Add RMT output channel support for all current ESP32 variants

- Add RMT output channel support for ESP32, ESP32-S2, ESP32-S3, ESP32-C3
- Add add RMT adapter for `smart-leds` crate
- Add example `hello_rgb` for ESP32-S2, ESP32-S3 and ESP32-C3 that either
  drives one LED at the pin where a LED is located on the official devkits
- Add example `hello_rgb` for ESP32 that is driving a 12-element RGB ring.
This commit is contained in:
Robert Wiewel 2022-04-24 19:32:50 +02:00 committed by Jesse Braham
parent a2afa6cbbe
commit a55c9d77ec
19 changed files with 1649 additions and 4 deletions

View File

@ -29,6 +29,10 @@ xtensa-lx-rt = { version = "0.11", optional = true }
# Part of `ufmt` containing only `uWrite` trait
ufmt-write = { version = "0.1", optional = true }
# Smart-LED (e.g., WS2812/SK68XX) support
smart-leds-trait = { version = "0.2.1", optional = true }
# IMPORTANT:
# Each supported device MUST have its PAC included below along with a
# corresponding feature. We rename the PAC packages because we cannot
@ -39,10 +43,10 @@ esp32s2_pac = { package = "esp32s2", git = "https://github.com/esp-rs/esp-pacs.g
esp32s3_pac = { package = "esp32s3", git = "https://github.com/esp-rs/esp-pacs.git", branch = "with_source", optional = true }
[features]
esp32 = [ "esp32_pac/rt", "xtensa", "dual_core", "xtensa-lx-rt/esp32", "xtensa-lx/esp32"]
esp32c3 = ["esp32c3_pac/rt", "risc_v", "single_core"]
esp32s2 = ["esp32s2_pac/rt", "xtensa", "single_core", "xtensa-lx-rt/esp32s2", "xtensa-lx/esp32s2"]
esp32s3 = ["esp32s3_pac/rt", "xtensa", "dual_core", "xtensa-lx-rt/esp32s3", "xtensa-lx/esp32s3"]
esp32 = [ "esp32_pac/rt", "xtensa", "dual_core", "xtensa-lx-rt/esp32", "xtensa-lx/esp32", "smartled"]
esp32c3 = ["esp32c3_pac/rt", "risc_v", "single_core", "smartled"]
esp32s2 = ["esp32s2_pac/rt", "xtensa", "single_core", "xtensa-lx-rt/esp32s2", "xtensa-lx/esp32s2", "smartled"]
esp32s3 = ["esp32s3_pac/rt", "xtensa", "dual_core", "xtensa-lx-rt/esp32s3", "xtensa-lx/esp32s3", "smartled"]
# Architecture (should not be enabled directly, but instead by a PAC's feature)
risc_v = ["riscv", "riscv-atomic-emulation-trap"]
@ -54,3 +58,6 @@ dual_core = []
# To support `ufmt`
ufmt = ["ufmt-write"]
# To use the external `smart_led` crate
smartled = ["smart-leds-trait"]

View File

@ -37,6 +37,10 @@ pub enum InputSignal {
SPI3_D = 74,
SPI3_HD = 75,
SPI3_CS0 = 76,
RMT_SIG_IN0 = 83,
RMT_SIG_IN1 = 84,
RMT_SIG_IN2 = 85,
RMT_SIG_IN3 = 86,
I2CEXT1_SCL = 95,
I2CEXT1_SDA = 96,
FSPICLK = 108,
@ -98,6 +102,10 @@ pub enum OutputSignal {
SPI3_CS0 = 76,
SPI3_CS1 = 77,
SPI3_CS2 = 78,
RMT_SIG_OUT0 = 87,
RMT_SIG_OUT1 = 88,
RMT_SIG_OUT2 = 89,
RMT_SIG_OUT3 = 90,
I2CEXT1_SCL = 95,
I2CEXT1_SDA = 96,
GPIO_SD0 = 100,

View File

@ -50,6 +50,10 @@ pub enum InputSignal {
SPI3_HD = 69,
SPI3_WP = 70,
SPI3_CS0 = 71,
RMT_SIG_IN0 = 81,
RMT_SIG_IN1 = 82,
RMT_SIG_IN2 = 83,
RMT_SIG_IN3 = 84,
I2CEXT0_SCL = 89,
I2CEXT0_SDA = 90,
I2CEXT1_SCL = 91,
@ -139,6 +143,10 @@ pub enum OutputSignal {
SPI3_WP = 70,
SPI3_CS0 = 71,
SPI3_CS1 = 72,
RMT_SIG_OUT0 = 81,
RMT_SIG_OUT1 = 82,
RMT_SIG_OUT2 = 83,
RMT_SIG_OUT3 = 84,
I2CEXT0_SCL = 89,
I2CEXT0_SDA = 90,
I2CEXT1_SCL = 91,

