mirror of
https://github.com/esp-rs/esp-hal.git
synced 2025-09-28 12:50:53 +00:00
Add RMT output channel support for all current ESP32 variants
- Add RMT output channel support for ESP32, ESP32-S2, ESP32-S3, ESP32-C3 - Add add RMT adapter for `smart-leds` crate - Add example `hello_rgb` for ESP32-S2, ESP32-S3 and ESP32-C3 that either drives one LED at the pin where a LED is located on the official devkits - Add example `hello_rgb` for ESP32 that is driving a 12-element RGB ring.
This commit is contained in:
parent
a2afa6cbbe
commit
a55c9d77ec
@ -29,6 +29,10 @@ xtensa-lx-rt = { version = "0.11", optional = true }
|
||||
# Part of `ufmt` containing only `uWrite` trait
|
||||
ufmt-write = { version = "0.1", optional = true }
|
||||
|
||||
# Smart-LED (e.g., WS2812/SK68XX) support
|
||||
smart-leds-trait = { version = "0.2.1", optional = true }
|
||||
|
||||
|
||||
# IMPORTANT:
|
||||
# Each supported device MUST have its PAC included below along with a
|
||||
# corresponding feature. We rename the PAC packages because we cannot
|
||||
@ -39,10 +43,10 @@ esp32s2_pac = { package = "esp32s2", git = "https://github.com/esp-rs/esp-pacs.g
|
||||
esp32s3_pac = { package = "esp32s3", git = "https://github.com/esp-rs/esp-pacs.git", branch = "with_source", optional = true }
|
||||
|
||||
[features]
|
||||
esp32 = [ "esp32_pac/rt", "xtensa", "dual_core", "xtensa-lx-rt/esp32", "xtensa-lx/esp32"]
|
||||
esp32c3 = ["esp32c3_pac/rt", "risc_v", "single_core"]
|
||||
esp32s2 = ["esp32s2_pac/rt", "xtensa", "single_core", "xtensa-lx-rt/esp32s2", "xtensa-lx/esp32s2"]
|
||||
esp32s3 = ["esp32s3_pac/rt", "xtensa", "dual_core", "xtensa-lx-rt/esp32s3", "xtensa-lx/esp32s3"]
|
||||
esp32 = [ "esp32_pac/rt", "xtensa", "dual_core", "xtensa-lx-rt/esp32", "xtensa-lx/esp32", "smartled"]
|
||||
esp32c3 = ["esp32c3_pac/rt", "risc_v", "single_core", "smartled"]
|
||||
esp32s2 = ["esp32s2_pac/rt", "xtensa", "single_core", "xtensa-lx-rt/esp32s2", "xtensa-lx/esp32s2", "smartled"]
|
||||
esp32s3 = ["esp32s3_pac/rt", "xtensa", "dual_core", "xtensa-lx-rt/esp32s3", "xtensa-lx/esp32s3", "smartled"]
|
||||
|
||||
# Architecture (should not be enabled directly, but instead by a PAC's feature)
|
||||
risc_v = ["riscv", "riscv-atomic-emulation-trap"]
|
||||
@ -54,3 +58,6 @@ dual_core = []
|
||||
|
||||
# To support `ufmt`
|
||||
ufmt = ["ufmt-write"]
|
||||
|
||||
# To use the external `smart_led` crate
|
||||
smartled = ["smart-leds-trait"]
|
@ -37,6 +37,10 @@ pub enum InputSignal {
|
||||
SPI3_D = 74,
|
||||
SPI3_HD = 75,
|
||||
SPI3_CS0 = 76,
|
||||
RMT_SIG_IN0 = 83,
|
||||
RMT_SIG_IN1 = 84,
|
||||
RMT_SIG_IN2 = 85,
|
||||
RMT_SIG_IN3 = 86,
|
||||
I2CEXT1_SCL = 95,
|
||||
I2CEXT1_SDA = 96,
|
||||
FSPICLK = 108,
|
||||
@ -98,6 +102,10 @@ pub enum OutputSignal {
|
||||
SPI3_CS0 = 76,
|
||||
SPI3_CS1 = 77,
|
||||
SPI3_CS2 = 78,
|
||||
RMT_SIG_OUT0 = 87,
|
||||
RMT_SIG_OUT1 = 88,
|
||||
RMT_SIG_OUT2 = 89,
|
||||
RMT_SIG_OUT3 = 90,
|
||||
I2CEXT1_SCL = 95,
|
||||
I2CEXT1_SDA = 96,
|
||||
GPIO_SD0 = 100,
|
||||
|
@ -50,6 +50,10 @@ pub enum InputSignal {
|
||||
SPI3_HD = 69,
|
||||
SPI3_WP = 70,
|
||||
SPI3_CS0 = 71,
|
||||
RMT_SIG_IN0 = 81,
|
||||
RMT_SIG_IN1 = 82,
|
||||
RMT_SIG_IN2 = 83,
|
||||
RMT_SIG_IN3 = 84,
|
||||
I2CEXT0_SCL = 89,
|
||||
I2CEXT0_SDA = 90,
|
||||
I2CEXT1_SCL = 91,
