfig {
bitfield::bitfield! {
#[derive(Clone, Copy)]
/// Configuration for RTC initialization.
pub struct RtcInitConfig(u128);
impl Debug;
/// Number of cycles required to power up WiFi
pub u8, wifi_powerup_cycles, set_wifi_powerup_cycles: 6, 0;
/// Number of wait cycles for WiFi to stabilize
pub u16, wifi_wait_cycles, set_wifi_wait_cycles: 15, 7;
/// Number of cycles required to power up Bluetooth
pub u8, bt_powerup_cycles, set_bt_powerup_cycles: 22, 16;
/// Number of wait cycles for Bluetooth to stabilize
pub u16, bt_wait_cycles, set_bt_wait_cycles: 31, 23;
/// Number of cycles required to power up the top CPU
pub u8, cpu_top_powerup_cycles, set_cpu_top_powerup_cycles: 38, 32;
/// Number of wait cycles for the top CPU to stabilize
pub u16, cpu_top_wait_cycles, set_cpu_top_wait_cycles: 47, 39;
/// Number of cycles required to power up the digital wrapper
pub u8, dg_wrap_powerup_cycles, set_dg_wrap_powerup_cycles: 54, 48;
/// Number of wait cycles for the digital wrapper to stabilize
pub u16, dg_wrap_wait_cycles, set_dg_wrap_wait_cycles: 63, 55;
/// Number of cycles required to power up the digital peripherals
pub u8, dg_peri_powerup_cycles, set_dg_peri_powerup_cycles: 70, 64;
/// Number of wait cycles for the digital peripherals to stabilize
pub u16, dg_peri_wait_cycles, set_dg_peri_wait_cycles: 79, 71;
}
@ -326,6 +378,7 @@ impl Default for RtcInitConfig {
bitfield::bitfield! {
#[derive(Clone, Copy)]
/// Configuration for RTC sleep mode.
pub struct RtcSleepConfig(u64);
impl Debug;
/// force normal voltage in sleep mode (digital domain memory)
@ -437,6 +490,7 @@ fn rtc_sleep_pu(val: bool) {
}
impl RtcSleepConfig {
/// Configures the RTC for deep sleep mode.
pub fn deep() -> Self {
// Set up for ultra-low power sleep. Wakeup sources may modify these settings.
let mut cfg = Self::default();

View File

@ -160,11 +160,14 @@ impl WakeSource for WakeFromLpCoreWakeupSource {
}
}
/// Configuration for controlling the behavior during sleep modes.
#[derive(Clone, Copy)]
// pmu_sleep_analog_config_t
pub struct AnalogSleepConfig {
/// High-power system configuration.
pub hp_sys: HpAnalog,
// pub lp_sys_active: LpAnalog, // unused
/// Low-power system analog configuration.
pub lp_sys_sleep: LpAnalog,
}
@ -298,9 +301,12 @@ impl AnalogSleepConfig {
}
}
/// Configuration for controlling the behavior of digital peripherals during
/// sleep modes.
#[derive(Clone, Copy)]
// pmu_sleep_digital_config_t
pub struct DigitalSleepConfig {
/// High-power system control register configuration.
pub syscntl: HpSysCntlReg,
}
@ -329,11 +335,16 @@ impl DigitalSleepConfig {
}
}
/// Configuration for controlling the power settings of high-power and low-power
/// systems during sleep modes.
#[derive(Clone, Copy)]
// pmu_sleep_power_config_t
pub struct PowerSleepConfig {
/// Power configuration for the high-power system during sleep.
pub hp_sys: HpSysPower,
/// Power configuration for the low-power system when it is active.
pub lp_sys_active: LpSysPower,
/// Power configuration for the low-power system when it is in sleep mode.
pub lp_sys_sleep: LpSysPower,
}
@ -424,42 +435,64 @@ impl PowerSleepConfig {
}
}
/// Parameters for high-power system configurations during sleep modes.
#[derive(Clone, Copy)]
// pmu_hp_param_t
pub struct HpParam {
/// Number of cycles to wait for the modem to wake up.
pub modem_wakeup_wait_cycle: u32,
/// Number of cycles to wait for the analog component stabilization.
pub analog_wait_target_cycle: u16,
/// Number of cycles to wait for the digital power-down sequence.
pub digital_power_down_wait_cycle: u16,
/// Number of cycles to wait for the digital power supply to stabilize.
pub digital_power_supply_wait_cycle: u16,
/// Number of cycles to wait for the digital power-up sequence.
pub digital_power_up_wait_cycle: u16,
/// Number of cycles to wait for the PLL to stabilize.
pub pll_stable_wait_cycle: u16,
/// Number of cycles to wait for modifying the ICG control.
pub modify_icg_cntl_wait_cycle: u8,
/// Number of cycles to wait for switching the ICG coйntrol.
pub switch_icg_cntl_wait_cycle: u8,
/// Minimum sleep time measured in slow clock cycles.
pub min_slp_slow_clk_cycle: u8,
}
/// Parameters for low-power system configurations during sleep modes.
#[derive(Clone, Copy)]
// pmu_lp_param_t
pub struct LpParam {
/// Number of cycles to wait for the digital power supply to stabilize.
pub digital_power_supply_wait_cycle: u16,
/// Minimum sleep time measured in slow clock cycles.
pub min_slp_slow_clk_cycle: u8,
/// Number of cycles to wait for the analog component stabilization.
pub analog_wait_target_cycle: u8,
/// Number of cycles to wait for the digital power-down sequence.
pub digital_power_down_wait_cycle: u8,
/// Number of cycles to wait for the digital power-up sequence.
pub digital_power_up_wait_cycle: u8,
}
/// Parameters for high-power and low-power system configurations during sleep
/// modes.
#[derive(Clone, Copy)]
// pmu_hp_lp_param_t
pub struct HpLpParam {
// union of two u16 variants, I've elected to not complicate things...
/// Union of two u16 variants
pub xtal_stable_wait_cycle: u16,
}
/// Configuration of parameters for sleep modes
#[derive(Clone, Copy)]
// pmu_sleep_param_config_t
pub struct ParamSleepConfig {
/// Configuration of high-power system parameters.
pub hp_sys: HpParam,
/// Configuration of low-power system parameters.
pub lp_sys: LpParam,
/// Shared configuration parameters for high-power and low-power systems.
pub hp_lp: HpLpParam,
}
impl ParamSleepConfig {
@ -729,10 +762,13 @@ impl SleepTimeConfig {
}
}
/// Configuration for the RTC sleep behavior.
#[derive(Clone, Copy)]
// pmu_sleep_config_t + deep sleep flag + pd flags
pub struct RtcSleepConfig {
/// Deep Sleep flag
pub deep: bool,
/// Power Down flags
pub pd_flags: PowerDownFlags,
}
@ -761,28 +797,46 @@ bitfield::bitfield! {
/// Power domains to be powered down during sleep
pub struct PowerDownFlags(u32);
/// Controls the power-down status of the top power domain.
pub u32, pd_top , set_pd_top : 0;
/// Controls the power-down status of the VDD_SDIO power domain.
pub u32, pd_vddsdio , set_pd_vddsdio : 1;
/// Controls the power-down status of the modem power domain.
pub u32, pd_modem , set_pd_modem : 2;
/// Controls the power-down status of the high-performance peripheral power domain.
pub u32, pd_hp_periph, set_pd_hp_periph: 3;
/// Controls the power-down status of the CPU power domain.
pub u32, pd_cpu , set_pd_cpu : 4;
/// Controls the power-down status of the high-performance always-on domain.
pub u32, pd_hp_aon , set_pd_hp_aon : 5;
/// Controls the power-down status of memory group 0.
pub u32, pd_mem_g0 , set_pd_mem_g0 : 6;
/// Controls the power-down status of memory group 1.
pub u32, pd_mem_g1 , set_pd_mem_g1 : 7;
/// Controls the power-down status of memory group 2.
pub u32, pd_mem_g2 , set_pd_mem_g2 : 8;
/// Controls the power-down status of memory group 3.
pub u32, pd_mem_g3 , set_pd_mem_g3 : 9;
/// Controls the power-down status of the crystal oscillator.
pub u32, pd_xtal , set_pd_xtal : 10;
/// Controls the power-down status of the fast RC oscillator.
pub u32, pd_rc_fast , set_pd_rc_fast : 11;
/// Controls the power-down status of the 32kHz crystal oscillator.
pub u32, pd_xtal32k , set_pd_xtal32k : 12;
/// Controls the power-down status of the 32kHz RC oscillator.
pub u32, pd_rc32k , set_pd_rc32k : 13;
/// Controls the power-down status of the low-power peripheral domain.
pub u32, pd_lp_periph, set_pd_lp_periph: 14;
}
impl PowerDownFlags {
/// Checks whether all memory groups (G0, G1, G2, G3) are powered down.
pub fn pd_mem(self) -> bool {
self.pd_mem_g0() && self.pd_mem_g1() && self.pd_mem_g2() && self.pd_mem_g3()
}
/// Sets the power-down status for all memory groups (G0, G1, G2, G3) at
/// once.
pub fn set_pd_mem(&mut self, value: bool) {
self.set_pd_mem_g0(value);
self.set_pd_mem_g1(value);
@ -826,10 +880,12 @@ impl MachineConstants {
}
impl RtcSleepConfig {
/// Returns whether the device is in deep sleep mode.
pub fn deep_slp(&self) -> bool {
self.deep
}
/// Configures the device for deep sleep mode with ultra-low power settings.
pub fn deep() -> Self {
// Set up for ultra-low power sleep. Wakeup sources may modify these settings.
Self {

View File

@ -42,41 +42,69 @@ const I2C_DIG_REG_XPD_DIG_REG_LSB: u32 = 3;
// Approximate mapping of voltages to RTC_CNTL_DBIAS_WAK, RTC_CNTL_DBIAS_SLP,
// RTC_CNTL_DIG_DBIAS_WAK, RTC_CNTL_DIG_DBIAS_SLP values.
// Valid if RTC_CNTL_DBG_ATTEN is 0.
/// Digital bias setting for 0.90V.
pub const RTC_CNTL_DBIAS_0V90: u32 = 13;
/// Digital bias setting for 0.95V.
pub const RTC_CNTL_DBIAS_0V95: u32 = 16;
/// Digital bias setting for 1.00V.
pub const RTC_CNTL_DBIAS_1V00: u32 = 18;
/// Digital bias setting for 1.05V.
pub const RTC_CNTL_DBIAS_1V05: u32 = 20;
/// Digital bias setting for 1.10V.
pub const RTC_CNTL_DBIAS_1V10: u32 = 23;
/// Digital bias setting for 1.15V.
pub const RTC_CNTL_DBIAS_1V15: u32 = 25;
/// Digital bias setting for 1.20V.
pub const RTC_CNTL_DBIAS_1V20: u32 = 28;
/// Digital bias setting for 1.25V.
pub const RTC_CNTL_DBIAS_1V25: u32 = 30;
pub const RTC_CNTL_DBIAS_1V30: u32 = 31; //< voltage is about 1.34v in fact
/// Digital bias setting for 1.30V. Voltage is approximately 1.34V in practice.
pub const RTC_CNTL_DBIAS_1V30: u32 = 31;
/// Default monitor debug attenuation value.
pub const RTC_CNTL_DBG_ATTEN_MONITOR_DEFAULT: u8 = 0;
/// ULP co-processor touch start wait time during sleep, set to maximum.
pub const RTC_CNTL_ULPCP_TOUCH_START_WAIT_IN_SLEEP: u16 = 0xFF;
/// ULP co-processor touch start wait time default value.
pub const RTC_CNTL_ULPCP_TOUCH_START_WAIT_DEFAULT: u16 = 0x10;
/// Default wait time for PLL buffer during startup.
pub const RTC_CNTL_PLL_BUF_WAIT_DEFAULT: u8 = 20;
/// Default wait time for CK8M during startup.
pub const RTC_CNTL_CK8M_WAIT_DEFAULT: u8 = 20;
/// Minimum sleep value.
pub const RTC_CNTL_MIN_SLP_VAL_MIN: u8 = 2;
/// Deep sleep debug attenuation setting for ultra-low power mode.
pub const RTC_CNTL_DBG_ATTEN_DEEPSLEEP_ULTRA_LOW: u8 = 15;
/// Power-up setting for other blocks.
pub const OTHER_BLOCKS_POWERUP: u8 = 1;
/// Wait cycles for other blocks.
pub const OTHER_BLOCKS_WAIT: u16 = 1;
/// WiFi power-up cycles.
pub const WIFI_POWERUP_CYCLES: u8 = OTHER_BLOCKS_POWERUP;
/// WiFi wait cycles.
pub const WIFI_WAIT_CYCLES: u16 = OTHER_BLOCKS_WAIT;
/// Bluetooth power-up cycles.
pub const BT_POWERUP_CYCLES: u8 = OTHER_BLOCKS_POWERUP;
/// Bluetooth wait cycles.
pub const BT_WAIT_CYCLES: u16 = OTHER_BLOCKS_WAIT;
/// RTC power-up cycles.
pub const RTC_POWERUP_CYCLES: u8 = OTHER_BLOCKS_POWERUP;
/// RTC wait cycles.
pub const RTC_WAIT_CYCLES: u16 = OTHER_BLOCKS_WAIT;
/// CPU top power-up cycles.
pub const CPU_TOP_POWERUP_CYCLES: u8 = OTHER_BLOCKS_POWERUP;
/// CPU top wait cycles.
pub const CPU_TOP_WAIT_CYCLES: u16 = OTHER_BLOCKS_WAIT;
/// DG wrap power-up cycles.
pub const DG_WRAP_POWERUP_CYCLES: u8 = OTHER_BLOCKS_POWERUP;
/// DG wrap wait cycles.
pub const DG_WRAP_WAIT_CYCLES: u16 = OTHER_BLOCKS_WAIT;
/// DG peripheral power-up cycles.
pub const DG_PERI_POWERUP_CYCLES: u8 = OTHER_BLOCKS_POWERUP;
/// DG peripheral wait cycles.
pub const DG_PERI_WAIT_CYCLES: u16 = OTHER_BLOCKS_WAIT;
/// RTC memory power-up cycles.
pub const RTC_MEM_POWERUP_CYCLES: u8 = OTHER_BLOCKS_POWERUP;
/// RTC memory wait cycles.
pub const RTC_MEM_WAIT_CYCLES: u16 = OTHER_BLOCKS_WAIT;
impl WakeSource for TimerWakeupSource {
@ -266,6 +294,7 @@ impl Drop for RtcioWakeupSource<'_, '_> {
}
bitfield::bitfield! {
/// Configuration for the RTC sleep behavior.
#[derive(Clone, Copy)]
pub struct RtcSleepConfig(u64);
impl Debug;
@ -382,6 +411,7 @@ fn rtc_sleep_pu(val: bool) {
}
impl RtcSleepConfig {
/// Configures the RTC for deep sleep mode.
pub fn deep() -> Self {
// Set up for ultra-low power sleep. Wakeup sources may modify these settings.
let mut cfg = Self::default();