View File

@ -34,6 +34,7 @@ pub mod i2c;
#[cfg_attr(feature = "xtensa", path = "interrupt/xtensa.rs")]
pub mod interrupt;
pub mod prelude;
pub mod pulse_control;
pub mod rng;
#[cfg(not(feature = "esp32c3"))]
pub mod rtc_cntl;
@ -42,11 +43,13 @@ pub mod spi;
pub mod timer;
#[cfg(any(feature = "esp32c3", feature = "esp32s3"))]
pub mod usb_serial_jtag;
pub mod utils;
pub use delay::Delay;
pub use gpio::*;
pub use interrupt::*;
pub use procmacros::ram;
pub use pulse_control::PulseControl;
pub use rng::Rng;
#[cfg(not(feature = "esp32c3"))]
pub use rtc_cntl::RtcCntl;

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,12 @@
//! Helper Utils
// Only provide adapter when feature is enabled!
#[cfg(feature = "smartled")]
pub mod smart_leds_adapter;
#[cfg(feature = "smartled")]
pub use smart_leds_adapter::SmartLedsAdapter;
// Re-export the macro that due to the macro_export configuration was already exported
// in the root module (i.e., `esp-hal-common`)
#[cfg(feature = "smartled")]
pub use crate::smartLedAdapter;