|
||||
@ -139,6 +143,10 @@ pub enum OutputSignal {
|
||||
SPI3_WP = 70,
|
||||
SPI3_CS0 = 71,
|
||||
SPI3_CS1 = 72,
|
||||
RMT_SIG_OUT0 = 81,
|
||||
RMT_SIG_OUT1 = 82,
|
||||
RMT_SIG_OUT2 = 83,
|
||||
RMT_SIG_OUT3 = 84,
|
||||
I2CEXT0_SCL = 89,
|
||||
I2CEXT0_SDA = 90,
|
||||
I2CEXT1_SCL = 91,
|
||||
|
@ -34,6 +34,7 @@ pub mod i2c;
|
||||
#[cfg_attr(feature = "xtensa", path = "interrupt/xtensa.rs")]
|
||||
pub mod interrupt;
|
||||
pub mod prelude;
|
||||
pub mod pulse_control;
|
||||
pub mod rng;
|
||||
#[cfg(not(feature = "esp32c3"))]
|
||||
pub mod rtc_cntl;
|
||||
@ -42,11 +43,13 @@ pub mod spi;
|
||||
pub mod timer;
|
||||
#[cfg(any(feature = "esp32c3", feature = "esp32s3"))]
|
||||
pub mod usb_serial_jtag;
|
||||
pub mod utils;
|
||||
|
||||
pub use delay::Delay;
|
||||
pub use gpio::*;
|
||||
pub use interrupt::*;
|
||||
pub use procmacros::ram;
|
||||
pub use pulse_control::PulseControl;
|
||||
pub use rng::Rng;
|
||||
#[cfg(not(feature = "esp32c3"))]
|
||||
pub use rtc_cntl::RtcCntl;
|
||||
|
1045
esp-hal-common/src/pulse_control.rs
Normal file
1045
esp-hal-common/src/pulse_control.rs
Normal file
File diff suppressed because it is too large
Load Diff
12
esp-hal-common/src/utils/mod.rs
Normal file
12
esp-hal-common/src/utils/mod.rs
Normal file
@ -0,0 +1,12 @@
|
||||
//! Helper Utils
|
||||
|
||||
// Only provide adapter when feature is enabled!
|
||||
#[cfg(feature = "smartled")]
|
||||
pub mod smart_leds_adapter;
|
||||
#[cfg(feature = "smartled")]
|
||||
pub use smart_leds_adapter::SmartLedsAdapter;
|
||||
|
||||
// Re-export the macro that due to the macro_export configuration was already exported
|
||||
// in the root module (i.e., `esp-hal-common`)
|
||||
#[cfg(feature = "smartled")]
|
||||
pub use crate::smartLedAdapter;
|
202
esp-hal-common/src/utils/smart_leds_adapter.rs
Normal file
202
esp-hal-common/src/utils/smart_leds_adapter.rs
Normal file
@ -0,0 +1,202 @@
|
||||
//! # Smart-LEDs RMT Adapter
|
||||
//!
|
||||
//! This adapter allows for the use of an RMT output channel to easily interact
|
||||
//! with RGB LEDs and use the convenience functions of the external
|
||||
//! [`smart-leds`](https://crates.io/crates/smart-leds) crate.
|
||||
//!
|
||||
//! _This is a simple implementation where every LED is adressed in an
|
||||
//! individual RMT operation. This is working perfectly fine in blocking mode,
|
||||
//! but in case this is used in combination with interrupts that might disturb
|
||||
//! the sequential sending, an alternative implementation (addressing the LEDs
|
||||
//! in a sequence in a single RMT send operation) might be required!_
|
||||
#![deny(missing_docs)]
|
||||
|
||||
use core::{marker::PhantomData, slice::IterMut};
|
||||
|
||||
use smart_leds_trait::{SmartLedsWrite, RGB8};
|
||||
|
||||
#[cfg(any(feature = "esp32", feature = "esp32s2"))]
|
||||
use crate::pulse_control::ClockSource;
|
||||
use crate::{
|
||||
gpio::{types::OutputSignal, OutputPin},
|
||||
pulse_control::{OutputChannel, PulseCode, RepeatMode, TransmissionError},
|
||||
};
|
||||
|
||||
// Specifies what clock frequency we're using for the RMT peripheral (if
|
||||
// properly configured)
|
||||
//
|
||||
// TODO: Factor in clock configuration, this needs to be revisited once #24 and
|
||||
// #44 have been addressed.
