From c73a2d91ae576b3cbf6fee9d0bda11ebbc8f2155 Mon Sep 17 00:00:00 2001 From: Juraj Sadel Date: Wed, 10 Apr 2024 17:16:20 +0200 Subject: [PATCH] Add HIL test for ECC (#1418) * Add HIL test for ECC * review changes: remove forgotten SysTimer in C2 test --- hil-test/Cargo.toml | 14 +- hil-test/tests/ecc.rs | 1048 +++++++++++++++++++++++++++++++++++++++++ 2 files changed, 1059 insertions(+), 3 deletions(-) create mode 100644 hil-test/tests/ecc.rs diff --git a/hil-test/Cargo.toml b/hil-test/Cargo.toml index 43638a0af..a48552425 100644 --- a/hil-test/Cargo.toml +++ b/hil-test/Cargo.toml @@ -33,6 +33,10 @@ name = "uart_async" harness = false required-features = ["async", "embassy"] +[[test]] +name = "ecc" +harness = false + [dependencies] defmt = { version = "0.3.6" } defmt-rtt = { version = "0.4.0" } @@ -51,9 +55,13 @@ cfg-if = "1" [dev-dependencies] embassy-executor = { version = "0.5.0", default-features = false, features = ["executor-thread", "arch-riscv32"] } # Add the `embedded-test/defmt` feature for more verbose testing -embedded-test = { git = "https://github.com/probe-rs/embedded-test", rev = "b67dec33992f5bd79d414a0e70220dc4142278cf", default-features = false } -crypto-bigint = { version = "0.5.5", default-features = false } -nb = "1.1.0" +embedded-test = { git = "https://github.com/probe-rs/embedded-test", rev = "b67dec33992f5bd79d414a0e70220dc4142278cf", default-features = false } +crypto-bigint = { version = "0.5.5", default-features = false } +nb = "1.1.0" +hex-literal = "0.4.1" +p192 = { version = "0.13.0", default-features = false, features = ["arithmetic"] } +p256 = { version = "0.13.2", default-features = false, features = ["arithmetic"] } +elliptic-curve = { version = "0.13.8", default-features = false, features = ["sec1"] } [features] default = ["async", "embassy", "embassy-time-timg0"] diff --git a/hil-test/tests/ecc.rs b/hil-test/tests/ecc.rs new file mode 100644 index 000000000..3b8e3697d --- /dev/null +++ b/hil-test/tests/ecc.rs @@ -0,0 +1,1048 @@ +//! ECC Test + +//% CHIPS: esp32c2 esp32c6 esp32h2 + +#![no_std] +#![no_main] + +use core::ops::Mul; + +use crypto_bigint::{ + modular::runtime_mod::{DynResidue, DynResidueParams}, + Encoding, + U192, + U256, +}; +use defmt_rtt as _; +use elliptic_curve::sec1::ToEncodedPoint; +use esp_backtrace as _; +#[cfg(feature = "esp32h2")] +use esp_hal::ecc::WorkMode; +use esp_hal::{ + ecc::{Ecc, EllipticCurve, Error}, + peripherals::Peripherals, + rng::Rng, + Blocking, +}; +use hex_literal::hex; + +struct TestParams<'a> { + prime_fields: &'a [&'a [u8]], + nb_loop_mul: usize, + #[cfg(feature = "esp32c2")] + nb_loop_inv: usize, +} + +const TEST_PARAMS_VECTOR: TestParams = TestParams { + prime_fields: &[ + &hex!("fffffffffffffffffffffffffffffffeffffffffffffffff"), + &hex!("ffffffff00000001000000000000000000000000ffffffffffffffffffffffff"), + ], + nb_loop_mul: 10, + #[cfg(feature = "esp32c2")] + nb_loop_inv: 20, +}; + +struct Context<'a> { + ecc: Ecc<'a, Blocking>, + rng: Rng, +} + +impl Context<'_> { + pub fn init() -> Self { + let peripherals = Peripherals::take(); + let ecc = Ecc::new(peripherals.ECC, None); + let rng = Rng::new(peripherals.RNG); + + Context { ecc, rng } + } +} + +#[cfg(test)] +#[embedded_test::tests] +mod tests { + use defmt::assert_eq; + + use super::*; + + #[init] + fn init() -> Context<'static> { + Context::init() + } + + #[test] + fn test_ecc_affine_point_multiplication(mut ctx: Context<'static>) { + for &prime_field in TEST_PARAMS_VECTOR.prime_fields { + match prime_field.len() { + 24 => (), + _ => (), + }; + let t1 = &mut [0_u8; 96]; + let (k, x) = t1.split_at_mut(prime_field.len()); + let (x, y) = x.split_at_mut(prime_field.len()); + let (y, _) = y.split_at_mut(prime_field.len()); + for _ in 0..TEST_PARAMS_VECTOR.nb_loop_mul { + loop { + ctx.rng.read(k); + let is_zero = k.iter().all(|&elt| elt == 0); + let is_modulus = k.iter().zip(prime_field).all(|(&a, &b)| a == b); + if is_zero == false && is_modulus == false { + break; + } + } + let curve = match prime_field.len() { + 24 => { + x.copy_from_slice( + p192::AffinePoint::GENERATOR + .to_encoded_point(false) + .x() + .unwrap(), + ); + y.copy_from_slice( + p192::AffinePoint::GENERATOR + .to_encoded_point(false) + .y() + .unwrap(), + ); + &EllipticCurve::P192 + } + 32 => { + x.copy_from_slice( + p256::AffinePoint::GENERATOR + .to_encoded_point(false) + .x() + .unwrap(), + ); + y.copy_from_slice( + p256::AffinePoint::GENERATOR + .to_encoded_point(false) + .y() + .unwrap(), + ); + &EllipticCurve::P256 + } + _ => unimplemented!(), + }; + + ctx.ecc + .affine_point_multiplication(curve, k, x, y) + .expect("Inputs data doesn't match the key length selected."); + + let t2 = &mut [0_u8; 64]; + + let (sw_x, sw_y) = t2.split_at_mut(prime_field.len()); + let (sw_y, _) = sw_y.split_at_mut(prime_field.len()); + + match prime_field.len() { + 24 => { + let sw_k = p192::Scalar::from( + elliptic_curve::ScalarPrimitive::from_slice(k).unwrap(), + ); + let q = p192::AffinePoint::GENERATOR + .mul(sw_k) + .to_affine() + .to_encoded_point(false); + sw_x.copy_from_slice(q.x().unwrap().as_slice()); + sw_y.copy_from_slice(q.y().unwrap().as_slice()); + } + 32 => { + let sw_k = p256::Scalar::from( + elliptic_curve::ScalarPrimitive::from_slice(k).unwrap(), + ); + let q = p256::AffinePoint::GENERATOR + .mul(sw_k) + .to_affine() + .to_encoded_point(false); + sw_x.copy_from_slice(q.x().unwrap().as_slice()); + sw_y.copy_from_slice(q.y().unwrap().as_slice()); + } + _ => unimplemented!(), + }; + + for (a, b) in x.iter().zip(sw_x) { + assert_eq!(a, b); + } + + for (a, b) in y.iter().zip(sw_y) { + assert_eq!(a, b); + } + } + } + } + + #[test] + fn test_ecc_affine_point_verification(mut ctx: Context<'static>) { + for &prime_field in TEST_PARAMS_VECTOR.prime_fields { + let t1 = &mut [0_u8; 96]; + let (k, x) = t1.split_at_mut(prime_field.len()); + let (x, y) = x.split_at_mut(prime_field.len()); + let (y, _) = y.split_at_mut(prime_field.len()); + for _ in 0..TEST_PARAMS_VECTOR.nb_loop_mul { + loop { + ctx.rng.read(k); + let is_zero = k.iter().all(|&elt| elt == 0); + let is_modulus = k.iter().zip(prime_field).all(|(&a, &b)| a == b); + if is_zero == false && is_modulus == false { + break; + } + } + + let curve = match prime_field.len() { + 24 => { + let sw_k = p192::Scalar::from( + elliptic_curve::ScalarPrimitive::from_slice(k).unwrap(), + ); + let q = p192::AffinePoint::GENERATOR + .mul(sw_k) + .to_affine() + .to_encoded_point(false); + x.copy_from_slice(q.x().unwrap().as_slice()); + y.copy_from_slice(q.y().unwrap().as_slice()); + &EllipticCurve::P192 + } + 32 => { + let sw_k = p256::Scalar::from( + elliptic_curve::ScalarPrimitive::from_slice(k).unwrap(), + ); + let q = p256::AffinePoint::GENERATOR + .mul(sw_k) + .to_affine() + .to_encoded_point(false); + x.copy_from_slice(q.x().unwrap().as_slice()); + y.copy_from_slice(q.y().unwrap().as_slice()); + &EllipticCurve::P256 + } + _ => unimplemented!