View File

@ -33,41 +33,56 @@ mod sleep_impl;
pub use sleep_impl::*;
#[derive(Debug, Default, Clone, Copy, PartialEq)]
/// Level at which a wake-up event is triggered
pub enum WakeupLevel {
/// The wake-up event is triggered when the pin is low.
Low,
#[default]
/// The wake-up event is triggered when the pin is high.
High,
}
/// Represents a timer wake-up source, triggering an event after a specified
/// duration.
#[derive(Debug, Default, Clone, Copy)]
#[cfg(any(esp32, esp32c3, esp32s3, esp32c6))]
pub struct TimerWakeupSource {
/// The duration after which the wake-up event is triggered.
duration: Duration,
}
#[cfg(any(esp32, esp32c3, esp32s3, esp32c6))]
impl TimerWakeupSource {
/// Creates a new timer wake-up source with the specified duration.
pub fn new(duration: Duration) -> Self {
Self { duration }
}
}
/// Errors that can occur when configuring RTC wake-up sources.
#[derive(Debug, Clone, Copy, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
/// The selected pin is not a valid RTC pin.
NotRtcPin,
/// The maximum number of wake-up sources has been exceeded.
TooManyWakeupSources,
}
/// External wake-up source (Ext0).
#[derive(Debug)]
#[cfg(any(esp32, esp32s3))]
pub struct Ext0WakeupSource<'a, P: RtcIoWakeupPinType> {
/// The pin used as the wake-up source.
pin: RefCell<&'a mut P>,
/// The level at which the wake-up event is triggered.
level: WakeupLevel,
}
#[cfg(any(esp32, esp32s3))]
impl<'a, P: RtcIoWakeupPinType> Ext0WakeupSource<'a, P> {
/// Creates a new external wake-up source (Ext0``) with the specified pin
/// and wake-up level.
pub fn new(pin: &'a mut P, level: WakeupLevel) -> Self {
Self {
pin: RefCell::new(pin),
@ -76,14 +91,19 @@ impl<'a, P: RtcIoWakeupPinType> Ext0WakeupSource<'a, P> {
}
}
/// External wake-up source (Ext1).
#[cfg(any(esp32, esp32s3))]
pub struct Ext1WakeupSource<'a, 'b> {
/// A collection of pins used as wake-up sources.
pins: RefCell<&'a mut [&'b mut dyn RtcIoWakeupPinType]>,
/// The level at which the wake-up event is triggered across all pins.
level: WakeupLevel,
}
#[cfg(any(esp32, esp32s3))]
impl<'a, 'b> Ext1WakeupSource<'a, 'b> {
/// Creates a new external wake-up source (Ext1) with the specified pins and
/// wake-up level.
pub fn new(pins: &'a mut [&'b mut dyn RtcIoWakeupPinType], level: WakeupLevel) -> Self {
Self {
pins: RefCell::new(pins),
@ -92,6 +112,7 @@ impl<'a, 'b> Ext1WakeupSource<'a, 'b> {
}
}
/// External wake-up source (Ext1).
#[cfg(esp32c6)]
pub struct Ext1WakeupSource<'a, 'b> {
pins: RefCell<&'a mut [(&'b mut dyn RtcIoWakeupPinType, WakeupLevel)]>,
@ -99,6 +120,8 @@ pub struct Ext1WakeupSource<'a, 'b> {
#[cfg(esp32c6)]
impl<'a, 'b> Ext1WakeupSource<'a, 'b> {
/// Creates a new external wake-up source (Ext1) with the specified pins and
/// wake-up level.
pub fn new(pins: &'a mut [(&'b mut dyn RtcIoWakeupPinType, WakeupLevel)]) -> Self {
Self {
pins: RefCell::new(pins),
@ -118,6 +141,7 @@ pub struct RtcioWakeupSource<'a, 'b> {
#[cfg(any(esp32c3, esp32s3))]
impl<'a, 'b> RtcioWakeupSource<'a, 'b> {
/// Creates a new external wake-up source (Ext1).
pub fn new(pins: &'a mut [(&'b mut dyn RtcIoWakeupPinType, WakeupLevel)]) -> Self {
Self {
pins: RefCell::new(pins),
@ -247,6 +271,7 @@ uart_wakeup_impl!(1);
#[cfg(not(pmu))]
bitfield::bitfield! {
/// Represents the wakeup triggers.
#[derive(Default, Clone, Copy)]
pub struct WakeTriggers(u16);
impl Debug;
@ -276,6 +301,7 @@ bitfield::bitfield! {
#[cfg(pmu)]
bitfield::bitfield! {
/// Represents the wakeup triggers.
#[derive(Default, Clone, Copy)]
pub struct WakeTriggers(u16);
impl Debug;
@ -306,6 +332,8 @@ bitfield::bitfield! {
pub usb, set_usb: 14;
}
/// Trait representing a wakeup source.
pub trait WakeSource {
/// Configures the RTC and applies the wakeup triggers.
fn apply(&self, rtc: &Rtc<'_>, triggers: &mut WakeTriggers, sleep_config: &mut RtcSleepConfig);
}

View File

@ -57,8 +57,6 @@
//! ## Implementation State
//! - DMA-SHA Mode is not supported.
#![allow(missing_docs)] // TODO: Remove when able
use core::{convert::Infallible, marker::PhantomData};
/// Re-export digest for convenience
@ -99,10 +97,17 @@ impl crate::InterruptConfigurable for Context<crate::Blocking> {
}
impl<DM: crate::Mode> Context<DM> {
/// Indicates if the SHA context is in the first run.
///
/// Returns `true` if this is the first time processing data with the SHA
/// instance, otherwise returns `false`.
pub fn first_run(&self) -> bool {
self.first_run
}
/// Indicates if the SHA context has finished processing the data.
///
/// Returns `true` if the SHA calculation is complete, otherwise returns.
pub fn finished(&self) -> bool {
self.finished
}
@ -122,8 +127,14 @@ impl<DM: crate::Mode> Context<DM> {
// - This means that we need to buffer bytes coming in up to 4 u8's in order
// to create a full u32
// This implementation might fail after u32::MAX/8 bytes, to increase please see
// ::finish() length/self.cursor usage
/// Trait for defining the behavior of a SHA algorithm instance.
///
/// This trait encapsulates the operations and configuration for a specific SHA
/// algorithm and provides methods for processing data buffers and calculating
/// the final hash.
///
/// This implementation might fail after u32::MAX/8 bytes, to increase please
/// see ::finish() length/self.cursor usage
pub trait Sha<DM: crate::Mode>: core::ops::DerefMut<Target = Context<DM>> {
/// Constant containing the name of the algorithm as a string.
const ALGORITHM: &'static str;
@ -132,8 +143,14 @@ pub trait Sha<DM: crate::Mode>: core::ops::DerefMut<Target = Context<DM>> {
#[cfg(not(esp32))]
fn mode_as_bits() -> u8;
/// Returns the length of the chunk that the algorithm processes at a time.
///
/// For example, in SHA-256, this would typically return 64 bytes.
fn chunk_length(&self) -> usize;
/// Returns the length of the resulting digest produced by the algorithm.
///
/// For example, in SHA-256, this would return 32 bytes.
fn digest_length(&self) -> usize;
/// ESP32 requires that a control register to be written to calculate the
@ -141,10 +158,16 @@ pub trait Sha<DM: crate::Mode>: core::ops::DerefMut<Target = Context<DM>> {
#[cfg(esp32)]
fn load_reg(&self);
/// Checks if the SHA peripheral is busy processing data.
///
/// Returns `true` if the SHA peripheral is busy, `false` otherwise.
/// ESP32 uses a different register per hash mode.
#[cfg(esp32)]
fn is_busy(&self) -> bool;
/// Checks if the SHA peripheral is busy processing data.
///
/// Returns `true` if the SHA peripheral is busy, `false` otherwise.
#[cfg(not(esp32))]
fn is_busy(&self) -> bool {
// Safety: This is safe because we only read `SHA_BUSY_REG`
@ -152,9 +175,17 @@ pub trait Sha<DM: crate::Mode>: core::ops::DerefMut<Target = Context<DM>> {
sha.busy().read().bits() != 0
}
/// Processes the data buffer and updates the hash state.
///
/// This method is platform-specific and differs for ESP32 and non-ESP32
/// platforms.
#[cfg(esp32)]
fn process_buffer(&mut self);
/// Processes the data buffer and updates the hash state.
///
/// This method is platform-specific and differs for ESP32 and non-ESP32
/// platforms.
#[cfg(not(esp32))]
fn process_buffer(&mut self) {
// Safety: This is safe because digest state is restored and saved between
@ -193,6 +224,11 @@ pub trait Sha<DM: crate::Mode>: core::ops::DerefMut<Target = Context<DM>> {
self.saved_digest.replace(saved_digest);
}
/// Flushes any remaining data from the internal buffer to the SHA
/// peripheral.
///
/// Returns a `Result` indicating whether the flush was successful or if the
/// operation would block.
fn flush_data(&mut self) -> nb::Result<(), Infallible> {
if self.is_busy() {
return Err(nb::Error::WouldBlock);
@ -234,8 +270,9 @@ pub trait Sha<DM: crate::Mode>: core::ops::DerefMut<Target = Context<DM>> {
Ok(())
}
// This function ensures that incoming data is aligned to u32 (due to issues
// with cpy_mem<u8>)
/// Writes data into the SHA buffer.
/// This function ensures that incoming data is aligned to u32 (due to
/// issues with `cpy_mem<u8>`)
fn write_data<'a>(&mut self, incoming: &'a [u8]) -> nb::Result<&'a [u8], Infallible> {
let mod_cursor = self.cursor % self.chunk_length();
@ -273,6 +310,7 @@ pub trait Sha<DM: crate::Mode>: core::ops::DerefMut<Target = Context<DM>> {
Ok(remaining)
}
/// Updates the SHA context with the provided data buffer.
fn update<'a>(&mut self, buffer: &'a [u8]) -> nb::Result<&'a [u8], Infallible> {
if self.is_busy() {
return Err(nb::Error::WouldBlock);
@ -285,12 +323,12 @@ pub trait Sha<DM: crate::Mode>: core::ops::DerefMut<Target = Context<DM>> {
Ok(remaining)
}
// Finish of the calculation (if not alreaedy) and copy result to output
// After `finish()` is called `update()`s will contribute to a new hash which
// can be calculated again with `finish()`.
//
// Typically output is expected to be the size of digest_length(), but smaller
// inputs can be given to get a "short hash"
/// Finish of the calculation (if not already) and copy result to output
/// After `finish()` is called `update()`s will contribute to a new hash
/// which can be calculated again with `finish()`.
///
/// Typically output is expected to be the size of digest_length(), but
/// smaller inputs can be given to get a "short hash"
fn finish(&mut self, output: &mut [u8]) -> nb::Result<(), Infallible> {
// The main purpose of this function is to dynamically generate padding for the
// input. Padding: Append "1" bit, Pad zeros until 512/1024 filled
@ -393,6 +431,15 @@ pub trait Sha<DM: crate::Mode>: core::ops::DerefMut<Target = Context<DM>> {
/// and a set of parameters
macro_rules! impl_sha {
($name: ident, $mode_bits: tt, $digest_length: tt, $chunk_length: tt) => {
/// A SHA implementation struct.
///
/// This struct is generated by the macro and represents a specific SHA hashing
/// algorithm (e.g., SHA-256, SHA-1). It manages the context and state required
/// for processing data using the selected hashing algorithm.
///
/// The struct provides various functionalities such as initializing the hashing
/// process, updating the internal state with new data, and finalizing the
/// hashing operation to generate the final digest.
pub struct $name<DM: crate::Mode>(Context<DM>);
impl $name<crate::Blocking> {

View File

@ -99,14 +99,17 @@ impl<const SIZE: usize> Stack<SIZE> {
}
}
/// Returns the size of the stack.
pub const fn len(&self) -> usize {
SIZE
}
/// Provides a mutable pointer to the bottom of the stack.
pub fn bottom(&mut self) -> *mut u32 {
self.mem.as_mut_ptr() as *mut u32
}
/// Provides a mutable pointer to the top of the stack.
pub fn top(&mut self) -> *mut u32 {
unsafe { self.bottom().add(SIZE / 4) }
}
@ -132,9 +135,11 @@ impl<'a> Drop for AppCoreGuard<'a> {
}
}
/// Represents errors that can occur while working with the core.
#[derive(Debug, Clone, Copy, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
/// The core is already running.
CoreAlreadyRunning,
}
@ -168,6 +173,7 @@ unsafe fn internal_park_core(core: Cpu) {
}
impl<'d> CpuControl<'d> {
/// Creates a new instance of `CpuControl`.
pub fn new(cpu_control: impl Peripheral<P = CPU_CTRL> + 'd) -> CpuControl<'d> {
crate::into_ref!(cpu_control);

View File

@ -47,20 +47,30 @@ use crate::peripherals::EFUSE;
mod fields;
/// A struct representing the eFuse functionality of the chip.
pub struct Efuse;
/// Representing different types of ESP32 chips.
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
pub enum ChipType {
/// Represents the ESP32 D0WDQ6 chip variant.
Esp32D0wdq6,
/// Represents the ESP32 D0WDQ5 chip variant.
Esp32D0wdq5,
/// Represents the ESP32 D2WDQ5 chip variant.
Esp32D2wdq5,
/// Represents the ESP32 Pico D2 chip variant.
Esp32Picod2,
/// Represents the ESP32 Pico D4 chip variant.
Esp32Picod4,
/// Represents the ESP32 Pico v3.02 chip variant.
Esp32Picov302,
/// Represents an unknown or unsupported chip variant.
Unknown,
}
impl Efuse {
/// Reads the base MAC address from the eFuse memory.
pub fn read_base_mac_address() -> [u8; 6] {
Self::read_field_be(MAC)
}

View File

@ -58,6 +58,7 @@ use crate::{
Cpu,
};
/// The total number of GPIO pins available.
pub const NUM_PINS: usize = 40;
pub(crate) const FUNC_IN_SEL_OFFSET: usize = 0;

View File

@ -33,15 +33,19 @@ macro_rules! chip {
pub use chip;
pub(crate) mod constants {
/// The base clock frequency for the I2S peripheral (Hertz).
pub const I2S_SCLK: u32 = 160_000_000;
/// The default clock source for I2S operations.
pub const I2S_DEFAULT_CLK_SRC: u32 = 2;
/// The starting address of the Remote Control (RMT) module's RAM.
pub const RMT_RAM_START: usize = 0x3ff56800;
/// The size, in bytes, of each RMT channel's dedicated RAM.
pub const RMT_CHANNEL_RAM_SIZE: usize = 64;
/// The lower bound of the system's DRAM (Data RAM) address space.
pub const SOC_DRAM_LOW: u32 = 0x3FFA_E000;
/// The upper bound of the system's DRAM (Data RAM) address space.
pub const SOC_DRAM_HIGH: u32 = 0x4000_0000;
/// A reference clock tick of 1 MHz.
pub const REF_TICK: fugit::HertzU32 = fugit::HertzU32::MHz(1);
}