View File

@ -0,0 +1,202 @@
//! # Smart-LEDs RMT Adapter
//!
//! This adapter allows for the use of an RMT output channel to easily interact
//! with RGB LEDs and use the convenience functions of the external
//! [`smart-leds`](https://crates.io/crates/smart-leds) crate.
//!
//! _This is a simple implementation where every LED is adressed in an
//! individual RMT operation. This is working perfectly fine in blocking mode,
//! but in case this is used in combination with interrupts that might disturb
//! the sequential sending, an alternative implementation (addressing the LEDs
//! in a sequence in a single RMT send operation) might be required!_
#![deny(missing_docs)]
use core::{marker::PhantomData, slice::IterMut};
use smart_leds_trait::{SmartLedsWrite, RGB8};
#[cfg(any(feature = "esp32", feature = "esp32s2"))]
use crate::pulse_control::ClockSource;
use crate::{
gpio::{types::OutputSignal, OutputPin},
pulse_control::{OutputChannel, PulseCode, RepeatMode, TransmissionError},
};
// Specifies what clock frequency we're using for the RMT peripheral (if
// properly configured)
//
// TODO: Factor in clock configuration, this needs to be revisited once #24 and
// #44 have been addressed.
#[cfg(feature = "esp32c3")]
const SOURCE_CLK_FREQ: u32 = 40_000_000;
#[cfg(feature = "esp32s2")]
const SOURCE_CLK_FREQ: u32 = 40_000_000;
#[cfg(feature = "esp32")]
const SOURCE_CLK_FREQ: u32 = 40_000_000;
#[cfg(feature = "esp32s3")]
const SOURCE_CLK_FREQ: u32 = 40_000_000;
const SK68XX_CODE_PERIOD: u32 = 1200;
const SK68XX_T0H_NS: u32 = 320;
const SK68XX_T0L_NS: u32 = SK68XX_CODE_PERIOD - SK68XX_T0H_NS;
const SK68XX_T1H_NS: u32 = 640;
const SK68XX_T1L_NS: u32 = SK68XX_CODE_PERIOD - SK68XX_T1H_NS;
const SK68XX_T0H_CYCLES: u16 = ((SK68XX_T0H_NS * (SOURCE_CLK_FREQ / 1_000_000)) / 500) as u16;
const SK68XX_T0L_CYCLES: u16 = ((SK68XX_T0L_NS * (SOURCE_CLK_FREQ / 1_000_000)) / 500) as u16;
const SK68XX_T1H_CYCLES: u16 = ((SK68XX_T1H_NS * (SOURCE_CLK_FREQ / 1_000_000)) / 500) as u16;
const SK68XX_T1L_CYCLES: u16 = ((SK68XX_T1L_NS * (SOURCE_CLK_FREQ / 1_000_000)) / 500) as u16;
/// All types of errors that can happen during the conversion and transmission
/// of LED commands
#[derive(Debug)]
pub enum LedAdapterError {
/// Raised in the event that the provided data container is not large enough
BufferSizeExceeded,
/// Raised if something goes wrong in the transmission,
TransmissionError(TransmissionError),
}
/// Macro to generate adapters with an arbitrary buffer size fitting for a
/// specific number of `$buffer_size` LEDs to be addressed. Attempting to use
/// more LEDs that the buffer is configured for will result in an
/// `LedAdapterError:BufferSizeExceeded` error.
#[macro_export]
macro_rules! smartLedAdapter {
($buffer_size: literal ) => {
// The size we're assigning here is calculated as following
// (
// Nr. of LEDs
// * channels (r,g,b -> 3)
// * pulses per channel 8)
// ) + 1 additional pulse for the end delimiter
SmartLedsAdapter::<_, _, { $buffer_size * 24 + 1 }>
};
}
/// Adapter taking an RMT channel and a specific pin and providing RGB LED
/// interaction functionality using the `smart-leds` crate
pub struct SmartLedsAdapter<CHANNEL, PIN, const BUFFER_SIZE: usize> {
channel: CHANNEL,
rmt_buffer: [u32; BUFFER_SIZE],
_pin: PhantomData<PIN>,
}
impl<CHANNEL, PIN, const BUFFER_SIZE: usize> SmartLedsAdapter<CHANNEL, PIN, BUFFER_SIZE>
where
CHANNEL: OutputChannel,
PIN: OutputPin<OutputSignal = OutputSignal>,
{
/// Create a new adapter object that drives the pin using the RMT channel.
pub fn new(mut channel: CHANNEL, pin: PIN) -> SmartLedsAdapter<CHANNEL, PIN, BUFFER_SIZE> {
#[cfg(any(feature = "esp32c3", feature = "esp32s3"))]
channel
.set_idle_output_level(false)
.set_carrier_modulation(false)
.set_channel_divider(1)
.set_idle_output(true);
#[cfg(any(feature = "esp32", feature = "esp32s2"))]
channel
.set_idle_output_level(false)
.set_carrier_modulation(false)
.set_channel_divider(1)
.set_idle_output(true)
.set_clock_source(ClockSource::APB);
channel.assign_pin(pin);
Self {
channel,
rmt_buffer: [0; BUFFER_SIZE],
_pin: PhantomData,
}
}
fn convert_rgb_to_pulse(
value: RGB8,
mut_iter: &mut IterMut<u32>,
) -> Result<(), LedAdapterError> {
SmartLedsAdapter::<CHANNEL, PIN, BUFFER_SIZE>::convert_rgb_channel_to_pulses(
value.g, mut_iter,
)?;
SmartLedsAdapter::<CHANNEL, PIN, BUFFER_SIZE>::convert_rgb_channel_to_pulses(
value.r, mut_iter,
)?;
SmartLedsAdapter::<CHANNEL, PIN, BUFFER_SIZE>::convert_rgb_channel_to_pulses(
value.b, mut_iter,
)?;
Ok(())
}
fn convert_rgb_channel_to_pulses(
channel_value: u8,
mut_iter: &mut IterMut<u32>,
) -> Result<(), LedAdapterError> {
for position in [128, 64, 32, 16, 8, 4, 2, 1] {
*mut_iter.next().ok_or(LedAdapterError::BufferSizeExceeded)? =
match channel_value & position {
0 => PulseCode {
level1: true,
length1: SK68XX_T0H_CYCLES,
level2: false,
length2: SK68XX_T0L_CYCLES,
}
.into(),
_ => PulseCode {
level1: true,
length1: SK68XX_T1H_CYCLES,
level2: false,
length2: SK68XX_T1L_CYCLES,
}
.into(),
}
}
Ok(())
}
}
impl<CHANNEL, PIN, const BUFFER_SIZE: usize> SmartLedsWrite
for SmartLedsAdapter<CHANNEL, PIN, BUFFER_SIZE>
where
CHANNEL: OutputChannel,
PIN: OutputPin<OutputSignal = OutputSignal>,
{
type Error = LedAdapterError;
type Color = RGB8;
/// Convert all RGB8 items of the iterator to the RMT format and
/// add them to internal buffer. Then start a singular RMT operation
/// based on that buffer.
fn write<T, I>(&mut self, iterator: T) -> Result<(), Self::Error>
where
T: Iterator<Item = I>,
I: Into<Self::Color>,
{
// We always start from the beginning of the buffer
let mut seq_iter = self.rmt_buffer.iter_mut();
// Add all converted iterator items to the buffer.
// This will result in an `BufferSizeExceeded` error in case
// the iterator provides more elements than the buffer can take.
for item in iterator {
SmartLedsAdapter::<CHANNEL, PIN, BUFFER_SIZE>::convert_rgb_to_pulse(
item.into(),
&mut seq_iter,
)?;
}
// Finally, add an end element.
*seq_iter.next().ok_or(LedAdapterError::BufferSizeExceeded)? = 0;
// Perform the actual RMT operation. We use the u32 values here right away.
match self
.channel
.send_pulse_sequence_raw(RepeatMode::SingleShot, &self.rmt_buffer)
{
Ok(_) => Ok(()),
Err(x) => Err(LedAdapterError::TransmissionError(x)),
}
}
}