|
||||
#[cfg(feature = "esp32c3")]
|
||||
const SOURCE_CLK_FREQ: u32 = 40_000_000;
|
||||
#[cfg(feature = "esp32s2")]
|
||||
const SOURCE_CLK_FREQ: u32 = 40_000_000;
|
||||
#[cfg(feature = "esp32")]
|
||||
const SOURCE_CLK_FREQ: u32 = 40_000_000;
|
||||
#[cfg(feature = "esp32s3")]
|
||||
const SOURCE_CLK_FREQ: u32 = 40_000_000;
|
||||
|
||||
const SK68XX_CODE_PERIOD: u32 = 1200;
|
||||
const SK68XX_T0H_NS: u32 = 320;
|
||||
const SK68XX_T0L_NS: u32 = SK68XX_CODE_PERIOD - SK68XX_T0H_NS;
|
||||
const SK68XX_T1H_NS: u32 = 640;
|
||||
const SK68XX_T1L_NS: u32 = SK68XX_CODE_PERIOD - SK68XX_T1H_NS;
|
||||
|
||||
const SK68XX_T0H_CYCLES: u16 = ((SK68XX_T0H_NS * (SOURCE_CLK_FREQ / 1_000_000)) / 500) as u16;
|
||||
const SK68XX_T0L_CYCLES: u16 = ((SK68XX_T0L_NS * (SOURCE_CLK_FREQ / 1_000_000)) / 500) as u16;
|
||||
const SK68XX_T1H_CYCLES: u16 = ((SK68XX_T1H_NS * (SOURCE_CLK_FREQ / 1_000_000)) / 500) as u16;
|
||||
const SK68XX_T1L_CYCLES: u16 = ((SK68XX_T1L_NS * (SOURCE_CLK_FREQ / 1_000_000)) / 500) as u16;
|
||||
|
||||
/// All types of errors that can happen during the conversion and transmission
|
||||
/// of LED commands
|
||||
#[derive(Debug)]
|
||||
pub enum LedAdapterError {
|
||||
/// Raised in the event that the provided data container is not large enough
|
||||
BufferSizeExceeded,
|
||||
/// Raised if something goes wrong in the transmission,
|
||||
TransmissionError(TransmissionError),
|
||||
}
|
||||
|
||||
/// Macro to generate adapters with an arbitrary buffer size fitting for a
|
||||
/// specific number of `$buffer_size` LEDs to be addressed. Attempting to use
|
||||
/// more LEDs that the buffer is configured for will result in an
|
||||
/// `LedAdapterError:BufferSizeExceeded` error.
|
||||
#[macro_export]
|
||||
macro_rules! smartLedAdapter {
|
||||
($buffer_size: literal ) => {
|
||||
// The size we're assigning here is calculated as following
|
||||
// (
|
||||
// Nr. of LEDs
|
||||
// * channels (r,g,b -> 3)
|
||||
// * pulses per channel 8)
|
||||
// ) + 1 additional pulse for the end delimiter
|
||||
SmartLedsAdapter::<_, _, { $buffer_size * 24 + 1 }>
|
||||
};
|
||||
}
|
||||
|
||||
/// Adapter taking an RMT channel and a specific pin and providing RGB LED
|
||||
/// interaction functionality using the `smart-leds` crate
|
||||
pub struct SmartLedsAdapter<CHANNEL, PIN, const BUFFER_SIZE: usize> {
|
||||
channel: CHANNEL,
|
||||
rmt_buffer: [u32; BUFFER_SIZE],
|
||||
_pin: PhantomData<PIN>,
|
||||
}
|
||||
|
||||
impl<CHANNEL, PIN, const BUFFER_SIZE: usize> SmartLedsAdapter<CHANNEL, PIN, BUFFER_SIZE>
|
||||
where
|
||||
CHANNEL: OutputChannel,
|
||||
PIN: OutputPin<OutputSignal = OutputSignal>,
|
||||
{
|
||||
/// Create a new adapter object that drives the pin using the RMT channel.