View File

@ -18,8 +18,12 @@
//!
//! NOTE: If you want to use `PSRAM` on `ESP32` or `ESP32-S3`, it'll work only
//! in `release` mode.
/// The starting virtual address of the PSRAM (Pseudo-SRAM) region in memory.
pub const PSRAM_VADDR_START: usize = 0x3F800000;
/// Retrieves the starting virtual address of the PSRAM (Pseudo-SRAM) region in
/// memory.
pub fn psram_vaddr_start() -> usize {
PSRAM_VADDR_START
}
@ -36,8 +40,10 @@ cfg_if::cfg_if! {
}
}
/// The total size of the PSRAM (Pseudo-SRAM) in bytes.
pub const PSRAM_BYTES: usize = PSRAM_SIZE as usize * 1024 * 1024;
/// Initializes the PSRAM memory on supported devices.
#[cfg(any(feature = "psram-2m", feature = "psram-4m", feature = "psram-8m"))]
pub fn init_psram(_peripheral: impl crate::peripheral::Peripheral<P = crate::peripherals::PSRAM>) {
utils::psram_init();

View File

@ -1,6 +1,8 @@
//! Helper functions for TRNG functionality
pub fn ensure_randomness() {
/// Enable true randomness by enabling the entropy source.
/// Blocks `ADC` usage.
pub(crate) fn ensure_randomness() {
let rtc_cntl = unsafe { &*crate::peripherals::RTC_CNTL::ptr() };
let sens = unsafe { &*crate::peripherals::SENS::ptr() };
let dport = unsafe { &*crate::peripherals::DPORT::ptr() };
@ -104,7 +106,8 @@ pub fn ensure_randomness() {
}
}
pub fn revert_trng() {
/// Disable true randomness. Unlocks `ADC` peripheral.
pub(crate) fn revert_trng() {
let sens = unsafe { &*crate::peripherals::SENS::ptr() };
let i2s0 = unsafe { &*crate::peripherals::I2S0::ptr() };
let apb_ctrl = unsafe { &*crate::peripherals::APB_CTRL::ptr() };

View File

@ -45,6 +45,7 @@ use crate::{analog::adc::Attenuation, peripherals::EFUSE};
mod fields;
/// A struct representing the eFuse functionality of the chip.
pub struct Efuse;
impl Efuse {

View File

@ -50,6 +50,7 @@ use crate::{
peripherals::GPIO,
};
/// The total number of GPIO pins available.
pub const NUM_PINS: usize = 21;
pub(crate) const FUNC_IN_SEL_OFFSET: usize = 0;

View File

@ -30,9 +30,12 @@ pub(crate) mod registers {
}
pub(crate) mod constants {
/// The lower bound of the system's DRAM (Data RAM) address space.
pub const SOC_DRAM_LOW: u32 = 0x3FCA_0000;
/// The upper bound of the system's DRAM (Data RAM) address space.
pub const SOC_DRAM_HIGH: u32 = 0x3FCE_0000;
/// RC FAST Clock value (Hertz).
pub const RC_FAST_CLK: fugit::HertzU32 = fugit::HertzU32::kHz(17500);
}

View File

@ -15,6 +15,8 @@ const ADC_SARADC_ENT_TSENS_ADDR_LSB: u8 = 2;
use crate::regi2c_write_mask;
/// Enable true randomness by enabling the entropy source.
/// Blocks `ADC` usage.
pub(crate) fn ensure_randomness() {
let rtc_cntl = unsafe { &*crate::peripherals::RTC_CNTL::ptr() };
let system = unsafe { &*crate::peripherals::SYSTEM::ptr() };
@ -100,6 +102,7 @@ pub(crate) fn ensure_randomness() {
}
}
/// Disable true randomness. Unlocks `ADC` peripheral.
pub(crate) fn revert_trng() {
let apb_saradc = unsafe { &*crate::peripherals::APB_SARADC::ptr() };
let rtc_cntl = unsafe { &*crate::peripherals::RTC_CNTL::ptr() };

View File

@ -45,6 +45,7 @@ use crate::{analog::adc::Attenuation, peripherals::EFUSE};
mod fields;
/// A struct representing the eFuse functionality of the chip.
pub struct Efuse;
impl Efuse {

View File

@ -51,6 +51,7 @@ use crate::{
peripherals::GPIO,
};
/// The total number of GPIO pins available.
pub const NUM_PINS: usize = 22;
pub(crate) const FUNC_IN_SEL_OFFSET: usize = 0;

View File

@ -34,17 +34,26 @@ pub(crate) mod registers {
}
pub(crate) mod constants {
/// The base clock frequency for the I2S peripheral (Hertz).
pub const I2S_SCLK: u32 = 160_000_000;
/// The default clock source for I2S operations.
pub const I2S_DEFAULT_CLK_SRC: u8 = 2;
/// The starting address of the Remote Control (RMT) module's RAM.
pub const RMT_RAM_START: usize = 0x60016400;
/// The size, in bytes, of each RMT channel's dedicated RAM.
pub const RMT_CHANNEL_RAM_SIZE: usize = 48;
/// RMT Clock source value.
pub const RMT_CLOCK_SRC: u8 = 1;
/// RMT Clock source frequence.
pub const RMT_CLOCK_SRC_FREQ: fugit::HertzU32 = fugit::HertzU32::MHz(80);
/// The lower bound of the system's DRAM (Data RAM) address space.
pub const SOC_DRAM_LOW: u32 = 0x3FC8_0000;
/// The upper bound of the system's DRAM (Data RAM) address space.
pub const SOC_DRAM_HIGH: u32 = 0x3FCE_0000;
/// RC FAST Clock value (Hertz).
pub const RC_FAST_CLK: fugit::HertzU32 = fugit::HertzU32::kHz(17500);
}

View File

@ -15,6 +15,8 @@ const ADC_SARADC_ENT_TSENS_ADDR_LSB: u8 = 2;
use crate::regi2c_write_mask;
/// Enable true randomness by enabling the entropy source.
/// Blocks `ADC` usage.
pub(crate) fn ensure_randomness() {
let rtc_cntl = unsafe { &*crate::peripherals::RTC_CNTL::ptr() };
let system = unsafe { &*crate::peripherals::SYSTEM::ptr() };
@ -100,6 +102,7 @@ pub(crate) fn ensure_randomness() {
}
}
/// Disable true randomness. Unlocks `ADC` peripheral.
pub(crate) fn revert_trng() {
let rtc_cntl = unsafe { &*crate::peripherals::RTC_CNTL::ptr() };
let apb_saradc = unsafe { &*crate::peripherals::APB_SARADC::ptr() };

View File

@ -45,6 +45,7 @@ use crate::{analog::adc::Attenuation, peripherals::EFUSE};
mod fields;
/// A struct representing the eFuse functionality of the chip.
pub struct Efuse;
impl Efuse {

View File

@ -51,6 +51,7 @@ use crate::{
peripherals::GPIO,
};
/// The total number of GPIO pins available.
pub const NUM_PINS: usize = 31;
pub(crate) const FUNC_IN_SEL_OFFSET: usize = 0;

View File

@ -23,8 +23,10 @@ use esp32c6 as pac;
use crate::peripheral::{Peripheral, PeripheralRef};
/// Represents the possible wakeup sources for the LP (Low Power) core.
#[derive(Debug, Clone, Copy)]
pub enum LpCoreWakeupSource {
/// Wakeup source from the HP (High Performance) CPU.
HpCpu,
}
@ -39,6 +41,7 @@ pub enum LpCoreClockSource {
XtalD2Clk,
}
/// Represents the Low Power (LP) core peripheral.
pub struct LpCore<'d> {
_lp_core: PeripheralRef<'d, crate::soc::peripherals::LP_CORE>,
}

View File

@ -36,22 +36,33 @@ pub(crate) mod registers {
}
pub(crate) mod constants {
/// The default clock source for the timer group.
pub const TIMG_DEFAULT_CLK_SRC: u8 = 1;
/// The clock frequency for the I2S peripheral in Hertz.
pub const I2S_SCLK: u32 = 160_000_000;
/// The default clock source for the I2S peripheral.
pub const I2S_DEFAULT_CLK_SRC: u8 = 2;
/// The starting address of the RMT (Remote Control) peripheral's RAM.
pub const RMT_RAM_START: usize = 0x60006400;
/// The size of each RMT channel's RAM in bytes.
pub const RMT_CHANNEL_RAM_SIZE: usize = 48;
/// The default clock source for the RMT peripheral.
pub const RMT_CLOCK_SRC: u8 = 1;
/// The frequency of the RMT clock source in Hertz.
pub const RMT_CLOCK_SRC_FREQ: fugit::HertzU32 = fugit::HertzU32::MHz(80);
/// The clock frequency for the Parallel IO peripheral in Hertz.
pub const PARL_IO_SCLK: u32 = 240_000_000;
/// The lower address boundary for system DRAM.
pub const SOC_DRAM_LOW: u32 = 0x4080_0000;
/// The upper address boundary for system DRAM.
pub const SOC_DRAM_HIGH: u32 = 0x4088_0000;
pub const RC_FAST_CLK: fugit::HertzU32 = fugit::HertzU32::kHz(17500);
/// RC FAST Clock value (Hertz).
pub const RC_FAST_CLK: fugit::HertzU32 = fugit::HertzU32::kHz(17_500);
}
#[export_name = "__post_init"]

View File

@ -60,6 +60,8 @@ const ADC_SARADC2_ENCAL_REF_ADDR: u8 = 0x7;
const ADC_SARADC2_ENCAL_REF_ADDR_MSB: u8 = 6;
const ADC_SARADC2_ENCAL_REF_ADDR_LSB: u8 = 6;
/// Enable true randomness by enabling the entropy source.
/// Blocks `ADC` usage.
pub(crate) fn ensure_randomness() {
let pcr = unsafe { &*crate::peripherals::PCR::ptr() };
let pmu = unsafe { &*crate::peripherals::PMU::ptr() };
@ -190,10 +192,9 @@ pub(crate) fn ensure_randomness() {
}
}
#[allow(unused)]
/// Disable true randomness. Unlocks `ADC` peripheral.
pub(crate) fn revert_trng() {
let apb_saradc = unsafe { &*crate::peripherals::APB_SARADC::ptr() };
let pmu = unsafe { &*crate::peripherals::PMU::ptr() };
let pcr = unsafe { &*crate::peripherals::PCR::ptr() };
unsafe {

View File

@ -45,6 +45,7 @@ use crate::peripherals::EFUSE;
mod fields;
/// A struct representing the eFuse functionality of the chip.
pub struct Efuse;
impl Efuse {

View File

@ -52,6 +52,7 @@ use crate::{
};
// https://github.com/espressif/esp-idf/blob/df9310a/components/soc/esp32h2/gpio_periph.c#L42
/// The total number of GPIO pins available.
pub const NUM_PINS: usize = 28;
pub(crate) const FUNC_IN_SEL_OFFSET: usize = 0;

View File

@ -35,21 +35,33 @@ pub(crate) mod registers {
}
pub(crate) mod constants {
/// Default clock source for the timer group (TIMG) peripheral.
pub const TIMG_DEFAULT_CLK_SRC: u8 = 2;
/// Default clock source for the I2S peripheral.
pub const I2S_DEFAULT_CLK_SRC: u8 = 1;
/// Clock frequency for the I2S peripheral, in Hertz.
pub const I2S_SCLK: u32 = 96_000_000;
/// Start address of the RMT (Remote Control) peripheral's RAM.
pub const RMT_RAM_START: usize = 0x60007400;
/// Size of the RAM allocated per RMT channel, in bytes.
pub const RMT_CHANNEL_RAM_SIZE: usize = 48;
/// Clock source for the RMT peripheral (false = default source).
pub const RMT_CLOCK_SRC: bool = false;
/// Frequency of the RMT clock source, in Hertz.
pub const RMT_CLOCK_SRC_FREQ: fugit::HertzU32 = fugit::HertzU32::MHz(32);
/// System clock frequency for the parallel I/O (PARL IO) peripheral, in
/// Hertz.
pub const PARL_IO_SCLK: u32 = 96_000_000;
/// Start address of the system's DRAM (low range).
pub const SOC_DRAM_LOW: u32 = 0x4080_0000;
/// End address of the system's DRAM (high range).
pub const SOC_DRAM_HIGH: u32 = 0x4085_0000;
/// RC FAST Clock value (Hertz).
pub const RC_FAST_CLK: fugit::HertzU32 = fugit::HertzU32::kHz(17500);
}

View File

@ -56,6 +56,8 @@ const REGI2C_RTC_WR_CNTL_S: u8 = 24;
const REGI2C_RTC_DATA_V: u8 = 0xFF;
const REGI2C_RTC_DATA_S: u8 = 16;
/// Enable true randomness by enabling the entropy source.
/// Blocks `ADC` usage.
pub(crate) fn ensure_randomness() {
let pcr = unsafe { &*crate::peripherals::PCR::ptr() };
let pmu = unsafe { &*crate::peripherals::PMU::ptr() };
@ -177,6 +179,7 @@ pub(crate) fn ensure_randomness() {
}
}
/// Disable true randomness. Unlocks `ADC` peripheral.
pub(crate) fn revert_trng() {
let apb_saradc = unsafe { &*crate::peripherals::APB_SARADC::ptr() };
let pcr = unsafe { &*crate::peripherals::PCR::ptr() };

View File

@ -45,6 +45,7 @@ use crate::peripherals::EFUSE;
mod fields;
/// A struct representing the eFuse functionality of the chip.
pub struct Efuse;
impl Efuse {

View File

@ -64,6 +64,7 @@ use crate::{
peripherals::GPIO,
};
/// The total number of GPIO pins available.
pub const NUM_PINS: usize = 47;
pub(crate) const FUNC_IN_SEL_OFFSET: usize = 0;

View File

@ -38,15 +38,19 @@ macro_rules! chip {
pub use chip;
pub(crate) mod constants {
/// System clock frequency for the I2S peripheral, in Hertz.
pub const I2S_SCLK: u32 = 160_000_000;
/// Default clock source for the I2S peripheral.
pub const I2S_DEFAULT_CLK_SRC: u32 = 2;
/// Start address of the RMT (Remote Control) peripheral's RAM.
pub const RMT_RAM_START: usize = 0x3f416400;
/// Size of the RAM allocated per RMT channel, in bytes.
pub const RMT_CHANNEL_RAM_SIZE: usize = 64;
/// Start address of the system's DRAM (low range).
pub const SOC_DRAM_LOW: u32 = 0x3FFB_0000;
/// End address of the system's DRAM (high range).
pub const SOC_DRAM_HIGH: u32 = 0x4000_0000;
/// Reference clock tick frequency, set to 1 MHz.
pub const REF_TICK: fugit::HertzU32 = fugit::HertzU32::MHz(1);
}