View File

@ -39,6 +39,7 @@ features = ["esp32"]
embedded-graphics = "0.7"
panic-halt = "0.2"
ssd1306 = "0.7"
smart-leds = "0.3"
[features]
default = ["rt"]

View File

@ -0,0 +1,88 @@
//! RGB LED Demo
//!
//! This example drives an 12-element RGB ring that is connected to GPIO33
//!
//! The LEDs in the ring are transitioning though the HSV color spectrum for
//! - Saturation: 255
//! - Hue: 0 - 255
//! - Value: 255
//!
//! For the 12-element RGB ring to work, building the release version is going
//! to be required.
#![no_std]
#![no_main]
use esp32_hal::{
pac,
prelude::*,
utils::{smartLedAdapter, SmartLedsAdapter},
Delay,
PulseControl,
RtcCntl,
Timer,
IO,
};
#[allow(unused_imports)]
use panic_halt as _;
use smart_leds::{
brightness,
gamma,
hsv::{hsv2rgb, Hsv},
SmartLedsWrite,
};
use xtensa_lx_rt::entry;
#[entry]
fn main() -> ! {
let mut peripherals = pac::Peripherals::take().unwrap();
let mut rtc_cntl = RtcCntl::new(peripherals.RTC_CNTL);
let mut timer0 = Timer::new(peripherals.TIMG0);
let io = IO::new(peripherals.GPIO, peripherals.IO_MUX);
// Disable MWDT and RWDT (Watchdog) flash boot protection
timer0.disable();
rtc_cntl.set_wdt_global_enable(false);
// Configure RMT peripheral globally
let pulse = PulseControl::new(peripherals.RMT, &mut peripherals.DPORT).unwrap();
// We use one of the RMT channels to instantiate a `SmartLedsAdapter` which can
// be used directly with all `smart_led` implementations
// -> We need to use the macro `smartLedAdapter!` with the number of addressed
// LEDs here to initialize the internal LED pulse buffer to the correct
// size!
let mut led = <smartLedAdapter!(12)>::new(pulse.channel0, io.pins.gpio33);
// Initialize the Delay peripheral, and use it to toggle the LED state in a
// loop.
let mut delay = Delay::new();
let mut color = Hsv {
hue: 0,
sat: 255,
val: 255,
};
let mut data;
loop {
// Iterate over the rainbow!
for hue in 0..=255 {
color.hue = hue;
// Convert from the HSV color space (where we can easily transition from one
// color to the other) to the RGB color space that we can then send to the LED
let rgb_color = hsv2rgb(color);
// Assign new color to all 12 LEDs
data = [rgb_color; 12];
// When sending to the LED, we do a gamma correction first (see smart_leds
// documentation for details) and then limit the brightness to 10 out of 255 so
// that the output it's not too bright.
led.write(brightness(gamma(data.iter().cloned()), 10))
.unwrap();
delay.delay_ms(20u8);
}
}
}

View File

@ -6,10 +6,13 @@ pub use esp_hal_common::{
interrupt,
pac,
prelude,
pulse_control,
ram,
spi,
utils,
Cpu,
Delay,
PulseControl,
Rng,
RtcCntl,
Serial,

View File

@ -40,6 +40,7 @@ features = ["esp32c3"]
embedded-graphics = "0.7"
panic-halt = "0.2"
ssd1306 = "0.7"
smart-leds = "0.3"
[features]
default = ["rt"]