(), + }; + + match ctx.ecc.affine_point_verification(&curve, x, y) { + Err(Error::SizeMismatchCurve) => { + assert!(false, "Inputs data doesn't match the key length selected.") + } + Err(Error::PointNotOnSelectedCurve) => assert!( + false, + "ECC failed while affine point verification with x = {:02X?} and y = {:02X?}.", + x, y, + ), + _ => {} + } + } + } + } + + #[test] + fn test_ecc_afine_point_verification_multiplication(mut ctx: Context<'static>) { + for &prime_field in TEST_PARAMS_VECTOR.prime_fields { + let t1 = &mut [0_u8; 96]; + let (k, px) = t1.split_at_mut(prime_field.len()); + let (px, py) = px.split_at_mut(prime_field.len()); + let (py, _) = py.split_at_mut(prime_field.len()); + #[cfg(feature = "esp32h2")] + let qx = &mut [0u8; 8]; + #[cfg(feature = "esp32h2")] + let qy = &mut [0u8; 8]; + #[cfg(feature = "esp32h2")] + let qz = &mut [0u8; 8]; + for _ in 0..TEST_PARAMS_VECTOR.nb_loop_mul { + loop { + ctx.rng.read(k); + let is_zero = k.iter().all(|&elt| elt == 0); + let is_modulus = k.iter().zip(prime_field).all(|(&a, &b)| a == b); + if is_zero == false && is_modulus == false { + break; + } + } + let curve = match prime_field.len() { + 24 => { + px.copy_from_slice( + p192::AffinePoint::GENERATOR + .to_encoded_point(false) + .x() + .unwrap(), + ); + py.copy_from_slice( + p192::AffinePoint::GENERATOR + .to_encoded_point(false) + .y() + .unwrap(), + ); + &EllipticCurve::P192 + } + 32 => { + px.copy_from_slice( + p256::AffinePoint::GENERATOR + .to_encoded_point(false) + .x() + .unwrap(), + ); + py.copy_from_slice( + p256::AffinePoint::GENERATOR + .to_encoded_point(false) + .y() + .unwrap(), + ); + &EllipticCurve::P256 + } + _ => unimplemented!(), + }; + + #[cfg(not(feature = "esp32h2"))] + let result = ctx + .ecc + .affine_point_verification_multiplication(curve, k, px, py); + #[cfg(feature = "esp32h2")] + let result = ctx + .ecc + .affine_point_verification_multiplication(curve, k, px, py, qx, qy, qz); + match result { + Err(Error::SizeMismatchCurve) => assert!(false, "Inputs data doesn't match the key length selected."), + Err(Error::PointNotOnSelectedCurve) => assert!( + false, "ECC failed while affine point verification + multiplication with x = {:02X?} and y = {:02X?}.", + px, py, + ), + _ => {}, + } + + let t2 = &mut [0_u8; 64]; + + let (sw_x, sw_y) = t2.split_at_mut(prime_field.len()); + let (sw_y, _) = sw_y.split_at_mut(prime_field.len()); + + match prime_field.len() { + 24 => { + let sw_k = p192::Scalar::from( + elliptic_curve::ScalarPrimitive::from_slice(k).unwrap(), + ); + let q = p192::AffinePoint::GENERATOR + .mul(sw_k) + .to_affine() + .to_encoded_point(false); + sw_x.copy_from_slice(q.x().unwrap().as_slice()); + sw_y.copy_from_slice(q.y().unwrap().as_slice()); + } + 32 => { + let sw_k = p256::Scalar::from( + elliptic_curve::ScalarPrimitive::from_slice(k).unwrap(), + ); + let q = p256::AffinePoint::GENERATOR + .mul(sw_k) + .to_affine() + .to_encoded_point(false); + sw_x.copy_from_slice(q.x().unwrap().as_slice()); + sw_y.copy_from_slice(q.y().unwrap().as_slice()); + } + _ => unimplemented!(), + }; + + for (a, b) in px.iter().zip(sw_x) { + assert_eq!(a, b); + } + + for (a, b) in py.iter().zip(sw_y) { + assert_eq!