|
||||
pub fn new(mut channel: CHANNEL, pin: PIN) -> SmartLedsAdapter<CHANNEL, PIN, BUFFER_SIZE> {
|
||||
#[cfg(any(feature = "esp32c3", feature = "esp32s3"))]
|
||||
channel
|
||||
.set_idle_output_level(false)
|
||||
.set_carrier_modulation(false)
|
||||
.set_channel_divider(1)
|
||||
.set_idle_output(true);
|
||||
|
||||
#[cfg(any(feature = "esp32", feature = "esp32s2"))]
|
||||
channel
|
||||
.set_idle_output_level(false)
|
||||
.set_carrier_modulation(false)
|
||||
.set_channel_divider(1)
|
||||
.set_idle_output(true)
|
||||
.set_clock_source(ClockSource::APB);
|
||||
|
||||
channel.assign_pin(pin);
|
||||
Self {
|
||||
channel,
|
||||
rmt_buffer: [0; BUFFER_SIZE],
|
||||
_pin: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
fn convert_rgb_to_pulse(
|
||||
value: RGB8,
|
||||
mut_iter: &mut IterMut<u32>,
|
||||
) -> Result<(), LedAdapterError> {
|
||||
SmartLedsAdapter::<CHANNEL, PIN, BUFFER_SIZE>::convert_rgb_channel_to_pulses(
|
||||
value.g, mut_iter,
|
||||
)?;
|
||||
SmartLedsAdapter::<CHANNEL, PIN, BUFFER_SIZE>::convert_rgb_channel_to_pulses(
|
||||
value.r, mut_iter,
|
||||
)?;
|
||||
SmartLedsAdapter::<CHANNEL, PIN, BUFFER_SIZE>::convert_rgb_channel_to_pulses(
|
||||
value.b, mut_iter,
|
||||
)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn convert_rgb_channel_to_pulses(
|
||||
channel_value: u8,
|
||||
mut_iter: &mut IterMut<u32>,
|
||||
) -> Result<(), LedAdapterError> {
|
||||
for position in [128, 64, 32, 16, 8, 4, 2, 1] {
|
||||
*mut_iter.next().ok_or(LedAdapterError::BufferSizeExceeded)? =
|
||||
match channel_value & position {
|
||||
0 => PulseCode {
|
||||
level1: true,
|
||||
length1: SK68XX_T0H_CYCLES,
|
||||
level2: false,
|
||||
length2: SK68XX_T0L_CYCLES,
|
||||
}
|
||||
.into(),
|
||||
_ => PulseCode {
|
||||
level1: true,
|
||||
length1: SK68XX_T1H_CYCLES,
|
||||
level2: false,
|
||||
length2: SK68XX_T1L_CYCLES,
|
||||
}
|
||||
.into(),
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl<CHANNEL, PIN, const BUFFER_SIZE: usize> SmartLedsWrite
|
||||
for SmartLedsAdapter<CHANNEL, PIN, BUFFER_SIZE>
|
||||
where
|
||||
CHANNEL: OutputChannel,
|
||||
PIN: OutputPin<OutputSignal = OutputSignal>,
|
||||
{
|
||||
type Error = LedAdapterError;
|
||||
type Color = RGB8;
|
||||
|
||||
/// Convert all RGB8 items of the iterator to the RMT format and
|
||||
/// add them to internal buffer. Then start a singular RMT operation
|
||||
/// based on that buffer.
|
||||
fn write<T, I>(&mut self, iterator: T) -> Result<(), Self::Error>
|
||||
where
|
||||
T: Iterator<Item = I>,
|
||||
I: Into<Self::Color>,
|
||||
{
|
||||
// We always start from the beginning of the buffer
|
||||
let mut seq_iter = self.rmt_buffer.iter_mut();
|
||||
|
||||
// Add all converted iterator items to the buffer.
|
||||
// This will result in an `BufferSizeExceeded` error in case
|
||||
// the iterator provides more elements than the buffer can take.
|
||||
for item in iterator {
|
||||
SmartLedsAdapter::<CHANNEL, PIN, BUFFER_SIZE>::convert_rgb_to_pulse(
|
||||
item.into(),
|
||||
&mut seq_iter,
|
||||
)?;
|
||||
}
|
||||
|
||||
// Finally, add an end element.
|
||||
*seq_iter.next().ok_or(LedAdapterError::BufferSizeExceeded)? = 0;
|
||||
|
||||
// Perform the actual RMT operation. We use the u32 values here right away.