View File

@ -17,6 +17,7 @@
//! `4MB`, and `8MB`.
const PSRAM_VADDR: u32 = 0x3f500000;
/// Returns the start address of the PSRAM virtual address space.
pub fn psram_vaddr_start() -> usize {
PSRAM_VADDR_START
}
@ -33,10 +34,14 @@ cfg_if::cfg_if! {
}
}
/// The total size of the PSRAM in bytes, calculated from the PSRAM size
/// constant.
pub const PSRAM_BYTES: usize = PSRAM_SIZE as usize * 1024 * 1024;
/// The start address of the PSRAM virtual address space.
pub const PSRAM_VADDR_START: usize = PSRAM_VADDR as usize;
/// Initialize PSRAM to be used for data.
#[cfg(any(feature = "psram-2m", feature = "psram-4m", feature = "psram-8m"))]
pub fn init_psram(_peripheral: impl crate::peripheral::Peripheral<P = crate::peripherals::PSRAM>) {
#[allow(unused)]

View File

@ -45,6 +45,8 @@ const I2C_RTC_BBPLL_MASK: u32 = 1 << 17;
const I2C_RTC_SAR_MASK: u32 = 1 << 18;
const I2C_RTC_BOD_MASK: u32 = 1 << 22;
/// Enable true randomness by enabling the entropy source.
/// Blocks `ADC` usage.
pub(crate) fn ensure_randomness() {
let rtc_cntl = unsafe { &*crate::peripherals::RTC_CNTL::ptr() };
let dport = unsafe { &*crate::peripherals::SYSTEM::ptr() };
@ -157,7 +159,8 @@ pub(crate) fn ensure_randomness() {
}
}
pub fn revert_trng() {
/// Disable true randomness. Unlocks `ADC` peripheral.
pub(crate) fn revert_trng() {
let dport = unsafe { &*crate::peripherals::SYSTEM::ptr() };
let apb_saradc = unsafe { &*crate::peripherals::APB_SARADC::ptr() };
let sens = unsafe { &*crate::peripherals::SENS::ptr() };

View File

@ -42,16 +42,20 @@ use esp32s2 as pac;
use crate::peripheral::{Peripheral, PeripheralRef};
/// Enum representing the possible wakeup sources for the ULP core.
#[derive(Debug, Clone, Copy)]
pub enum UlpCoreWakeupSource {
/// Wakeup source from the HP (High Performance) CPU.
HpCpu,
}
/// Structure representing the ULP (Ultra-Low Power) core.
pub struct UlpCore<'d> {
_lp_core: PeripheralRef<'d, crate::soc::peripherals::ULP_RISCV_CORE>,
}
impl<'d> UlpCore<'d> {
/// Creates a new instance of the `UlpCore` struct.
pub fn new(lp_core: impl Peripheral<P = crate::soc::peripherals::ULP_RISCV_CORE> + 'd) -> Self {
crate::into_ref!(lp_core);
@ -70,6 +74,7 @@ impl<'d> UlpCore<'d> {
// ulp_stop();
// }
/// Runs the ULP core with the specified wakeup source.
pub fn run(&mut self, wakeup_src: UlpCoreWakeupSource) {
ulp_run(wakeup_src);
}

View File

@ -100,14 +100,17 @@ impl<const SIZE: usize> Stack<SIZE> {
}
}
/// Returns the length of the stack in bytes.
pub const fn len(&self) -> usize {
SIZE
}
/// Returns a mutable pointer to the bottom of the stack.
pub fn bottom(&mut self) -> *mut u32 {
self.mem.as_mut_ptr() as *mut u32
}
/// Returns a mutable pointer to the top of the stack.
pub fn top(&mut self) -> *mut u32 {
unsafe { self.bottom().add(SIZE / 4) }
}
@ -132,9 +135,11 @@ impl<'a> Drop for AppCoreGuard<'a> {
}
}
/// Represents errors that can occur while working with the core.
#[derive(Debug, Clone, Copy, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
/// The core is already running.
CoreAlreadyRunning,
}
@ -168,6 +173,7 @@ unsafe fn internal_park_core(core: Cpu) {
}
impl<'d> CpuControl<'d> {
/// Creates a new instance of `CpuControl`.
pub fn new(cpu_control: impl Peripheral<P = CPU_CTRL> + 'd) -> CpuControl<'d> {
crate::into_ref!(cpu_control);

View File

@ -45,6 +45,7 @@ use crate::{analog::adc::Attenuation, peripherals::EFUSE};
mod fields;
/// A struct representing the eFuse functionality of the chip.
pub struct Efuse;
impl Efuse {

View File

@ -52,6 +52,7 @@ use crate::{
peripherals::GPIO,
};
/// The total number of GPIO pins available.
pub const NUM_PINS: usize = 49;
pub(crate) const FUNC_IN_SEL_OFFSET: usize = 0;

View File

@ -39,17 +39,26 @@ macro_rules! chip {
pub use chip;
pub(crate) mod constants {
/// The base clock frequency for the I2S peripheral (Hertz).
pub const I2S_SCLK: u32 = 160_000_000;
/// The default clock source for I2S operations.
pub const I2S_DEFAULT_CLK_SRC: u8 = 2;
/// The starting address of the Remote Control (RMT) module's RAM.
pub const RMT_RAM_START: usize = 0x60016800;
/// The size, in bytes, of each RMT channel's dedicated RAM.
pub const RMT_CHANNEL_RAM_SIZE: usize = 48;
/// RMT Clock source value.
pub const RMT_CLOCK_SRC: u8 = 1;
/// RMT Clock source frequence.
pub const RMT_CLOCK_SRC_FREQ: fugit::HertzU32 = fugit::HertzU32::MHz(80);
/// The lower bound of the system's DRAM (Data RAM) address space.
pub const SOC_DRAM_LOW: u32 = 0x3FC8_8000;
/// The upper bound of the system's DRAM (Data RAM) address space.
pub const SOC_DRAM_HIGH: u32 = 0x3FD0_0000;
/// A reference clock tick of 1 MHz.
pub const RC_FAST_CLK: fugit::HertzU32 = fugit::HertzU32::kHz(17500);
}
@ -171,6 +180,7 @@ unsafe fn post_init() {
Wdt::<TIMG1, crate::Blocking>::set_wdt_enabled(false);
}
/// Write back a specific range of data in the cache.
#[doc(hidden)]
#[link_section = ".rwtext"]
pub unsafe fn cache_writeback_addr(addr: u32, size: u32) {
@ -185,6 +195,7 @@ pub unsafe fn cache_writeback_addr(addr: u32, size: u32) {
Cache_Resume_DCache_Autoload(autoload);
}
/// Invalidate a specific range of addresses in the cache.
#[doc(hidden)]
#[link_section = ".rwtext"]
pub unsafe fn cache_invalidate_addr(addr: u32, size: u32) {
@ -194,6 +205,7 @@ pub unsafe fn cache_invalidate_addr(addr: u32, size: u32) {
Cache_Invalidate_Addr(addr, size);
}
/// Get the size of a cache line in the DCache.
#[doc(hidden)]
#[link_section = ".rwtext"]
pub unsafe fn cache_get_dcache_line_size() -> u32 {

View File

@ -18,6 +18,7 @@
static mut PSRAM_VADDR: u32 = 0x3C000000;
/// Returns the start address of the PSRAM virtual address space.
pub fn psram_vaddr_start() -> usize {
unsafe { PSRAM_VADDR as usize }
}
@ -42,6 +43,8 @@ cfg_if::cfg_if! {
}
}
/// The total size of the PSRAM in bytes, calculated from the PSRAM size
/// constant.
pub const PSRAM_BYTES: usize = PSRAM_SIZE as usize * 1024 * 1024;
/// Initialize PSRAM to be used for data.
@ -862,14 +865,21 @@ pub(crate) mod utils {
fn esp_rom_opiflash_pin_config();
}
/// Represents the operational mode registers of an OPI PSRAM.
#[derive(Default)]
#[repr(C)]
struct OpiPsramModeReg {
// Mode register 0 (MR0).
pub mr0: u8,
// Mode register 1 (MR1).
pub mr1: u8,
// Mode register 2 (MR2).
pub mr2: u8,
// Mode register 3 (MR3).
pub mr3: u8,
// Mode register 4 (MR4).
pub mr4: u8,
// Mode register 8 (MR8).
pub mr8: u8,
}

View File

@ -17,6 +17,8 @@ const ADC_SARADC_DTEST_RTC_ADDR_LSB: u32 = 0;
use crate::regi2c_write_mask;
/// Enable true randomness by enabling the entropy source.
/// Blocks `ADC` usage.
pub(crate) fn ensure_randomness() {
unsafe {
let rtc_cntl = &*crate::peripherals::RTC_CNTL::ptr();
@ -117,7 +119,8 @@ pub(crate) fn ensure_randomness() {
}
}
pub fn revert_trng() {
/// Disable true randomness. Unlocks `ADC` peripheral.
pub(crate) fn revert_trng() {
let system = unsafe { &*crate::peripherals::SYSTEM::ptr() };
let apb_saradc = unsafe { &*crate::peripherals::APB_SARADC::ptr() };
let sens = unsafe { &*crate::peripherals::SENS::ptr() };

View File

@ -42,16 +42,20 @@ use esp32s3 as pac;
use crate::peripheral::{Peripheral, PeripheralRef};
/// Enum representing the possible wakeup sources for the ULP core.
#[derive(Debug, Clone, Copy)]
pub enum UlpCoreWakeupSource {
/// Wakeup source from the HP (High Performance) CPU.
HpCpu,
}
/// Structure representing the ULP (Ultra-Low Power) core.
pub struct UlpCore<'d> {
_lp_core: PeripheralRef<'d, crate::soc::peripherals::ULP_RISCV_CORE>,
}
impl<'d> UlpCore<'d> {
/// Creates a new instance of the `UlpCore` struct.
pub fn new(lp_core: impl Peripheral<P = crate::soc::peripherals::ULP_RISCV_CORE> + 'd) -> Self {
crate::into_ref!(lp_core);
@ -66,10 +70,12 @@ impl<'d> UlpCore<'d> {
this
}
/// Stops the ULP core.
pub fn stop(&mut self) {
ulp_stop();
}
/// Runs the ULP core with the specified wakeup source.
pub fn run(&mut self, wakeup_src: UlpCoreWakeupSource) {
ulp_run(wakeup_src);
}

View File

@ -1,5 +1,3 @@
#![allow(missing_docs)] // TODO: Remove when able
use portable_atomic::{AtomicU8, Ordering};
pub use self::implementation::*;
@ -26,8 +24,10 @@ mod efuse_field;
static MAC_OVERRIDE_STATE: AtomicU8 = AtomicU8::new(0);
static mut MAC_OVERRIDE: [u8; 6] = [0; 6];
/// Error indicating issues with setting the MAC address.
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
pub enum SetMacError {
/// The MAC address has already been set and cannot be changed.
AlreadySet,
}