(a, b); + } + } + } + } + #[test] + fn test_ecc_jacobian_point_multiplication(mut ctx: Context<'static>) { + for &prime_field in TEST_PARAMS_VECTOR.prime_fields { + let t1 = &mut [0_u8; 96]; + let (k, x) = t1.split_at_mut(prime_field.len()); + let (x, y) = x.split_at_mut(prime_field.len()); + let (y, _) = y.split_at_mut(prime_field.len()); + for _ in 0..TEST_PARAMS_VECTOR.nb_loop_mul { + let t2 = &mut [0_u8; 96]; + + let (sw_x, sw_y) = t2.split_at_mut(prime_field.len()); + let (sw_y, sw_k) = sw_y.split_at_mut(prime_field.len()); + let (sw_k, _) = sw_k.split_at_mut(prime_field.len()); + + loop { + ctx.rng.read(k); + let is_zero = k.iter().all(|&elt| elt == 0); + let is_modulus = k.iter().zip(prime_field).all(|(&a, &b)| a == b); + if is_zero == false && is_modulus == false { + break; + } + } + sw_k.copy_from_slice(k); + let curve = match prime_field.len() { + 24 => { + x.copy_from_slice( + p192::AffinePoint::GENERATOR + .to_encoded_point(false) + .x() + .unwrap(), + ); + y.copy_from_slice( + p192::AffinePoint::GENERATOR + .to_encoded_point(false) + .y() + .unwrap(), + ); + &EllipticCurve::P192 + } + 32 => { + x.copy_from_slice( + p256::AffinePoint::GENERATOR + .to_encoded_point(false) + .x() + .unwrap(), + ); + y.copy_from_slice( + p256::AffinePoint::GENERATOR + .to_encoded_point(false) + .y() + .unwrap(), + ); + &EllipticCurve::P256 + } + _ => unimplemented!(), + }; + + ctx.ecc + .jacobian_point_multiplication(curve, k, x, y) + .expect("Inputs data doesn't match the key length selected."); + match prime_field.len() { + 24 => { + let sw_k = p192::Scalar::from( + elliptic_curve::ScalarPrimitive::from_slice(sw_k).unwrap(), + ); + let q = p192::AffinePoint::GENERATOR + .mul(sw_k) + .to_affine() + .to_encoded_point(false); + let modulus = DynResidueParams::new(&U192::from_be_slice(prime_field)); + let x_affine = DynResidue::new( + &U192::from_be_slice(q.x().unwrap().as_slice()), + modulus, + ); + let y_affine = DynResidue::new( + &U192::from_be_slice(q.y().unwrap().as_slice()), + modulus, + ); + let z = DynResidue::new(&U192::from_be_slice(k), modulus); + let x_jacobian = x_affine * z * z; + let y_jacobian = y_affine * z * z * z; + sw_x.copy_from_slice(x_jacobian.retrieve().to_be_bytes().as_slice()); + sw_y.copy_from_slice(y_jacobian.retrieve().to_be_bytes().as_slice()); + } + 32 => { + let sw_k = p256::Scalar::from( + elliptic_curve::ScalarPrimitive::from_slice(sw_k).unwrap(), + ); + let q = p256::AffinePoint::GENERATOR + .mul(sw_k) + .to_affine() + .to_encoded_point(false); + let modulus = DynResidueParams::new(&U256::from_be_slice(prime_field)); + let x_affine = DynResidue::new( + &U256::from_be_slice(q.x().unwrap().as_slice()), + modulus, + ); + let y_affine = DynResidue::new( + &U256::from_be_slice(q.y().unwrap().as_slice()), + modulus, + ); + let z = DynResidue::new(&U256::from_be_slice(k), modulus); + let x_jacobian = x_affine * z * z; + let y_jacobian = y_affine * z * z * z; + sw_x.copy_from_slice(x_jacobian.retrieve().to_be_bytes().as_slice()); + sw_y.copy_from_slice(y_jacobian.retrieve().to_be_bytes().as_slice()); + } + _ => unimplemented!(), + }; + + for (a, b) in x.iter().zip(sw_x.iter()) { + assert_eq!(a, b); + } + + for (a, b) in y.iter().zip(sw_y.iter()) { + assert_eq!