|
||||
match self
|
||||
.channel
|
||||
.send_pulse_sequence_raw(RepeatMode::SingleShot, &self.rmt_buffer)
|
||||
{
|
||||
Ok(_) => Ok(()),
|
||||
Err(x) => Err(LedAdapterError::TransmissionError(x)),
|
||||
}
|
||||
}
|
||||
}
|
@ -39,6 +39,7 @@ features = ["esp32"]
|
||||
embedded-graphics = "0.7"
|
||||
panic-halt = "0.2"
|
||||
ssd1306 = "0.7"
|
||||
smart-leds = "0.3"
|
||||
|
||||
[features]
|
||||
default = ["rt"]
|
||||
|
88
esp32-hal/examples/hello_rgb.rs
Normal file
88
esp32-hal/examples/hello_rgb.rs
Normal file
@ -0,0 +1,88 @@
|
||||
//! RGB LED Demo
|
||||
//!
|
||||
//! This example drives an 12-element RGB ring that is connected to GPIO33
|
||||
//!
|
||||
//! The LEDs in the ring are transitioning though the HSV color spectrum for
|
||||
//! - Saturation: 255
|
||||
//! - Hue: 0 - 255
|
||||
//! - Value: 255
|
||||
//!
|
||||
//! For the 12-element RGB ring to work, building the release version is going
|
||||
//! to be required.
|
||||
|
||||
#![no_std]
|
||||
#![no_main]
|
||||
|
||||
use esp32_hal::{
|
||||
pac,
|
||||
prelude::*,
|
||||
utils::{smartLedAdapter, SmartLedsAdapter},
|
||||
Delay,
|
||||
PulseControl,
|
||||
RtcCntl,
|
||||
Timer,
|
||||
IO,
|
||||
};
|
||||
#[allow(unused_imports)]
|
||||
use panic_halt as _;
|
||||
use smart_leds::{
|
||||
brightness,
|
||||
gamma,
|
||||
hsv::{hsv2rgb, Hsv},
|
||||
SmartLedsWrite,
|
||||
};
|
||||
use xtensa_lx_rt::entry;
|
||||
|
||||
#[entry]
|
||||
fn main() -> ! {
|
||||
let mut peripherals = pac::Peripherals::take().unwrap();
|
||||
|
||||
let mut rtc_cntl = RtcCntl::new(peripherals.RTC_CNTL);
|
||||
let mut timer0 = Timer::new(peripherals.TIMG0);
|
||||
let io = IO::new(peripherals.GPIO, peripherals.IO_MUX);
|
||||
|
||||
// Disable MWDT and RWDT (Watchdog) flash boot protection
|
||||
timer0.disable();
|
||||
rtc_cntl.set_wdt_global_enable(false);
|
||||
|
||||
// Configure RMT peripheral globally
|
||||
let pulse = PulseControl::new(peripherals.RMT, &mut peripherals.DPORT).unwrap();
|
||||
|
||||
// We use one of the RMT channels to instantiate a `SmartLedsAdapter` which can
|
||||
// be used directly with all `smart_led` implementations
|
||||
// -> We need to use the macro `smartLedAdapter!` with the number of addressed
|
||||
// LEDs here to initialize the internal LED pulse buffer to the correct
|
||||
// size!
|
||||
let mut led = <smartLedAdapter!(12)>::new(pulse.channel0, io.pins.gpio33);
|
||||
|
||||
// Initialize the Delay peripheral, and use it to toggle the LED state in a
|
||||
// loop.
|
||||
let mut delay = Delay::new();
|
||||
|
||||
let mut color = Hsv {
|
||||
hue: 0,
|
||||
sat: 255,
|
||||
val: 255,
|
||||
};
|
||||
let mut data;
|
||||
|
||||
loop {
|
||||
// Iterate over the rainbow!
|
||||
for hue in 0..=255 {
|
||||
color.hue = hue;
|
||||
// Convert from the HSV color space (where we can easily transition from one
|
||||
// color to the other) to the RGB color space that we can then send to the LED
|
||||
let rgb_color = hsv2rgb(color);
|
||||
|
||||
// Assign new color to all 12 LEDs
|
||||
data = [rgb_color; 12];
|
||||
|
||||
// When sending to the LED, we do a gamma correction first (see smart_leds
|
||||
// documentation for details) and then limit the brightness to 10 out of 255 so
|
||||
// that the output it's not too bright.