View File

@ -96,9 +96,14 @@ pub mod prelude {
};
}
/// Enumeration of possible SPI interrupt events.
#[cfg(not(any(esp32, esp32s2)))]
#[derive(EnumSetType)]
pub enum SpiInterrupt {
/// Indicates that the SPI transaction has completed successfully.
///
/// This interrupt is triggered when an SPI transaction has finished
/// transmitting and receiving data.
TransDone,
}
@ -114,26 +119,44 @@ const EMPTY_WRITE_PAD: u8 = 0x00u8;
#[allow(unused)]
const MAX_DMA_SIZE: usize = 32736;
/// SPI command, 1 to 16 bits.
/// SPI commands, each consisting of a 16-bit command value and a data mode.
///
/// Used to define specific commands sent over the SPI bus.
/// Can be [Command::None] if command phase should be suppressed.
pub enum Command {
/// No command is sent.
None,
/// Command1.
Command1(u16, SpiDataMode),
/// Command2.
Command2(u16, SpiDataMode),
/// Command3.
Command3(u16, SpiDataMode),
/// Command4.
Command4(u16, SpiDataMode),
/// Command5.
Command5(u16, SpiDataMode),
/// Command6.
Command6(u16, SpiDataMode),
/// Command7.
Command7(u16, SpiDataMode),
/// Command8.
Command8(u16, SpiDataMode),
/// Command9.
Command9(u16, SpiDataMode),
/// Command10.
Command10(u16, SpiDataMode),
/// Command11.
Command11(u16, SpiDataMode),
/// Command12.
Command12(u16, SpiDataMode),
/// Command13.
Command13(u16, SpiDataMode),
/// Command14.
Command14(u16, SpiDataMode),
/// Command15.
Command15(u16, SpiDataMode),
/// Command16.
Command16(u16, SpiDataMode),
}
@ -209,42 +232,76 @@ impl Command {
}
}
/// SPI address, 1 to 32 bits.
/// SPI address, ranging from 1 to 32 bits, paired with a data mode.
///
/// This can be used to specify the address phase of SPI transactions.
/// Can be [Address::None] if address phase should be suppressed.
pub enum Address {
/// No address phase.
None,
/// Address with 1-bit.
Address1(u32, SpiDataMode),
/// Address with 2-bit.
Address2(u32, SpiDataMode),
/// Address with 3-bit.
Address3(u32, SpiDataMode),
/// Address with 4-bit.
Address4(u32, SpiDataMode),
/// Address with 5-bit.
Address5(u32, SpiDataMode),
/// Address with 6-bit.
Address6(u32, SpiDataMode),
/// Address with 7-bit.
Address7(u32, SpiDataMode),
/// Address with 8-bit.
Address8(u32, SpiDataMode),
/// Address with 9-bit.
Address9(u32, SpiDataMode),
/// Address with 10-bit.
Address10(u32, SpiDataMode),
/// Address with 11-bit.
Address11(u32, SpiDataMode),
/// Address with 12-bit.
Address12(u32, SpiDataMode),
/// Address with 13-bit.
Address13(u32, SpiDataMode),
/// Address with 14-bit.
Address14(u32, SpiDataMode),
/// Address with 15-bit.
Address15(u32, SpiDataMode),
/// Address with 16-bit.
Address16(u32, SpiDataMode),
/// Address with 17-bit.
Address17(u32, SpiDataMode),
/// Address with 18-bit.
Address18(u32, SpiDataMode),
/// Address with 19-bit.
Address19(u32, SpiDataMode),
/// Address with 20-bit.
Address20(u32, SpiDataMode),
/// Address with 21-bit.
Address21(u32, SpiDataMode),
/// Address with 22-bit.
Address22(u32, SpiDataMode),
/// Address with 23-bit.
Address23(u32, SpiDataMode),
/// Address with 24-bit.
Address24(u32, SpiDataMode),
/// Address with 25-bit.
Address25(u32, SpiDataMode),
/// Address with 26-bit.
Address26(u32, SpiDataMode),
/// Address with 27-bit.
Address27(u32, SpiDataMode),
/// Address with 28-bit.
Address28(u32, SpiDataMode),
/// Address with 29-bit.
Address29(u32, SpiDataMode),
/// Address with 30-bit.
Address30(u32, SpiDataMode),
/// Address with 31-bit.
Address31(u32, SpiDataMode),
/// Address with 32-bit.
Address32(u32, SpiDataMode),
}
@ -370,6 +427,8 @@ impl Address {
/// Read and Write in half duplex mode.
pub trait HalfDuplexReadWrite {
/// The associated error type that will be returned in the event of a
/// failure.
type Error;
/// Half-duplex read.
@ -457,6 +516,10 @@ where
Self::new_internal(spi, frequency, mode, clocks)
}
/// Assign the SCK (Serial Clock) pin for the SPI instance.
///
/// Sets the specified pin to push-pull output and connects it to the SPI
/// clock signal.
pub fn with_sck<SCK: OutputPin>(self, sck: impl Peripheral<P = SCK> + 'd) -> Self {
crate::into_ref!(sck);
sck.set_to_push_pull_output(private::Internal);
@ -465,6 +528,10 @@ where
self
}
/// Assign the MOSI (Master Out Slave In) pin for the SPI instance.
///
/// Sets the specified pin to push-pull output and connects it to the SPI
/// MOSI signal.
pub fn with_mosi<MOSI: OutputPin>(self, mosi: impl Peripheral<P = MOSI> + 'd) -> Self {
crate::into_ref!(mosi);
mosi.set_to_push_pull_output(private::Internal);
@ -473,6 +540,9 @@ where
self
}
/// Assign the MISO (Master In Slave Out) pin for the SPI instance.
///
/// Sets the specified pin to input and connects it to the SPI MISO signal.
pub fn with_miso<MISO: InputPin>(self, miso: impl Peripheral<P = MISO> + 'd) -> Self {
crate::into_ref!(miso);
miso.set_to_input(private::Internal);
@ -481,6 +551,10 @@ where
self
}
/// Assign the CS (Chip Select) pin for the SPI instance.
///
/// Sets the specified pin to push-pull output and connects it to the SPI CS
/// signal.
pub fn with_cs<CS: OutputPin>(self, cs: impl Peripheral<P = CS> + 'd) -> Self {
crate::into_ref!(cs);
cs.set_to_push_pull_output(private::Internal);
@ -555,6 +629,10 @@ where
spi
}
/// Change the bus frequency of the SPI instance.
///
/// This method allows user to update the bus frequency for the SPI
/// communication after the instance has been created.
pub fn change_bus_frequency(&mut self, frequency: HertzU32, clocks: &Clocks<'d>) {
self.spi.ch_bus_freq(frequency, clocks);
}
@ -578,6 +656,10 @@ where
Self::new_internal(spi, frequency, mode, clocks)
}
/// Assign the SCK (Serial Clock) pin for the SPI instance.
///
/// Sets the specified pin to push-pull output and connects it to the SPI
/// clock signal.
pub fn with_sck<SCK: OutputPin>(self, sck: impl Peripheral<P = SCK> + 'd) -> Self {
crate::into_ref!(sck);
sck.set_to_push_pull_output(private::Internal);
@ -586,6 +668,11 @@ where
self
}
/// Assign the MOSI (Master Out Slave In) pin for the SPI instance in
/// half-duplex mode.
///
/// Enables both input and output functionality for the pin, and connects it
/// to the MOSI signal and SIO0 input signal.
pub fn with_mosi<MOSI: OutputPin + InputPin>(
self,
mosi: impl Peripheral<P = MOSI> + 'd,
@ -599,6 +686,11 @@ where
self
}
/// Assign the MISO (Master In Slave Out) pin for the SPI instance in
/// half-duplex mode.
///
/// Enables both input and output functionality for the pin, and connects it
/// to the MISO signal and SIO1 input signal.
pub fn with_miso<MISO: OutputPin + InputPin>(
self,
miso: impl Peripheral<P = MISO> + 'd,
@ -612,6 +704,10 @@ where
self
}
/// Assign the SIO2 pin for the SPI instance.
///
/// Enables both input and output functionality for the pin, and connects it
/// to the SIO2 output and input signals.
pub fn with_sio2<SIO2: OutputPin + InputPin>(
self,
sio2: impl Peripheral<P = SIO2> + 'd,
@ -625,6 +721,10 @@ where
self
}
/// Assign the SIO3 pin for the SPI instance.
///
/// Enables both input and output functionality for the pin, and connects it
/// to the SIO3 output and input signals.
pub fn with_sio3<SIO3: OutputPin + InputPin>(
self,
sio3: impl Peripheral<P = SIO3> + 'd,
@ -638,6 +738,10 @@ where
self
}
/// Assign the CS (Chip Select) pin for the SPI instance.
///
/// Sets the specified pin to push-pull output and connects it to the SPI CS
/// signal.
pub fn with_cs<CS: OutputPin>(self, cs: impl Peripheral<P = CS> + 'd) -> Self {
crate::into_ref!(cs);
cs.set_to_push_pull_output(private::Internal);
@ -733,6 +837,10 @@ where
spi
}
/// Change the bus frequency of the SPI instance in half-duplex mode.
///
/// This method allows you to update the bus frequency for the SPI
/// communication after the instance has been created.
pub fn change_bus_frequency(&mut self, frequency: HertzU32, clocks: &Clocks<'d>) {
self.spi.ch_bus_freq(frequency, clocks);
}
@ -837,6 +945,7 @@ where
}
}
/// DMA (Direct Memory Access) funtionality (Master).
pub mod dma {
use core::{
cmp::min,
@ -868,6 +977,11 @@ pub mod dma {
where
M: DuplexMode,
{
/// Configures the SPI instance to use DMA with the specified channel.
///
/// This method prepares the SPI instance for DMA transfers. It
/// initializes the DMA channel for transmission and returns an
/// instance of `SpiDma` that supports DMA operations.
pub fn with_dma<C, DmaMode>(
self,
mut channel: Channel<'d, C, DmaMode>,
@ -892,6 +1006,11 @@ pub mod dma {
where
M: DuplexMode,
{
/// Configures the SPI3 instance to use DMA with the specified channel.
///
/// This method prepares the SPI instance for DMA transfers using SPI3
/// and returns an instance of `SpiDma` that supports DMA
/// operations.
pub fn with_dma<C, DmaMode>(
self,
mut channel: Channel<'d, C, DmaMode>,
@ -931,6 +1050,10 @@ pub mod dma {
M: DuplexMode,
DmaMode: Mode,
{
/// Formats the `SpiDma` instance for debugging purposes.
///
/// This method returns a debug struct with the name "SpiDma" without
/// exposing internal details.
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.debug_struct("SpiDma").finish()
}
@ -994,6 +1117,7 @@ pub mod dma {
M: DuplexMode,
DmaMode: Mode,
{
/// Configures the interrupt handler for the DMA-enabled SPI instance.
fn set_interrupt_handler(&mut self, handler: crate::interrupt::InterruptHandler) {
SpiDma::set_interrupt_handler(self, handler);
}
@ -1007,6 +1131,7 @@ pub mod dma {
M: DuplexMode,
DmaMode: Mode,
{
/// Changes the SPI bus frequency for the DMA-enabled SPI instance.
pub fn change_bus_frequency(&mut self, frequency: HertzU32, clocks: &Clocks<'d>) {
self.spi.ch_bus_freq(frequency, clocks);
}
@ -1018,6 +1143,11 @@ pub mod dma {
C: DmaChannel,
C::P: SpiPeripheral,
{
/// Configures the DMA buffers for the SPI instance.
///
/// This method sets up both TX and RX buffers for DMA transfers.
/// It returns an instance of `SpiDmaBus` that can be used for SPI
/// communication.
pub fn with_buffers(
self,
dma_tx_buf: DmaTxBuf,
@ -1034,6 +1164,11 @@ pub mod dma {
C: DmaChannel,
C::P: SpiPeripheral,
{
/// Configures the DMA buffers for asynchronous SPI communication.
///
/// This method sets up both TX and RX buffers for DMA transfers.
/// It eturns an instance of `SpiDmaAsyncBus` to be used for
/// asynchronous SPI operations.
pub fn with_buffers(
self,
dma_tx_buf: DmaTxBuf,
@ -1043,6 +1178,10 @@ pub mod dma {
}
}
/// A structure representing a DMA transfer for SPI.
///
/// This structure holds references to the SPI instance, DMA buffers, and
/// transfer status.
pub struct SpiDmaTransfer<'d, T, C, M, DmaMode, Buf>
where
C: DmaChannel,
@ -1083,6 +1222,10 @@ pub mod dma {
}
}
/// Checks if the DMA transfer is complete.
///
/// This method returns `true` if both TX and RX operations are done,
/// and the SPI instance is no longer busy.
pub fn is_done(&self) -> bool {
if self.is_tx && !self.tx_future_awaited && !self.spi_dma.channel.tx.is_done() {
return false;
@ -1107,6 +1250,10 @@ pub mod dma {
true
}
/// Waits for the DMA transfer to complete.
///
/// This method blocks until the transfer is finished and returns the
/// `SpiDma` instance and the associated buffer.
pub fn wait(mut self) -> (SpiDma<'d, T, C, M, DmaMode>, Buf) {
self.spi_dma.spi.flush().ok();
fence(Ordering::Acquire);
@ -1122,6 +1269,9 @@ pub mod dma {
C::P: SpiPeripheral,
M: DuplexMode,
{
/// Waits for the DMA transfer to complete asynchronously.
///
/// This method awaits the completion of both TX and RX operations.
pub async fn wait_for_done(&mut self) {
if self.is_tx && !self.tx_future_awaited {
let _ = DmaTxFuture::new(&mut self.spi_dma.channel.tx).await;
@ -1258,6 +1408,7 @@ pub mod dma {
M: IsHalfDuplex,
DmaMode: Mode,
{
/// Perform a half-duplex read operation using DMA.
#[allow(clippy::type_complexity)]
#[cfg_attr(feature = "place-spi-driver-in-ram", ram)]
pub fn read(
@ -1335,6 +1486,7 @@ pub mod dma {
Ok(SpiDmaTransfer::new(self, buffer, bytes_to_read > 0, false))
}
/// Perform a half-duplex write operation using DMA.
#[allow(clippy::type_complexity)]
#[cfg_attr(feature = "place-spi-driver-in-ram", ram)]
pub fn write(
@ -1413,6 +1565,10 @@ pub mod dma {
}
}
/// A DMA-capable SPI bus that handles full-duplex transfers.
///
/// This structure is responsible for managing SPI transfers using DMA
/// buffers.
pub struct SpiDmaBus<'d, T, C>
where
T: InstanceDma,
@ -1429,6 +1585,8 @@ pub mod dma {
C: DmaChannel,
C::P: SpiPeripheral,
{
/// Creates a new `SpiDmaBus` with the specified SPI instance and DMA
/// buffers.
pub fn new(
spi_dma: SpiDma<'d, T, C, FullDuplexMode, crate::Blocking>,
tx_buffer: DmaTxBuf,
@ -1440,6 +1598,7 @@ pub mod dma {
}
}
/// Reads data from the SPI bus using DMA.
pub fn read(&mut self, words: &mut [u8]) -> Result<(), Error> {
let mut spi_dma = self.spi_dma.take().unwrap();
let (tx_buf, mut rx_buf) = self.buffers.take().unwrap();
@ -1467,6 +1626,7 @@ pub mod dma {
Ok(())
}
/// Writes data to the SPI bus using DMA.
pub fn write(&mut self, words: &[u8]) -> Result<(), Error> {
let mut spi_dma = self.spi_dma.take().unwrap();
let (mut tx_buf, rx_buf) = self.buffers.take().unwrap();
@ -1491,6 +1651,7 @@ pub mod dma {
Ok(())
}
/// Transfers data to and from the SPI bus simultaneously using DMA.
pub fn transfer(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Error> {
let mut spi_dma = self.spi_dma.take().unwrap();
let (mut tx_buf, mut rx_buf) = self.buffers.take().unwrap();
@ -1534,6 +1695,7 @@ pub mod dma {
}
}
/// Transfers data in place on the SPI bus using DMA.
pub fn transfer_in_place(&mut self, words: &mut [u8]) -> Result<(), Error> {
let mut spi_dma = self.spi_dma.take().unwrap();
let (mut tx_buf, mut rx_buf) = self.buffers.take().unwrap();
@ -1595,6 +1757,7 @@ pub mod dma {
}
}
/// Async functionality
#[cfg(feature = "async")]
pub mod asynch {
use core::{cmp::min, mem::take};
@ -1630,6 +1793,10 @@ pub mod dma {
InUse,
}
/// An asynchronous DMA-capable SPI bus for full-duplex operations.
///
/// This struct provides an interface for SPI operations using DMA in an
/// asynchronous way.
pub struct SpiDmaAsyncBus<'d, T, C>
where
T: InstanceDma,
@ -1645,6 +1812,10 @@ pub mod dma {
C: DmaChannel,
C::P: SpiPeripheral,
{
/// Creates a new asynchronous DMA SPI bus instance.
///
/// Initializes the bus with the provided SPI instance and DMA
/// buffers for transmit and receive operations.
pub fn new(
spi: SpiDma<'d, T, C, FullDuplexMode, crate::Async>,
dma_tx_buf: DmaTxBuf,
@ -1655,6 +1826,8 @@ pub mod dma {
}
}
/// Waits for the current SPI DMA transfer to complete, ensuring the
/// bus is idle.
async fn wait_for_idle(
&mut self,
) -> (
@ -1703,6 +1876,8 @@ pub mod dma {
C: DmaChannel,
C::P: SpiPeripheral,
{
/// Asynchronously reads data from the SPI bus into the provided
/// buffer.
async fn read(&mut self, words: &mut [u8]) -> Result<(), Self::Error> {
// Get previous transfer.
let (mut spi_dma, mut tx_buf, mut rx_buf) = self.wait_for_idle().await;
@ -1741,6 +1916,8 @@ pub mod dma {
Ok(())
}
/// Asynchronously writes data to the SPI bus from the provided
/// buffer.
async fn write(&mut self, words: &[u8]) -> Result<(), Self::Error> {
// Get previous transfer.
let (mut spi_dma, mut tx_buf, mut rx_buf) = self.wait_for_idle().await;
@ -1777,6 +1954,12 @@ pub mod dma {
Ok(())
}
/// Asynchronously performs a full-duplex transfer over the SPI bus.
///
/// This method splits the transfer operation into chunks and
/// processes it asynchronously. It simultaneously
/// writes data from the `write` buffer and reads data into the
/// `read` buffer.
async fn transfer(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Self::Error> {
// Get previous transfer.
let (mut spi_dma, mut tx_buf, mut rx_buf) = self.wait_for_idle().await;
@ -1832,6 +2015,8 @@ pub mod dma {
}
}
/// Asynchronously performs an in-place full-duplex transfer over
/// the SPI bus.
async fn transfer_in_place(&mut self, words: &mut [u8]) -> Result<(), Self::Error> {
// Get previous transfer.
let (mut spi_dma, mut tx_buf, mut rx_buf) = self.wait_for_idle().await;