(a, b); + } + } + } + } + + #[test] + fn test_jacobian_point_verification(mut ctx: Context<'static>) { + for &prime_field in TEST_PARAMS_VECTOR.prime_fields { + let t1 = &mut [0_u8; 128]; + let (k, x) = t1.split_at_mut(prime_field.len()); + let (x, y) = x.split_at_mut(prime_field.len()); + let (y, z) = y.split_at_mut(prime_field.len()); + let (z, _) = z.split_at_mut(prime_field.len()); + for _ in 0..TEST_PARAMS_VECTOR.nb_loop_mul { + loop { + ctx.rng.read(k); + ctx.rng.read(z); + let is_zero = k.iter().all(|&elt| elt == 0) || z.iter().all(|&elt| elt == 0); + let is_modulus = k.iter().zip(prime_field).all(|(&a, &b)| a == b) + || z.iter().zip(prime_field).all(|(&a, &b)| a == b); + if is_zero == false && is_modulus == false { + break; + } + } + + let curve = match prime_field.len() { + 24 => { + let sw_k = p192::Scalar::from( + elliptic_curve::ScalarPrimitive::from_slice(k).unwrap(), + ); + let q = p192::AffinePoint::GENERATOR + .mul(sw_k) + .to_affine() + .to_encoded_point(false); + let modulus = DynResidueParams::new(&U192::from_be_slice(prime_field)); + let x_affine = DynResidue::new( + &U192::from_be_slice(q.x().unwrap().as_slice()), + modulus, + ); + let y_affine = DynResidue::new( + &U192::from_be_slice(q.y().unwrap().as_slice()), + modulus, + ); + let z = DynResidue::new(&U192::from_be_slice(z), modulus); + let x_jacobian = x_affine * z * z; + let y_jacobian = y_affine * z * z * z; + x.copy_from_slice(x_jacobian.retrieve().to_be_bytes().as_slice()); + y.copy_from_slice(y_jacobian.retrieve().to_be_bytes().as_slice()); + &EllipticCurve::P192 + } + 32 => { + let sw_k = p256::Scalar::from( + elliptic_curve::ScalarPrimitive::from_slice(k).unwrap(), + ); + let q = p256::AffinePoint::GENERATOR + .mul(sw_k) + .to_affine() + .to_encoded_point(false); + let modulus = DynResidueParams::new(&U256::from_be_slice(prime_field)); + let x_affine = DynResidue::new( + &U256::from_be_slice(q.x().unwrap().as_slice()), + modulus, + ); + let y_affine = DynResidue::new( + &U256::from_be_slice(q.y().unwrap().as_slice()), + modulus, + ); + let z = DynResidue::new(&U256::from_be_slice(z), modulus); + let x_jacobian = x_affine * z * z; + let y_jacobian = y_affine * z * z * z; + x.copy_from_slice(x_jacobian.retrieve().to_be_bytes().as_slice()); + y.copy_from_slice(y_jacobian.retrieve().to_be_bytes().as_slice()); + &EllipticCurve::P256 + } + _ => unimplemented!(), + }; + + match ctx.ecc.jacobian_point_verification(&curve, x, y, z) { + Err(Error::SizeMismatchCurve) => { + assert!(false, "Inputs data doesn't match the key length selected.") + } + Err(Error::PointNotOnSelectedCurve) => assert!( + false, + "ECC failed while base point verification with x = {:02X?} and y = {:02X?}.", + x, y, + ), + _ => {} + } + } + } + } + + #[test] + fn test_ecc_afine_point_verification_jacobian_multiplication(mut ctx: Context<'static>) { + for &prime_field in TEST_PARAMS_VECTOR.prime_fields { + let t1 = &mut [0_u8; 96]; + let (k, x) = t1.split_at_mut(prime_field.len()); + let (x, y) = x.split_at_mut(prime_field.len()); + let (y, _) = y.split_at_mut(prime_field.len()); + for _ in 0..TEST_PARAMS_VECTOR.nb_loop_mul { + let t2 = &mut [0_u8; 96]; + + let (sw_x, sw_y) = t2.split_at_mut(prime_field.len()); + let (sw_y, sw_k) = sw_y.split_at_mut(prime_field.len()); + let (sw_k, _) = sw_k.split_at_mut(prime_field.len()); + + loop { + ctx.rng.read(k); + let is_zero = k.iter().all(|&elt| elt == 0); + let is_modulus = k.iter().zip(prime_field).all(|(&a, &b)| a == b); + if is_zero == false && is_modulus == false { + break; + } + } + sw_k.copy_from_slice(k); + let curve = match prime_field.len() { + 24 => { + x.copy_from_slice( + p192::AffinePoint::GENERATOR + .to_encoded_point(false) + .x() + .unwrap(), + ); + y.copy_from_slice( + p192::AffinePoint::GENERATOR + .to_encoded_point(false) + .y() + .unwrap(), + ); + &EllipticCurve::P192 + } + 32 => { + x.copy_from_slice( + p256::AffinePoint::GENERATOR + .to_encoded_point(false) + .x() + .unwrap(), + ); + y.copy_from_slice( + p256::AffinePoint::GENERATOR + .to_encoded_point(false) + .y() + .unwrap(), + ); + &EllipticCurve::P256 + } + _ => unimplemented!