|
||||
led.write(brightness(gamma(data.iter().cloned()), 10))
|
||||
.unwrap();
|
||||
delay.delay_ms(20u8);
|
||||
}
|
||||
}
|
||||
}
|
@ -6,10 +6,13 @@ pub use esp_hal_common::{
|
||||
interrupt,
|
||||
pac,
|
||||
prelude,
|
||||
pulse_control,
|
||||
ram,
|
||||
spi,
|
||||
utils,
|
||||
Cpu,
|
||||
Delay,
|
||||
PulseControl,
|
||||
Rng,
|
||||
RtcCntl,
|
||||
Serial,
|
||||
|
@ -40,6 +40,7 @@ features = ["esp32c3"]
|
||||
embedded-graphics = "0.7"
|
||||
panic-halt = "0.2"
|
||||
ssd1306 = "0.7"
|
||||
smart-leds = "0.3"
|
||||
|
||||
[features]
|
||||
default = ["rt"]
|
||||
|
89
esp32c3-hal/examples/hello_rgb.rs
Normal file
89
esp32c3-hal/examples/hello_rgb.rs
Normal file
@ -0,0 +1,89 @@
|
||||
//! //! RGB LED Demo
|
||||
//!
|
||||
//! This example drives an SK68XX RGB LED that is connected to the GPIO8 pin.
|
||||
//! A RGB LED is connected to that pin on the ESP32-C3-DevKitM-1 and
|
||||
//! ESP32-C3-DevKitC-02 boards.
|
||||
//!
|
||||
//! The demo will leverage the [`smart_leds`](https://crates.io/crates/smart-leds)
|
||||
//! crate functionality to circle through the HSV hue color space (with
|
||||
//! saturation and value both at 255). Additionally, we apply a gamma correction
|
||||
//! and limit the brightness to 10 (out of 255).
|
||||
#![no_std]
|
||||
#![no_main]
|
||||
|
||||
use esp32c3_hal::{
|
||||
pac,
|
||||
prelude::*,
|
||||
pulse_control::ClockSource,
|
||||
utils::{smartLedAdapter, SmartLedsAdapter},
|
||||
Delay,
|
||||
PulseControl,
|
||||
RtcCntl,
|
||||
Timer,
|
||||
IO,
|
||||
};
|
||||
#[allow(unused_imports)]
|
||||
use panic_halt;
|
||||
use riscv_rt::entry;
|
||||
use smart_leds::{
|
||||
brightness,
|
||||
gamma,
|
||||
hsv::{hsv2rgb, Hsv},
|
||||
SmartLedsWrite,
|
||||
};
|
||||
|
||||
#[entry]
|
||||
fn main() -> ! {
|
||||
let mut peripherals = pac::Peripherals::take().unwrap();
|
||||
|
||||
let mut rtc_cntl = RtcCntl::new(peripherals.RTC_CNTL);
|
||||
let mut timer0 = Timer::new(peripherals.TIMG0);
|
||||
let io = IO::new(peripherals.GPIO, peripherals.IO_MUX);
|
||||
|
||||
// Disable watchdogs
|
||||
rtc_cntl.set_super_wdt_enable(false);
|
||||
rtc_cntl.set_wdt_enable(false);
|
||||
timer0.disable();
|
||||
|
||||
// Configure RMT peripheral globally
|
||||
let pulse = PulseControl::new(
|
||||
peripherals.RMT,
|
||||
&mut peripherals.SYSTEM,
|
||||
ClockSource::APB,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
// We use one of the RMT channels to instantiate a `SmartLedsAdapter` which can
|
||||
// be used directly with all `smart_led` implementations
|
||||
let mut led = <smartLedAdapter!(1)>::new(pulse.channel0, io.pins.gpio8);
|
||||
|
||||
// Initialize the Delay peripheral, and use it to toggle the LED state in a
|
||||
// loop.
|
||||
let mut delay = Delay::new(peripherals.SYSTIMER);
|
||||
|
||||
let mut color = Hsv {
|
||||
hue: 0,
|
||||
sat: 255,
|
||||
val: 255,
|
||||
};
|
||||
let mut data;
|
||||
|
||||
loop {
|
||||
// Iterate over the rainbow!
|
||||
for hue in 0..=255 {
|
||||
color.hue = hue;
|
||||
// Convert from the HSV color space (where we can easily transition from one
|
||||
// color to the other) to the RGB color space that we can then send to the LED
|
||||
data = [hsv2rgb(color)];
|
||||
// When sending to the LED, we do a gamma correction first (see smart_leds
|
||||
// documentation for details) and then limit the brightness to 10 out of 255 so
|
||||
// that the output it's not too bright.