View File

@ -9,8 +9,6 @@
//! more information on these modes, please refer to the documentation in their
//! respective modules.
#![allow(missing_docs)] // TODO: Remove when able
use crate::dma::DmaError;
pub mod master;
@ -21,10 +19,17 @@ pub mod slave;
#[derive(Debug, Clone, Copy, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
/// Error occurred due to a DMA-related issue.
DmaError(DmaError),
/// Error indicating that the maximum DMA transfer size was exceeded.
MaxDmaTransferSizeExceeded,
/// Error indicating that the FIFO size was exceeded during SPI
/// communication.
FifoSizeExeeded,
/// Error indicating that the operation is unsupported by the current
/// implementation.
Unsupported,
/// An unknown error occurred during SPI communication.
Unknown,
}
@ -41,13 +46,25 @@ impl embedded_hal::spi::Error for Error {
}
}
/// SPI modes
/// SPI communication modes, defined by clock polarity (CPOL) and clock phase
/// (CPHA).
///
/// These modes control the clock signal's idle state and when data is sampled
/// and shifted.
#[derive(Debug, Clone, Copy, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum SpiMode {
/// Mode 0 (CPOL = 0, CPHA = 0): Clock is low when idle, data is captured on
/// the rising edge and propagated on the falling edge.
Mode0,
/// Mode 1 (CPOL = 0, CPHA = 1): Clock is low when idle, data is captured on
/// the falling edge and propagated on the rising edge.
Mode1,
/// Mode 2 (CPOL = 1, CPHA = 0): Clock is high when idle, data is captured
/// on the falling edge and propagated on the rising edge.
Mode2,
/// Mode 3 (CPOL = 1, CPHA = 1): Clock is high when idle, data is captured
/// on the rising edge and propagated on the falling edge.
Mode3,
}
@ -55,24 +72,28 @@ pub enum SpiMode {
#[derive(Debug, Clone, Copy, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum SpiBitOrder {
/// Most Significant Bit (MSB) is transmitted first.
MSBFirst,
/// Least Significant Bit (LSB) is transmitted first.
LSBFirst,
}
/// Trait marker for defining SPI duplex modes.
pub trait DuplexMode {}
/// Trait marker for SPI full-duplex mode.
pub trait IsFullDuplex: DuplexMode {}
/// Trait marker for SPI half-duplex mode.
pub trait IsHalfDuplex: DuplexMode {}
/// SPI data mode
///
/// Single = 1 bit, 2 wires
/// Dual = 2 bit, 2 wires
/// Quad = 4 bit, 4 wires
#[derive(Debug, Clone, Copy, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum SpiDataMode {
/// `Single` Data Mode - 1 bit, 2 wires.
Single,
/// `Dual` Data Mode - 2 bit, 2 wires
Dual,
/// `Quad` Data Mode - 4 bit, 4 wires
Quad,
}

View File

@ -143,6 +143,7 @@ where
}
}
/// DMA (Direct Memory Access) funtionality (Slave).
pub mod dma {
use super::*;
#[cfg(spi3)]
@ -169,12 +170,15 @@ pub mod dma {
Mode,
};
/// Trait for configuring DMA with SPI2 peripherals in slave mode.
pub trait WithDmaSpi2<'d, C, DmaMode>
where
C: DmaChannel,
C::P: SpiPeripheral,
DmaMode: Mode,
{
/// Configures the SPI2 peripheral with the provided DMA channel and
/// descriptors.
fn with_dma(
self,
channel: Channel<'d, C, DmaMode>,
@ -183,6 +187,7 @@ pub mod dma {
) -> SpiDma<'d, crate::peripherals::SPI2, C, DmaMode>;
}
/// Trait for configuring DMA with SPI3 peripherals in slave mode.
#[cfg(spi3)]
pub trait WithDmaSpi3<'d, C, DmaMode>
where
@ -190,6 +195,8 @@ pub mod dma {
C::P: SpiPeripheral,
DmaMode: Mode,
{
/// Configures the SPI3 peripheral with the provided DMA channel and
/// descriptors.
fn with_dma(
self,
channel: Channel<'d, C, DmaMode>,

View File

@ -29,8 +29,6 @@
//! # }
//! ```
#![allow(missing_docs)] // TODO: Remove when able
use crate::{
interrupt::InterruptHandler,
peripheral::PeripheralRef,
@ -38,72 +36,109 @@ use crate::{
InterruptConfigurable,
};
/// Peripherals which can be enabled via `PeripheralClockControl`
/// Peripherals which can be enabled via `PeripheralClockControl`.
///
/// This enum represents various hardware peripherals that can be enabled
/// by the system's clock control. Depending on the target device, different
/// peripherals will be available for enabling.
pub enum Peripheral {
/// SPI2 peripheral.
#[cfg(spi2)]
Spi2,
/// SPI3 peripheral.
#[cfg(spi3)]
Spi3,
/// External I2C0 peripheral.
#[cfg(i2c0)]
I2cExt0,
/// External I2C1 peripheral.
#[cfg(i2c1)]
I2cExt1,
/// RMT peripheral (Remote Control).
#[cfg(rmt)]
Rmt,
/// LEDC peripheral (LED PWM Controller).
#[cfg(ledc)]
Ledc,
/// MCPWM0 peripheral (Motor Control PWM 0).
#[cfg(mcpwm0)]
Mcpwm0,
/// MCPWM1 peripheral (Motor Control PWM 1).
#[cfg(mcpwm1)]
Mcpwm1,
/// PCNT peripheral (Pulse Counter).
#[cfg(pcnt)]
Pcnt,
/// APB SAR ADC peripheral.
#[cfg(apb_saradc)]
ApbSarAdc,
/// General DMA (GDMA) peripheral.
#[cfg(gdma)]
Gdma,
/// Peripheral DMA (PDMA) peripheral.
#[cfg(pdma)]
Dma,
/// I2S0 peripheral (Inter-IC Sound).
#[cfg(i2s0)]
I2s0,
/// I2S1 peripheral (Inter-IC Sound).
#[cfg(i2s1)]
I2s1,
/// USB0 peripheral.
#[cfg(usb0)]
Usb,
/// AES peripheral (Advanced Encryption Standard).
#[cfg(aes)]
Aes,
/// TWAI0 peripheral.
#[cfg(twai0)]
Twai0,
/// TWAI1 peripheral.
#[cfg(twai1)]
Twai1,
/// Timer Group 0 peripheral.
#[cfg(timg0)]
Timg0,
/// Timer Group 1 peripheral.
#[cfg(timg1)]
Timg1,
/// Low-power watchdog timer (WDT) peripheral.
#[cfg(lp_wdt)]
Wdt,
/// SHA peripheral (Secure Hash Algorithm).
#[cfg(sha)]
Sha,
/// USB Device peripheral.
#[cfg(usb_device)]
UsbDevice,
/// UART0 peripheral.
#[cfg(uart0)]
Uart0,
/// UART1 peripheral.
#[cfg(uart1)]
Uart1,
/// UART2 peripheral.
#[cfg(uart2)]
Uart2,
/// RSA peripheral (Rivest-Shamir-Adleman encryption).
#[cfg(rsa)]
Rsa,
/// Parallel IO peripheral.
#[cfg(parl_io)]
ParlIo,
/// HMAC peripheral (Hash-based Message Authentication Code).
#[cfg(hmac)]
Hmac,
/// ECC peripheral (Elliptic Curve Cryptography).
#[cfg(ecc)]
Ecc,
/// SOC ETM peripheral (Event Task Manager).
#[cfg(soc_etm)]
Etm,
/// TRACE0 peripheral (Debug trace).
#[cfg(trace0)]
Trace0,
/// LCD Camera peripheral.
#[cfg(lcd_cam)]
LcdCam,
}
@ -111,8 +146,11 @@ pub enum Peripheral {
/// The `DPORT`/`PCR`/`SYSTEM` peripheral split into its different logical
/// components.
pub struct SystemControl<'d> {
/// Inner reference to the SYSTEM peripheral.
_inner: PeripheralRef<'d, SYSTEM>,
/// Controls the system's clock settings and configurations.
pub clock_control: SystemClockControl,
/// Controls the system's software interrupt settings.
pub software_interrupt_control: SoftwareInterruptControl,
}
@ -244,6 +282,10 @@ impl<const NUM: u8> InterruptConfigurable for SoftwareInterrupt<NUM> {
}
/// This gives access to the available software interrupts.
///
/// This struct contains several instances of software interrupts that can be
/// used for signaling between different parts of a program or system. Each
/// interrupt is identified by an index (0 to 3).
#[cfg_attr(
multi_core,
doc = r#"
@ -253,9 +295,14 @@ feature is enabled."#
)]
#[non_exhaustive]
pub struct SoftwareInterruptControl {
/// Software interrupt 0.
pub software_interrupt0: SoftwareInterrupt<0>,
/// Software interrupt 1.
pub software_interrupt1: SoftwareInterrupt<1>,
/// Software interrupt 2.
pub software_interrupt2: SoftwareInterrupt<2>,
/// Software interrupt 3 (only available when not running on a multi-core
/// system with the `embassy` feature enabled).
#[cfg(not(all(feature = "embassy", multi_core)))]
pub software_interrupt3: SoftwareInterrupt<3>,
}
@ -1117,6 +1164,7 @@ pub struct SystemClockControl {
}
impl SystemClockControl {
/// Creates new instance of `SystemClockControl`.
pub fn new() -> Self {
Self { _private: () }
}
@ -1142,12 +1190,16 @@ impl crate::private::Sealed for SystemClockControl {}
/// Enumeration of the available radio peripherals for this chip.
#[cfg(any(bt, ieee802154, wifi))]
pub enum RadioPeripherals {
/// Represents the PHY (Physical Layer) peripheral.
#[cfg(phy)]
Phy,
/// Represents the Bluetooth peripheral.
#[cfg(bt)]
Bt,
/// Represents the WiFi peripheral.
#[cfg(wifi)]
Wifi,
/// Represents the IEEE 802.15.4 peripheral.
#[cfg(ieee802154)]
Ieee802154,
}
@ -1170,5 +1222,6 @@ pub trait RadioClockController {
/// Initialize BLE RTC clocks
fn ble_rtc_clk_init(&mut self);
/// Reset the Resolvable Private Address (RPA).
fn reset_rpa(&mut self);
}

View File

@ -364,17 +364,22 @@ impl<'d, T> embedded_hal_02::timer::Periodic for PeriodicTimer<'d, T> where T: T
/// A type-erased timer
///
/// You can create an instance of this by just calling `.into()` on a timer.
#[allow(missing_docs)]
pub enum ErasedTimer {
/// Timer 0 of the TIMG0 peripheral in blocking mode.
Timg0Timer0(timg::Timer<timg::Timer0<crate::peripherals::TIMG0>, Blocking>),
/// Timer 1 of the TIMG0 peripheral in blocking mode.
#[cfg(timg_timer1)]
Timg0Timer1(timg::Timer<timg::Timer1<crate::peripherals::TIMG0>, Blocking>),
/// Timer 0 of the TIMG1 peripheral in blocking mode.
#[cfg(timg1)]
Timg1Timer0(timg::Timer<timg::Timer0<crate::peripherals::TIMG1>, Blocking>),
/// Timer 1 of the TIMG1 peripheral in blocking mode.
#[cfg(all(timg1, timg_timer1))]
Timg1Timer1(timg::Timer<timg::Timer1<crate::peripherals::TIMG1>, Blocking>),
/// Systimer Alarm in periodic mode with blocking behavior.
#[cfg(systimer)]
SystimerAlarmPeriodic(systimer::Alarm<'static, systimer::Periodic, Blocking>),
/// Systimer Target in periodic mode with blocking behavior.
#[cfg(systimer)]
SystimerAlarmTarget(systimer::Alarm<'static, systimer::Target, Blocking>),
}

View File

@ -14,8 +14,15 @@
use super::{ExtendedId, StandardId};
#[derive(Debug, PartialEq, Eq)]
/// Represents the type of filtering to be applied to incoming TWAI frames.
pub enum FilterType {
/// Uses the acceptance code and mask to define a single filter, which
/// allows for the first two data bytes of a standard frame to be filtered,
/// or the entirety of an extended frame's 29-bit ID.
Single,
/// Uses the acceptance code and mask to define two separate filters
/// allowing for increased flexibility of ID's to accept, but does not allow
/// for all 29-bits of an extended ID to be filtered.
Dual,
}
@ -32,6 +39,7 @@ pub enum FilterType {
pub trait Filter {
/// The type of the filter.
const FILTER_TYPE: FilterType;
/// Returns filter type.
fn filter_type(&self) -> FilterType {
Self::FILTER_TYPE
}
@ -40,6 +48,7 @@ pub trait Filter {
fn to_registers(&self) -> [u8; 8];
}
/// A type representing the bitmask used to filter incoming TWAI frames.
pub type BitFilter<const N: usize> = [u8; N];
// Convert a byte from a bytestring into a bit inside a given code and mask.