View File

@ -0,0 +1,89 @@
//! //! RGB LED Demo
//!
//! This example drives an SK68XX RGB LED that is connected to the GPIO8 pin.
//! A RGB LED is connected to that pin on the ESP32-C3-DevKitM-1 and
//! ESP32-C3-DevKitC-02 boards.
//!
//! The demo will leverage the [`smart_leds`](https://crates.io/crates/smart-leds)
//! crate functionality to circle through the HSV hue color space (with
//! saturation and value both at 255). Additionally, we apply a gamma correction
//! and limit the brightness to 10 (out of 255).
#![no_std]
#![no_main]
use esp32c3_hal::{
pac,
prelude::*,
pulse_control::ClockSource,
utils::{smartLedAdapter, SmartLedsAdapter},
Delay,
PulseControl,
RtcCntl,
Timer,
IO,
};
#[allow(unused_imports)]
use panic_halt;
use riscv_rt::entry;
use smart_leds::{
brightness,
gamma,
hsv::{hsv2rgb, Hsv},
SmartLedsWrite,
};
#[entry]
fn main() -> ! {
let mut peripherals = pac::Peripherals::take().unwrap();
let mut rtc_cntl = RtcCntl::new(peripherals.RTC_CNTL);
let mut timer0 = Timer::new(peripherals.TIMG0);
let io = IO::new(peripherals.GPIO, peripherals.IO_MUX);
// Disable watchdogs
rtc_cntl.set_super_wdt_enable(false);
rtc_cntl.set_wdt_enable(false);
timer0.disable();
// Configure RMT peripheral globally
let pulse = PulseControl::new(
peripherals.RMT,
&mut peripherals.SYSTEM,
ClockSource::APB,
0,
0,
0,
)
.unwrap();
// We use one of the RMT channels to instantiate a `SmartLedsAdapter` which can
// be used directly with all `smart_led` implementations
let mut led = <smartLedAdapter!(1)>::new(pulse.channel0, io.pins.gpio8);
// Initialize the Delay peripheral, and use it to toggle the LED state in a
// loop.
let mut delay = Delay::new(peripherals.SYSTIMER);
let mut color = Hsv {
hue: 0,
sat: 255,
val: 255,
};
let mut data;
loop {
// Iterate over the rainbow!
for hue in 0..=255 {
color.hue = hue;
// Convert from the HSV color space (where we can easily transition from one
// color to the other) to the RGB color space that we can then send to the LED
data = [hsv2rgb(color)];
// When sending to the LED, we do a gamma correction first (see smart_leds
// documentation for details) and then limit the brightness to 10 out of 255 so
// that the output it's not too bright.
led.write(brightness(gamma(data.iter().cloned()), 10))
.unwrap();
delay.delay_ms(20u8);
}
}
}

View File

@ -8,10 +8,13 @@ pub use esp_hal_common::{
interrupt,
pac,
prelude,
pulse_control,
ram,
spi,
utils,
Cpu,
Delay,
PulseControl,
Rng,
Serial,
Timer,

View File

@ -39,6 +39,7 @@ features = ["esp32s2"]
embedded-graphics = "0.7"
panic-halt = "0.2"
ssd1306 = "0.7"
smart-leds = "0.3"
[features]
default = ["rt"]

View File

@ -0,0 +1,79 @@
//! RGB LED Demo
//!
//! This example drives an SK68XX RGB LED that is connected to GPIO18.
//! A RGB LED is connected to that pin on the official DevKits.
//!
//! The demo will leverage the [`smart_leds`](https://crates.io/crates/smart-leds)
//! crate functionality to circle through the HSV hue color space (with
//! saturation and value both at 255). Additionally, we apply a gamma correction
//! and limit the brightness to 10 (out of 255).
#![no_std]
#![no_main]
use esp32s2_hal::{
pac,
prelude::*,
utils::{smartLedAdapter, SmartLedsAdapter},
Delay,
PulseControl,
RtcCntl,
Timer,
IO,
};
#[allow(unused_imports)]
use panic_halt as _;
use smart_leds::{
brightness,
gamma,
hsv::{hsv2rgb, Hsv},
SmartLedsWrite,
};
use xtensa_lx_rt::entry;
#[entry]
fn main() -> ! {
let mut peripherals = pac::Peripherals::take().unwrap();
let mut rtc_cntl = RtcCntl::new(peripherals.RTC_CNTL);
let mut timer0 = Timer::new(peripherals.TIMG0);
let io = IO::new(peripherals.GPIO, peripherals.IO_MUX);
// Disable MWDT and RWDT (Watchdog) flash boot protection
timer0.disable();
rtc_cntl.set_wdt_global_enable(false);
// Configure RMT peripheral globally
let pulse = PulseControl::new(peripherals.RMT, &mut peripherals.SYSTEM).unwrap();
// We use one of the RMT channels to instantiate a `SmartLedsAdapter` which can
// be used directly with all `smart_led` implementations
let mut led = <smartLedAdapter!(1)>::new(pulse.channel0, io.pins.gpio18);
// Initialize the Delay peripheral, and use it to toggle the LED state in a
// loop.
let mut delay = Delay::new();
let mut color = Hsv {
hue: 0,
sat: 255,
val: 255,
};
let mut data;
loop {
// Iterate over the rainbow!
for hue in 0..=255 {
color.hue = hue;
// Convert from the HSV color space (where we can easily transition from one
// color to the other) to the RGB color space that we can then send to the LED
data = [hsv2rgb(color)];
// When sending to the LED, we do a gamma correction first (see smart_leds
// documentation for details) and then limit the brightness to 10 out of 255 so
// that the output it's not too bright.
led.write(brightness(gamma(data.iter().cloned()), 10))
.unwrap();
delay.delay_ms(20u8);
}
}
}