|
||||
led.write(brightness(gamma(data.iter().cloned()), 10))
|
||||
.unwrap();
|
||||
delay.delay_ms(20u8);
|
||||
}
|
||||
}
|
||||
}
|
@ -8,10 +8,13 @@ pub use esp_hal_common::{
|
||||
interrupt,
|
||||
pac,
|
||||
prelude,
|
||||
pulse_control,
|
||||
ram,
|
||||
spi,
|
||||
utils,
|
||||
Cpu,
|
||||
Delay,
|
||||
PulseControl,
|
||||
Rng,
|
||||
Serial,
|
||||
Timer,
|
||||
|
@ -39,6 +39,7 @@ features = ["esp32s2"]
|
||||
embedded-graphics = "0.7"
|
||||
panic-halt = "0.2"
|
||||
ssd1306 = "0.7"
|
||||
smart-leds = "0.3"
|
||||
|
||||
[features]
|
||||
default = ["rt"]
|
||||
|
79
esp32s2-hal/examples/hello_rgb.rs
Normal file
79
esp32s2-hal/examples/hello_rgb.rs
Normal file
@ -0,0 +1,79 @@
|
||||
//! RGB LED Demo
|
||||
//!
|
||||
//! This example drives an SK68XX RGB LED that is connected to GPIO18.
|
||||
//! A RGB LED is connected to that pin on the official DevKits.
|
||||
//!
|
||||
//! The demo will leverage the [`smart_leds`](https://crates.io/crates/smart-leds)
|
||||
//! crate functionality to circle through the HSV hue color space (with
|
||||
//! saturation and value both at 255). Additionally, we apply a gamma correction
|
||||
//! and limit the brightness to 10 (out of 255).
|
||||
|
||||
#![no_std]
|
||||
#![no_main]
|
||||
|
||||
use esp32s2_hal::{
|
||||
pac,
|
||||
prelude::*,
|
||||
utils::{smartLedAdapter, SmartLedsAdapter},
|
||||
Delay,
|
||||
PulseControl,
|
||||
RtcCntl,
|
||||
Timer,
|
||||
IO,
|
||||
};
|
||||
#[allow(unused_imports)]
|
||||
use panic_halt as _;
|
||||
use smart_leds::{
|
||||
brightness,
|
||||
gamma,
|
||||
hsv::{hsv2rgb, Hsv},
|
||||
SmartLedsWrite,
|
||||
};
|
||||
use xtensa_lx_rt::entry;
|
||||
|
||||
#[entry]
|
||||
fn main() -> ! {
|
||||
let mut peripherals = pac::Peripherals::take().unwrap();
|
||||
|
||||
let mut rtc_cntl = RtcCntl::new(peripherals.RTC_CNTL);
|
||||
let mut timer0 = Timer::new(peripherals.TIMG0);
|
||||
let io = IO::new(peripherals.GPIO, peripherals.IO_MUX);
|
||||
|
||||
// Disable MWDT and RWDT (Watchdog) flash boot protection
|
||||
timer0.disable();
|
||||
rtc_cntl.set_wdt_global_enable(false);
|
||||
|
||||
// Configure RMT peripheral globally
|
||||
let pulse = PulseControl::new(peripherals.RMT, &mut peripherals.SYSTEM).unwrap();
|
||||
|
||||
// We use one of the RMT channels to instantiate a `SmartLedsAdapter` which can
|
||||
// be used directly with all `smart_led` implementations
|
||||
let mut led = <smartLedAdapter!(1)>::new(pulse.channel0, io.pins.gpio18);
|
||||
|
||||
// Initialize the Delay peripheral, and use it to toggle the LED state in a
|
||||
// loop.
|
||||
let mut delay = Delay::new();
|
||||
|
||||
let mut color = Hsv {
|
||||
hue: 0,
|
||||
sat: 255,
|
||||
val: 255,
|
||||
};
|
||||
let mut data;
|
||||
|
||||
loop {
|
||||
// Iterate over the rainbow!
|
||||
for hue in 0..=255 {
|
||||
color.hue = hue;
|
||||
// Convert from the HSV color space (where we can easily transition from one
|
||||
// color to the other) to the RGB color space that we can then send to the LED
|
||||
data = [hsv2rgb(color)];
|
||||
// When sending to the LED, we do a gamma correction first (see smart_leds
|
||||
// documentation for details) and then limit the brightness to 10 out of 255 so
|
||||
// that the output it's not too bright.
|
||||
led.write(brightness(gamma(data.iter().cloned()), 10))
|
||||
.unwrap();
|
||||
delay.delay_ms(20u8);
|
||||
}
|
||||
}
|
||||
}
|
@ -6,10 +6,13 @@ pub use esp_hal_common::{
|
||||
interrupt,
|
||||
pac,
|
||||
prelude,
|
||||
pulse_control,
|
||||
ram,
|
||||
spi,
|
||||
utils,
|
||||
Cpu,
|
||||
Delay,
|
||||
PulseControl,
|
||||
Rng,
|
||||
RtcCntl,
|
||||
Serial,
|
||||
|
@ -39,6 +39,7 @@ features = ["esp32s3"]
|
||||
embedded-graphics = "0.7"
|
||||
panic-halt = "0.2"
|
||||
ssd1306 = "0.7"
|
||||
smart-leds = "0.3"
|
||||
|
||||
[features]
|
||||
default = ["rt"]
|
||||
|
88
esp32s3-hal/examples/hello_rgb.rs
Normal file
88
esp32s3-hal/examples/hello_rgb.rs
Normal file
@ -0,0 +1,88 @@
|
||||
//! RGB LED Demo
|
||||
//!