View File

@ -14,7 +14,7 @@
//! up the timing parameters, configuring acceptance filters, handling
//! interrupts, and transmitting/receiving messages on the TWAI bus.
//!
//! This driver manages the ISO 11898-1 (CAN Specification 2.0) compatible TWAI
//! This driver manages the ISO 11898-1 compatible TWAI
//! controllers. It supports Standard Frame Format (11-bit) and Extended Frame
//! Format (29-bit) frame identifiers.
//!
@ -34,13 +34,13 @@
//! # use core::option::Option::None;
//! # use nb::block;
//! # let io = Io::new(peripherals.GPIO, peripherals.IO_MUX);
//! // Use GPIO pins 2 and 3 to connect to the respective pins on the CAN
//! // Use GPIO pins 2 and 3 to connect to the respective pins on the TWAI
//! // transceiver.
//! let can_tx_pin = io.pins.gpio2;
//! let can_rx_pin = io.pins.gpio3;
//!
//! // The speed of the CAN bus.
//! const CAN_BAUDRATE: twai::BaudRate = BaudRate::B1000K;
//! // The speed of the TWAI bus.
//! const TWAI_BAUDRATE: twai::BaudRate = BaudRate::B1000K;
//!
//! // Begin configuring the TWAI peripheral. The peripheral is in a reset like
//! // state that prevents transmission but allows configuration.
@ -49,7 +49,7 @@
//! can_tx_pin,
//! can_rx_pin,
//! &clocks,
//! CAN_BAUDRATE,
//! TWAI_BAUDRATE,
//! TwaiMode::Normal
//! );
//!
@ -90,13 +90,13 @@
//! # use core::option::Option::None;
//! # use nb::block;
//! # let io = Io::new(peripherals.GPIO, peripherals.IO_MUX);
//! // Use GPIO pins 2 and 3 to connect to the respective pins on the CAN
//! // Use GPIO pins 2 and 3 to connect to the respective pins on the TWAI
//! // transceiver.
//! let can_tx_pin = io.pins.gpio2;
//! let can_rx_pin = io.pins.gpio3;
//!
//! // The speed of the CAN bus.
//! const CAN_BAUDRATE: twai::BaudRate = BaudRate::B1000K;
//! // The speed of the TWAI bus.
//! const TWAI_BAUDRATE: twai::BaudRate = BaudRate::B1000K;
//!
//! // Begin configuring the TWAI peripheral.
//! let mut can_config = twai::TwaiConfiguration::new(
@ -104,7 +104,7 @@
//! can_tx_pin,
//! can_rx_pin,
//! &clocks,
//! CAN_BAUDRATE,
//! TWAI_BAUDRATE,
//! TwaiMode::SelfTest
//! );
//!
@ -129,8 +129,6 @@
//! # }
//! ```
#![allow(missing_docs)] // TODO: Remove when able
use core::marker::PhantomData;
use self::filter::{Filter, FilterType};
@ -146,12 +144,12 @@ use crate::{
pub mod filter;
/// CAN error kind
/// TWAI error kind
///
/// This represents a common set of CAN operation errors. HAL implementations
/// This represents a common set of TWAI operation errors. HAL implementations
/// are free to define more specific or additional error types. However, by
/// providing a mapping to these common CAN errors, generic code can still react
/// to them.
/// providing a mapping to these common TWAI errors, generic code can still
/// react to them.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
#[non_exhaustive]
pub enum ErrorKind {
@ -256,15 +254,15 @@ pub enum TwaiMode {
ListenOnly,
}
/// Standard 11-bit CAN Identifier (`0..=0x7FF`).
/// Standard 11-bit TWAI Identifier (`0..=0x7FF`).
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct StandardId(u16);
impl StandardId {
/// CAN ID `0`, the highest priority.
/// TWAI ID `0`, the highest priority.
pub const ZERO: Self = StandardId(0);
/// CAN ID `0x7FF`, the lowest priority.
/// TWAI ID `0x7FF`, the lowest priority.
pub const MAX: Self = StandardId(0x7FF);
/// Tries to create a `StandardId` from a raw 16-bit integer.
@ -290,7 +288,7 @@ impl StandardId {
StandardId(raw)
}
/// Returns this CAN Identifier as a raw 16-bit integer.
/// Returns TWAI Identifier as a raw 16-bit integer.
#[inline]
pub fn as_raw(&self) -> u16 {
self.0
@ -325,15 +323,15 @@ impl From<embedded_can::StandardId> for StandardId {
}
}
/// Extended 29-bit CAN Identifier (`0..=1FFF_FFFF`).
/// Extended 29-bit TWAI Identifier (`0..=1FFF_FFFF`).
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct ExtendedId(u32);
impl ExtendedId {
/// CAN ID `0`, the highest priority.
/// TWAI ID `0`, the highest priority.
pub const ZERO: Self = ExtendedId(0);
/// CAN ID `0x1FFFFFFF`, the lowest priority.
/// TWAI ID `0x1FFFFFFF`, the lowest priority.
pub const MAX: Self = ExtendedId(0x1FFF_FFFF);
/// Tries to create a `ExtendedId` from a raw 32-bit integer.
@ -359,7 +357,7 @@ impl ExtendedId {
ExtendedId(raw)
}
/// Returns this CAN Identifier as a raw 32-bit integer.
/// Returns TWAI Identifier as a raw 32-bit integer.
#[inline]
pub fn as_raw(&self) -> u32 {
self.0
@ -400,7 +398,7 @@ impl From<embedded_can::ExtendedId> for ExtendedId {
}
}
/// A CAN Identifier (standard or extended).
/// A TWAI Identifier (standard or extended).
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub enum Id {
/// Standard 11-bit Identifier (`0..=0x7FF`).
@ -474,8 +472,9 @@ pub struct EspTwaiFrame {
}
impl EspTwaiFrame {
/// Creates a new `EspTwaiFrame` with the specified ID and data payload.
pub fn new(id: Id, data: &[u8]) -> Option<Self> {
// CAN2.0 frames cannot contain more than 8 bytes of data.
// TWAI frames cannot contain more than 8 bytes of data.
if data.len() > 8 {
return None;
}
@ -493,8 +492,10 @@ impl EspTwaiFrame {
})
}
/// Creates a new `EspTwaiFrame` for a transmission request with the
/// specified ID and data length (DLC).
pub fn new_remote(id: Id, dlc: usize) -> Option<Self> {
// CAN2.0 frames cannot have more than 8 bytes.
// TWAI frames cannot have more than 8 bytes.
if dlc > 8 {
return None;
}
@ -508,6 +509,8 @@ impl EspTwaiFrame {
})
}
/// Creates a new `EspTwaiFrame` ready for self-reception with the specified
/// ID and data payload.
pub fn new_self_reception(id: Id, data: &[u8]) -> Option<Self> {
if data.len() > 8 {
return None;
@ -635,10 +638,23 @@ impl embedded_can::Frame for EspTwaiFrame {
/// The underlying timings for the TWAI peripheral.
pub struct TimingConfig {
/// The baudrate prescaler is used to determine the period of each time
/// quantum by dividing the TWAI controller's source clock.
pub baud_rate_prescaler: u16,
/// The synchronization jump width is used to determine the maximum number
/// of time quanta a single bit time can be lengthened/shortened for
/// synchronization purposes.
pub sync_jump_width: u8,
/// Timing segment 1 consists of 1 to 16 time quanta before sample point.
pub tseg_1: u8,
/// Timing Segment 2 consists of 1 to 8 time quanta after sample point.
pub tseg_2: u8,
/// Enabling triple sampling causes 3 time quanta to be sampled per bit
/// instead of 1.
pub triple_sample: bool,
}
@ -646,33 +662,24 @@ pub struct TimingConfig {
/// Currently these timings are sourced from the ESP IDF C driver which assumes
/// an APB clock of 80MHz.
pub enum BaudRate {
/// A baud rate of 125 Kbps.
B125K,
/// A baud rate of 250 Kbps.
B250K,
/// A baud rate of 500 Kbps.
B500K,
/// A baud rate of 1 Mbps.
B1000K,
/// A custom baud rate defined by the user.
///
/// This variant allows users to specify their own timing configuration
/// using a `TimingConfig` struct.
Custom(TimingConfig),
}
impl BaudRate {
/// Convert the BaudRate into the timings that the peripheral needs.
// These timings are copied from the ESP IDF C driver.
// #define TWAI_TIMING_CONFIG_25KBITS() {.brp = 128, .tseg_1 = 16, .tseg_2 =
// 8, .sjw = 3, .triple_sampling = false}
// #define TWAI_TIMING_CONFIG_50KBITS() {.brp = 80, .tseg_1 = 15, .tseg_2 =
// 4, .sjw = 3, .triple_sampling = false}
// #define TWAI_TIMING_CONFIG_100KBITS() {.brp = 40, .tseg_1 = 15, .tseg_2 =
// 4, .sjw = 3, .triple_sampling = false}
// #define TWAI_TIMING_CONFIG_125KBITS() {.brp = 32, .tseg_1 = 15, .tseg_2 =
// 4, .sjw = 3, .triple_sampling = false}
// #define TWAI_TIMING_CONFIG_250KBITS() {.brp = 16, .tseg_1 = 15, .tseg_2 =
// 4, .sjw = 3, .triple_sampling = false}
// #define TWAI_TIMING_CONFIG_500KBITS() {.brp = 8, .tseg_1 = 15, .tseg_2 = 4,
// .sjw = 3, .triple_sampling = false} #define TWAI_TIMING_CONFIG_800KBITS()
// {.brp = 4, .tseg_1 = 16, .tseg_2 = 8, .sjw = 3, .triple_sampling = false}
// #define TWAI_TIMING_CONFIG_1MBITS() {.brp = 4, .tseg_1 = 15, .tseg_2 = 4,
// .sjw = 3, .triple_sampling = false}
//
// see https://github.com/espressif/esp-idf/tree/master/components/hal/include/hal/twai_types.h
// See: https://github.com/espressif/esp-idf/tree/master/components/hal/include/hal/twai_types.h
const fn timing(self) -> TimingConfig {
#[allow(unused_mut)]
let mut timing = match self {
@ -1024,10 +1031,12 @@ where
}
}
/// Returns the value of the receive error counter.
pub fn receive_error_count(&self) -> u8 {
T::register_block().rx_err_cnt().read().rx_err_cnt().bits()
}
/// Returns the value of the transmit error counter.
pub fn transmit_error_count(&self) -> u8 {
T::register_block().tx_err_cnt().read().tx_err_cnt().bits()
}
@ -1067,10 +1076,12 @@ where
}
}
/// Sends the specified `EspTwaiFrame` over the TWAI bus.
pub fn transmit(&mut self, frame: &EspTwaiFrame) -> nb::Result<(), EspTwaiError> {
self.tx.transmit(frame)
}
/// Receives a TWAI frame from the TWAI bus.
pub fn receive(&mut self) -> nb::Result<EspTwaiFrame, EspTwaiError> {
self.rx.receive()
}
@ -1082,7 +1093,7 @@ where
}
}
/// Interface to the CAN transmitter part.
/// Interface to the TWAI transmitter part.
pub struct TwaiTx<'d, T, DM: crate::Mode> {
_peripheral: PhantomData<&'d T>,
phantom: PhantomData<DM>,
@ -1124,7 +1135,7 @@ where
}
}
/// Interface to the CAN receiver part.
/// Interface to the TWAI receiver part.
pub struct TwaiRx<'d, T, DM: crate::Mode> {
_peripheral: PhantomData<&'d T>,
phantom: PhantomData<DM>,
@ -1135,7 +1146,7 @@ where
T: OperationInstance,
DM: crate::Mode,
{
// Receive a frame
/// Receive a frame
pub fn receive(&mut self) -> nb::Result<EspTwaiFrame, EspTwaiError> {
let register_block = T::register_block();
let status = register_block.status().read();
@ -1166,9 +1177,14 @@ where
}
}
/// Represents errors that can occur in the TWAI driver.
/// This enum defines the possible errors that can be encountered when
/// interacting with the TWAI peripheral.
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub enum EspTwaiError {
/// TWAI peripheral has entered a bus-off state.
BusOff,
/// Encapsulates errors defined by the embedded-hal crate.
EmbeddedHAL(ErrorKind),
}
@ -1274,28 +1290,41 @@ where
}
}
/// TWAI peripheral instance.
pub trait Instance: crate::private::Sealed {
/// The system peripheral associated with this TWAI instance.
const SYSTEM_PERIPHERAL: system::Peripheral;
/// The identifier number for this TWAI instance.
const NUMBER: usize;
/// Input signal.
const INPUT_SIGNAL: InputSignal;
/// Output signal.
const OUTPUT_SIGNAL: OutputSignal;
/// The interrupt associated with this TWAI instance.
const INTERRUPT: crate::peripherals::Interrupt;
#[cfg(feature = "async")]
/// Provides an asynchronous interrupt handler for TWAI instance.
fn async_handler() -> InterruptHandler;
/// Returns a reference to the register block for TWAI instance.
fn register_block() -> &'static RegisterBlock;
/// Enables the TWAI peripheral.
fn enable_peripheral();
/// Resets the TWAI peripheral.
fn reset_peripheral();
/// Enables interrupts for the TWAI peripheral.
fn enable_interrupts();
}
/// An extension of the `Instance` trait that provides additional operations
/// for managing and interacting with the TWAI peripheral.
pub trait OperationInstance: Instance {
#[cfg(feature = "async")]
/// Returns a reference to the asynchronous state for this TWAI instance.
fn async_state() -> &'static asynch::TwaiAsyncState {
&asynch::TWAI_STATE[Self::NUMBER]
}
@ -1652,10 +1681,11 @@ mod asynch {
where
T: OperationInstance,
{
/// Transmits an `EspTwaiFrame` asynchronously over the TWAI bus.
pub async fn transmit_async(&mut self, frame: &EspTwaiFrame) -> Result<(), EspTwaiError> {
self.tx.transmit_async(frame).await
}
/// Receives an `EspTwaiFrame` asynchronously over the TWAI bus.
pub async fn receive_async(&mut self) -> Result<EspTwaiFrame, EspTwaiError> {
self.rx.receive_async().await
}
@ -1665,6 +1695,7 @@ mod asynch {
where
T: OperationInstance,
{
/// Transmits an `EspTwaiFrame` asynchronously over the TWAI bus.
pub async fn transmit_async(&mut self, frame: &EspTwaiFrame) -> Result<(), EspTwaiError> {
T::enable_interrupts();
poll_fn(|cx| {
@ -1694,6 +1725,7 @@ mod asynch {
where
T: OperationInstance,
{
/// Receives an `EspTwaiFrame` asynchronously over the TWAI bus.
pub async fn receive_async(&mut self) -> Result<EspTwaiFrame, EspTwaiError> {
T::enable_interrupts();
poll_fn(|cx| {