View File

@ -6,10 +6,13 @@ pub use esp_hal_common::{
interrupt,
pac,
prelude,
pulse_control,
ram,
spi,
utils,
Cpu,
Delay,
PulseControl,
Rng,
RtcCntl,
Serial,

View File

@ -39,6 +39,7 @@ features = ["esp32s3"]
embedded-graphics = "0.7"
panic-halt = "0.2"
ssd1306 = "0.7"
smart-leds = "0.3"
[features]
default = ["rt"]

View File

@ -0,0 +1,88 @@
//! RGB LED Demo
//!
//! This example drives an SK68XX RGB LED that is connected to the GPI48 pin.
//! A RGB LED is connected to that pin on the official DevKits.
//!
//! The demo will leverage the [`smart_leds`](https://crates.io/crates/smart-leds)
//! crate functionality to circle through the HSV hue color space (with
//! saturation and value both at 255). Additionally, we apply a gamma correction
//! and limit the brightness to 10 (out of 255).
#![no_std]
#![no_main]
use esp32s3_hal::{
pac,
prelude::*,
pulse_control::ClockSource,
utils::{smartLedAdapter, SmartLedsAdapter},
Delay,
PulseControl,
RtcCntl,
Timer,
IO,
};
#[allow(unused_imports)]
use panic_halt as _;
use smart_leds::{
brightness,
gamma,
hsv::{hsv2rgb, Hsv},
SmartLedsWrite,
};
use xtensa_lx_rt::entry;
#[entry]
fn main() -> ! {
let mut peripherals = pac::Peripherals::take().unwrap();
let mut rtc_cntl = RtcCntl::new(peripherals.RTC_CNTL);
let mut timer0 = Timer::new(peripherals.TIMG0);
let io = IO::new(peripherals.GPIO, peripherals.IO_MUX);
// Disable MWDT and RWDT (Watchdog) flash boot protection
timer0.disable();
rtc_cntl.set_wdt_global_enable(false);
// Configure RMT peripheral globally
let pulse = PulseControl::new(
peripherals.RMT,
&mut peripherals.SYSTEM,
ClockSource::APB,
0,
0,
0,
)
.unwrap();
// We use one of the RMT channels to instantiate a `SmartLedsAdapter` which can
// be used directly with all `smart_led` implementations
let mut led = <smartLedAdapter!(1)>::new(pulse.channel0, io.pins.gpio48);
// Initialize the Delay peripheral, and use it to toggle the LED state in a
// loop.
let mut delay = Delay::new();
let mut color = Hsv {
hue: 0,
sat: 255,
val: 255,
};
let mut data;
loop {
// Iterate over the rainbow!
for hue in 0..=255 {
color.hue = hue;
// Convert from the HSV color space (where we can easily transition from one
// color to the other) to the RGB color space that we can then send to the LED
data = [hsv2rgb(color)];
// When sending to the LED, we do a gamma correction first (see smart_leds
// documentation for details) and then limit the brightness to 10 out of 255 so
// that the output it's not too bright.
led.write(brightness(gamma(data.iter().cloned()), 10))
.unwrap();
delay.delay_ms(20u8);
}
}
}

View File

@ -6,11 +6,14 @@ pub use esp_hal_common::{
interrupt,
pac,
prelude,
pulse_control,
ram,
spi,
utils,
usb_serial_jtag,
Cpu,
Delay,
PulseControl,
Rng,
RtcCntl,
Serial,