|
||||
//! This example drives an SK68XX RGB LED that is connected to the GPI48 pin.
|
||||
//! A RGB LED is connected to that pin on the official DevKits.
|
||||
//!
|
||||
//! The demo will leverage the [`smart_leds`](https://crates.io/crates/smart-leds)
|
||||
//! crate functionality to circle through the HSV hue color space (with
|
||||
//! saturation and value both at 255). Additionally, we apply a gamma correction
|
||||
//! and limit the brightness to 10 (out of 255).
|
||||
|
||||
#![no_std]
|
||||
#![no_main]
|
||||
|
||||
use esp32s3_hal::{
|
||||
pac,
|
||||
prelude::*,
|
||||
pulse_control::ClockSource,
|
||||
utils::{smartLedAdapter, SmartLedsAdapter},
|
||||
Delay,
|
||||
PulseControl,
|
||||
RtcCntl,
|
||||
Timer,
|
||||
IO,
|
||||
};
|
||||
#[allow(unused_imports)]
|
||||
use panic_halt as _;
|
||||
use smart_leds::{
|
||||
brightness,
|
||||
gamma,
|
||||
hsv::{hsv2rgb, Hsv},
|
||||
SmartLedsWrite,
|
||||
};
|
||||
use xtensa_lx_rt::entry;
|
||||
|
||||
#[entry]
|
||||
fn main() -> ! {
|
||||
let mut peripherals = pac::Peripherals::take().unwrap();
|
||||
|
||||
let mut rtc_cntl = RtcCntl::new(peripherals.RTC_CNTL);
|
||||
let mut timer0 = Timer::new(peripherals.TIMG0);
|
||||
let io = IO::new(peripherals.GPIO, peripherals.IO_MUX);
|
||||
|
||||
// Disable MWDT and RWDT (Watchdog) flash boot protection
|
||||
timer0.disable();
|
||||
rtc_cntl.set_wdt_global_enable(false);
|
||||
|
||||
// Configure RMT peripheral globally
|
||||
let pulse = PulseControl::new(
|
||||
peripherals.RMT,
|
||||
&mut peripherals.SYSTEM,
|
||||
ClockSource::APB,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
// We use one of the RMT channels to instantiate a `SmartLedsAdapter` which can
|
||||
// be used directly with all `smart_led` implementations
|
||||
let mut led = <smartLedAdapter!(1)>::new(pulse.channel0, io.pins.gpio48);
|
||||
|
||||
// Initialize the Delay peripheral, and use it to toggle the LED state in a
|
||||
// loop.
|
||||
let mut delay = Delay::new();
|
||||
|
||||
let mut color = Hsv {
|
||||
hue: 0,
|
||||
sat: 255,
|
||||
val: 255,
|
||||
};
|
||||
let mut data;
|
||||
|
||||
loop {
|
||||
// Iterate over the rainbow!
|
||||
for hue in 0..=255 {
|
||||
color.hue = hue;
|
||||
// Convert from the HSV color space (where we can easily transition from one
|
||||
// color to the other) to the RGB color space that we can then send to the LED
|
||||
data = [hsv2rgb(color)];
|
||||
// When sending to the LED, we do a gamma correction first (see smart_leds
|
||||
// documentation for details) and then limit the brightness to 10 out of 255 so
|
||||
// that the output it's not too bright.
|
||||
led.write(brightness(gamma(data.iter().cloned()), 10))
|
||||
.unwrap();
|
||||
delay.delay_ms(20u8);
|
||||
}
|
||||
}
|
||||
}
|
@ -6,11 +6,14 @@ pub use esp_hal_common::{
|
||||
interrupt,
|
||||
pac,
|
||||
prelude,
|
||||
pulse_control,
|
||||
ram,
|
||||
spi,
|
||||
utils,
|
||||
usb_serial_jtag,
|
||||
Cpu,
|
||||
Delay,
|
||||
PulseControl,
|
||||
Rng,
|
||||
RtcCntl,
|
||||
Serial,
|
||||
|
Loading…
x
Reference in New Issue
Block a user