View File

@ -118,8 +118,6 @@
//! [embedded-hal-async]: https://docs.rs/embedded-hal-async/latest/embedded_hal_async/
//! [embedded-io-async]: https://docs.rs/embedded-io-async/latest/embedded_io_async/
#![allow(missing_docs)] // TODO: Remove when able
use core::marker::PhantomData;
use self::config::Config;
@ -150,25 +148,60 @@ use crate::soc::constants::REF_TICK;
// Default TX and RX pins for Uart/Serial communication (UART0)
cfg_if::cfg_if! {
if #[cfg(esp32)] {
/// Default TX pin for UART0 on ESP32.
/// Corresponds to GPIO1.
pub type DefaultTxPin = crate::gpio::Gpio1;
/// Default RX pin for UART0 on ESP32.
/// Corresponds to GPIO3.
pub type DefaultRxPin = crate::gpio::Gpio3;
} else if #[cfg(esp32c2)] {
/// Default TX pin for UART0 on ESP32-C2.
/// Corresponds to GPIO20.
pub type DefaultTxPin = crate::gpio::Gpio20;
/// Default RX pin for UART0 on ESP32-C2.
/// Corresponds to GPIO19.
pub type DefaultRxPin = crate::gpio::Gpio19;
} else if #[cfg(esp32c3)] {
/// Default TX pin for UART0 on ESP32-C3.
/// Corresponds to GPIO21.
pub type DefaultTxPin = crate::gpio::Gpio21;
/// Default RX pin for UART0 on ESP32-C3.
/// Corresponds to GPIO20.
pub type DefaultRxPin = crate::gpio::Gpio20;
}else if #[cfg(esp32c6)] {
/// Default TX pin for UART0 on ESP32-C6.
/// Corresponds to GPIO16.
pub type DefaultTxPin = crate::gpio::Gpio16;
/// Default RX pin for UART0 on ESP32-C6.
/// Corresponds to GPIO17.
pub type DefaultRxPin = crate::gpio::Gpio17;
}else if #[cfg(esp32h2)] {
/// Default TX pin for UART0 on ESP32-H2.
/// Corresponds to GPIO24.
pub type DefaultTxPin = crate::gpio::Gpio24;
/// Default RX pin for UART0 on ESP32-H2.
/// Corresponds to GPIO23.
pub type DefaultRxPin = crate::gpio::Gpio23;
} else if #[cfg(esp32s2)] {
/// Default TX pin for UART0 on ESP32-S2.
/// Corresponds to GPIO43.
pub type DefaultTxPin = crate::gpio::Gpio43;
/// Default RX pin for UART0 on ESP32-S2.
/// Corresponds to GPIO44.
pub type DefaultRxPin = crate::gpio::Gpio44;
} else if #[cfg(esp32s3)] {
/// Default TX pin for UART0 on ESP32-S3.
/// Corresponds to GPIO43.
pub type DefaultTxPin = crate::gpio::Gpio43;
/// Default RX pin for UART0 on ESP32-S3.
/// Corresponds to GPIO44.
pub type DefaultRxPin = crate::gpio::Gpio44;
}
}
@ -177,15 +210,36 @@ cfg_if::cfg_if! {
#[derive(Debug, Clone, Copy, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
/// An invalid configuration argument was provided
/// An invalid configuration argument was provided.
///
/// This error occurs when an incorrect or invalid argument is passed during
/// the configuration of the UART peripheral.
InvalidArgument,
/// The RX FIFO overflowed
/// The RX FIFO overflowed.
#[cfg(feature = "async")]
RxFifoOvf,
/// A glitch was detected on the RX line.
///
/// This error occurs when an unexpected or erroneous signal (glitch) is
/// detected on the UART RX line, which could lead to incorrect data
/// reception.
#[cfg(feature = "async")]
RxGlitchDetected,
/// A framing error was detected on the RX line.
///
/// This error occurs when the received data does not conform to the
/// expected UART frame format.
#[cfg(feature = "async")]
RxFrameError,
/// A parity error was detected on the RX line.
///
/// This error occurs when the parity bit in the received data does not
/// match the expected parity configuration.
/// with the `async` feature.
#[cfg(feature = "async")]
RxParityError,
}
@ -233,33 +287,55 @@ pub mod config {
const UART_TOUT_THRESH_DEFAULT: u8 = 10;
/// Number of data bits
///
/// This enum represents the various configurations for the number of data
/// bits used in UART communication. The number of data bits defines the
/// length of each transmitted or received data frame.
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum DataBits {
/// 5 data bits per frame.
DataBits5 = 0,
/// 6 data bits per frame.
DataBits6 = 1,
/// 7 data bits per frame.
DataBits7 = 2,
/// 8 data bits per frame (most common).
DataBits8 = 3,
}
/// Parity check
///
/// Parity is a form of error detection in UART communication, used to
/// ensure that the data has not been corrupted during transmission. The
/// parity bit is added to the data bits to make the number of 1-bits
/// either even or odd.
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Parity {
/// No parity bit is used (most common).
ParityNone,
/// Even parity: the parity bit is set to make the total number of
/// 1-bits even.
ParityEven,
/// Odd parity: the parity bit is set to make the total number of 1-bits
/// odd.
ParityOdd,
}
/// Number of stop bits
///
/// The stop bit(s) signal the end of a data packet in UART communication.
/// This enum defines the possible configurations for the number of stop
/// bits.
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum StopBits {
/// 1 stop bit
/// 1 stop bit.
STOP1 = 1,
/// 1.5 stop bits
/// 1.5 stop bits.
STOP1P5 = 2,
/// 2 stop bits
/// 2 stop bits.
STOP2 = 3,
}
@ -267,51 +343,68 @@ pub mod config {
#[derive(Debug, Copy, Clone)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct Config {
/// The baud rate (speed) of the UART communication in bits per second
/// (bps).
pub baudrate: u32,
/// Number of data bits in each frame (5, 6, 7, or 8 bits).
pub data_bits: DataBits,
/// Parity setting (None, Even, or Odd).
pub parity: Parity,
/// Number of stop bits in each frame (1, 1.5, or 2 bits).
pub stop_bits: StopBits,
/// Clock source used by the UART peripheral.
pub clock_source: super::ClockSource,
/// Threshold level at which the RX FIFO is considered full.
pub rx_fifo_full_threshold: u16,
/// Optional timeout value for RX operations.
pub rx_timeout: Option<u8>,
}
impl Config {
/// Sets the baud rate for the UART configuration.
pub fn baudrate(mut self, baudrate: u32) -> Self {
self.baudrate = baudrate;
self
}
/// Configures the UART to use no parity check.
pub fn parity_none(mut self) -> Self {
self.parity = Parity::ParityNone;
self
}
/// Configures the UART to use even parity check.
pub fn parity_even(mut self) -> Self {
self.parity = Parity::ParityEven;
self
}
/// Configures the UART to use odd parity check.
pub fn parity_odd(mut self) -> Self {
self.parity = Parity::ParityOdd;
self
}
/// Sets the number of data bits for the UART configuration.
pub fn data_bits(mut self, data_bits: DataBits) -> Self {
self.data_bits = data_bits;
self
}
/// Sets the number of stop bits for the UART configuration.
pub fn stop_bits(mut self, stop_bits: StopBits) -> Self {
self.stop_bits = stop_bits;
self
}
/// Sets the clock source for the UART configuration.
pub fn clock_source(mut self, source: super::ClockSource) -> Self {
self.clock_source = source;
self
}
/// Calculates the total symbol length in bits based on the configured
/// data bits, parity, and stop bits.
pub fn symbol_length(&self) -> u8 {
let mut length: u8 = 1; // start bit
length += match self.data_bits {
@ -331,11 +424,13 @@ pub mod config {
length
}
/// Sets the RX FIFO full threshold for the UART configuration.
pub fn rx_fifo_full_threshold(mut self, threshold: u16) -> Self {
self.rx_fifo_full_threshold = threshold;
self
}
/// Sets the RX timeout for the UART configuration.
pub fn rx_timeout(mut self, timeout: Option<u8>) -> Self {
self.rx_timeout = timeout;
self
@ -361,14 +456,27 @@ pub mod config {
/// Configuration for the AT-CMD detection functionality
pub struct AtCmdConfig {
/// Optional idle time before the AT command detection begins, in clock
/// cycles.
pub pre_idle_count: Option<u16>,
/// Optional idle time after the AT command detection ends, in clock
/// cycles.
pub post_idle_count: Option<u16>,
/// Optional timeout between characters in the AT command, in clock
/// cycles.
pub gap_timeout: Option<u16>,
/// The character that triggers the AT command detection.
pub cmd_char: u8,
/// Optional number of characters to detect as part of the AT command.
pub char_num: Option<u8>,
}
impl AtCmdConfig {
/// Creates a new `AtCmdConfig` with the specified configuration.
///
/// This function sets up the AT command detection parameters, including
/// pre- and post-idle times, a gap timeout, the triggering command
/// character, and the number of characters to detect.
pub fn new(
pre_idle_count: Option<u16>,
post_idle_count: Option<u16>,
@ -1306,10 +1414,27 @@ where
/// UART Peripheral Instance
pub trait Instance: crate::private::Sealed {
/// Returns a reference to the UART register block for the specific
/// instance.
///
/// # Safety
/// This function returns a reference to the raw hardware registers, so
/// direct interaction with the registers may require careful handling
/// to avoid unintended side effects.
fn register_block() -> &'static RegisterBlock;
/// Returns the UART number associated with this instance (e.g., UART0,
/// UART1, etc.).
fn uart_number() -> usize;
/// Returns the interrupt associated with this UART instance.
fn interrupt() -> Interrupt;
/// Disables all TX-related interrupts for this UART instance.
///
/// This function clears and disables the `transmit FIFO empty` interrupt,
/// `transmit break done`, `transmit break idle done`, and `transmit done`
/// interrupts.
fn disable_tx_interrupts() {
Self::register_block().int_clr().write(|w| {
w.txfifo_empty()
@ -1334,6 +1459,11 @@ pub trait Instance: crate::private::Sealed {
});
}
/// Disables all RX-related interrupts for this UART instance.
///
/// This function clears and disables the `receive FIFO full` interrupt,
/// `receive FIFO overflow`, `receive FIFO timeout`, and `AT command
/// character detection` interrupts.
fn disable_rx_interrupts() {
Self::register_block().int_clr().write(|w| {
w.rxfifo_full()
@ -1359,6 +1489,8 @@ pub trait Instance: crate::private::Sealed {
}
#[allow(clippy::useless_conversion)]
/// Returns the number of bytes currently in the TX FIFO for this UART
/// instance.
fn get_tx_fifo_count() -> u16 {
Self::register_block()
.status()
@ -1368,6 +1500,8 @@ pub trait Instance: crate::private::Sealed {
.into()
}
/// Returns the number of bytes currently in the RX FIFO for this UART
/// instance.
#[allow(clippy::useless_conversion)]
fn get_rx_fifo_count() -> u16 {
let fifo_cnt: u16 = Self::register_block()
@ -1408,6 +1542,10 @@ pub trait Instance: crate::private::Sealed {
fifo_cnt
}
/// Checks if the TX line is idle for this UART instance.
///
/// Returns `true` if the transmit line is idle, meaning no data is
/// currently being transmitted.
fn is_tx_idle() -> bool {
#[cfg(esp32)]
let idle = Self::register_block().status().read().st_utx_out().bits() == 0x0u8;
@ -1422,6 +1560,10 @@ pub trait Instance: crate::private::Sealed {
idle
}
/// Checks if the RX line is idle for this UART instance.
///
/// Returns `true` if the receive line is idle, meaning no data is currently
/// being received.
fn is_rx_idle() -> bool {
#[cfg(esp32)]
let idle = Self::register_block().status().read().st_urx_out().bits() == 0x0u8;
@ -1436,11 +1578,26 @@ pub trait Instance: crate::private::Sealed {
idle
}
/// Returns the output signal identifier for the TX pin of this UART
/// instance.
fn tx_signal() -> OutputSignal;
/// Returns the input signal identifier for the RX pin of this UART
/// instance.
fn rx_signal() -> InputSignal;
/// Returns the input signal identifier for the CTS (Clear to Send) pin of
/// this UART instance.
fn cts_signal() -> InputSignal;
/// Returns the output signal identifier for the RTS (Request to Send) pin
/// of this UART instance.
fn rts_signal() -> OutputSignal;
/// Enables the clock for this UART peripheral instance.
fn enable_peripheral();
/// Resets the UART peripheral instance.
fn reset_peripheral();
}
@ -2056,15 +2213,18 @@ mod asynch {
where
T: Instance,
{
/// See [`UartRx::read_async`]
/// Asynchronously reads data from the UART receive buffer into the
/// provided buffer.
pub async fn read_async(&mut self, buf: &mut [u8]) -> Result<usize, Error> {
self.rx.read_async(buf).await
}
/// Asynchronously writes data to the UART transmit buffer.
pub async fn write_async(&mut self, words: &[u8]) -> Result<usize, Error> {
self.tx.write_async(words).await
}
/// Asynchronously flushes the UART transmit buffer.
pub async fn flush_async(&mut self) -> Result<(), Error> {
self.tx.flush_async().await
}
@ -2111,6 +2271,12 @@ mod asynch {
Ok(uart_tx)
}
/// Asynchronously writes data to the UART transmit buffer in chunks.
///
/// This function sends the contents of the provided buffer `words` over
/// the UART. Data is written in chunks to avoid overflowing the
/// transmit FIFO, and the function waits asynchronously when
/// necessary for space in the buffer to become available.
pub async fn write_async(&mut self, words: &[u8]) -> Result<usize, Error> {
let mut count = 0;
let mut offset: usize = 0;
@ -2136,6 +2302,11 @@ mod asynch {
Ok(count)
}
/// Asynchronously flushes the UART transmit buffer.
///
/// This function ensures that all pending data in the transmit FIFO has
/// been sent over the UART. If the FIFO contains data, it waits
/// for the transmission to complete before returning.
pub async fn flush_async(&mut self) -> Result<(), Error> {
let count = T::get_tx_fifo_count();
if count > 0 {

View File

@ -71,44 +71,92 @@ pub unsafe extern "C" fn start_rust(a0: usize, a1: usize, a2: usize) -> ! {
}
/// Registers saved in trap handler
#[allow(missing_docs)]
#[derive(Debug, Default, Clone, Copy)]
#[repr(C)]
pub struct TrapFrame {
/// Return address, stores the address to return to after a function call or
/// interrupt.
pub ra: usize,
/// Temporary register t0, used for intermediate values.
pub t0: usize,
/// Temporary register t1, used for intermediate values.
pub t1: usize,
/// Temporary register t2, used for intermediate values.
pub t2: usize,
/// Temporary register t3, used for intermediate values.
pub t3: usize,
/// Temporary register t4, used for intermediate values.
pub t4: usize,
/// Temporary register t5, used for intermediate values.
pub t5: usize,
/// Temporary register t6, used for intermediate values.
pub t6: usize,
/// Argument register a0, typically used to pass the first argument to a
/// function.
pub a0: usize,
/// Argument register a1, typically used to pass the second argument to a
/// function.
pub a1: usize,
/// Argument register a2, typically used to pass the third argument to a
/// function.
pub a2: usize,
/// Argument register a3, typically used to pass the fourth argument to a
/// function.
pub a3: usize,
/// Argument register a4, typically used to pass the fifth argument to a
/// function.
pub a4: usize,
/// Argument register a5, typically used to pass the sixth argument to a
/// function.
pub a5: usize,
/// Argument register a6, typically used to pass the seventh argument to a
/// function.
pub a6: usize,
/// Argument register a7, typically used to pass the eighth argument to a
/// function.
pub a7: usize,
/// Saved register s0, used to hold values across function calls.
pub s0: usize,
/// Saved register s1, used to hold values across function calls.
pub s1: usize,
/// Saved register s2, used to hold values across function calls.
pub s2: usize,
/// Saved register s3, used to hold values across function calls.
pub s3: usize,
/// Saved register s4, used to hold values across function calls.
pub s4: usize,
/// Saved register s5, used to hold values across function calls.
pub s5: usize,
/// Saved register s6, used to hold values across function calls.
pub s6: usize,
/// Saved register s7, used to hold values across function calls.
pub s7: usize,
/// Saved register s8, used to hold values across function calls.
pub s8: usize,
/// Saved register s9, used to hold values across function calls.
pub s9: usize,
/// Saved register s10, used to hold values across function calls.
pub s10: usize,
/// Saved register s11, used to hold values across function calls.
pub s11: usize,
/// Global pointer register, holds the address of the global data area.
pub gp: usize,
/// Thread pointer register, holds the address of the thread-local storage
/// area.
pub tp: usize,
/// Stack pointer register, holds the address of the top of the stack.
pub sp: usize,
/// Program counter, stores the address of the next instruction to be
/// executed.
pub pc: usize,
/// Machine status register, holds the current status of the processor,
/// including interrupt enable bits and privilege mode.
pub mstatus: usize,
/// Machine cause register, contains the reason for the trap (e.g.,
/// exception or interrupt number).
pub mcause: usize,
/// Machine trap value register, contains additional information about the
/// trap (e.g., faulting address).
pub mtval: usize,
}