(), + }; + + match ctx.ecc.affine_point_verification_jacobian_multiplication(curve, k, x, y) { + Err(Error::SizeMismatchCurve) => assert!(false, "Inputs data doesn't match the key length selected."), + Err(Error::PointNotOnSelectedCurve) => assert!( + false, "ECC failed while affine point verification + multiplication with x = {:02X?} and y = {:02X?}.", + x, y, + ), + _ => {}, + } + + match prime_field.len() { + 24 => { + let sw_k = p192::Scalar::from( + elliptic_curve::ScalarPrimitive::from_slice(sw_k).unwrap(), + ); + let q = p192::AffinePoint::GENERATOR + .mul(sw_k) + .to_affine() + .to_encoded_point(false); + let modulus = DynResidueParams::new(&U192::from_be_slice(prime_field)); + let x_affine = DynResidue::new( + &U192::from_be_slice(q.x().unwrap().as_slice()), + modulus, + ); + let y_affine = DynResidue::new( + &U192::from_be_slice(q.y().unwrap().as_slice()), + modulus, + ); + let z = DynResidue::new(&U192::from_be_slice(k), modulus); + let x_jacobian = x_affine * z * z; + let y_jacobian = y_affine * z * z * z; + sw_x.copy_from_slice(x_jacobian.retrieve().to_be_bytes().as_slice()); + sw_y.copy_from_slice(y_jacobian.retrieve().to_be_bytes().as_slice()); + } + 32 => { + let sw_k = p256::Scalar::from( + elliptic_curve::ScalarPrimitive::from_slice(sw_k).unwrap(), + ); + let q = p256::AffinePoint::GENERATOR + .mul(sw_k) + .to_affine() + .to_encoded_point(false); + let modulus = DynResidueParams::new(&U256::from_be_slice(prime_field)); + let x_affine = DynResidue::new( + &U256::from_be_slice(q.x().unwrap().as_slice()), + modulus, + ); + let y_affine = DynResidue::new( + &U256::from_be_slice(q.y().unwrap().as_slice()), + modulus, + ); + let z = DynResidue::new(&U256::from_be_slice(k), modulus); + let x_jacobian = x_affine * z * z; + let y_jacobian = y_affine * z * z * z; + sw_x.copy_from_slice(x_jacobian.retrieve().to_be_bytes().as_slice()); + sw_y.copy_from_slice(y_jacobian.retrieve().to_be_bytes().as_slice()); + } + _ => unimplemented!(), + }; + + for (a, b) in x.iter().zip(sw_x.iter()) { + assert_eq!(a, b); + } + + for (a, b) in y.iter().zip(sw_y.iter()) { + assert_eq!(a, b); + } + } + } + } + + #[test] + #[cfg(feature = "esp32c2")] + fn test_ecc_finite_field_division(mut ctx: Context<'static>) { + for &prime_field in TEST_PARAMS_VECTOR.prime_fields { + let t1 = &mut [0_u8; 64]; + let (k, y) = t1.split_at_mut(prime_field.len()); + let (y, _) = y.split_at_mut(prime_field.len()); + for _ in 0..TEST_PARAMS_VECTOR.nb_loop_inv { + loop { + ctx.rng.read(k); + ctx.rng.read(y); + let is_zero = k.iter().all(|&elt| elt == 0) || y.iter().all(|&elt| elt == 0); + let is_modulus = k.iter().zip(prime_field).all(|(&a, &b)| a == b) + || y.iter().zip(prime_field).all(|(&a, &b)| a == b); + if is_zero == false && is_modulus == false { + break; + } + } + let t2 = &mut [0_u8; 96]; + let (sw_y, sw_k) = t2.split_at_mut(prime_field.len()); + let (sw_k, sw_res) = sw_k.split_at_mut(prime_field.len()); + let (sw_res, _) = sw_res.split_at_mut(prime_field.len()); + sw_y.copy_from_slice(y); + sw_k.copy_from_slice(k); + let curve = match prime_field.len() { + 24 => &EllipticCurve::P192, + 32 => &EllipticCurve::P256, + _ => unimplemented!(), + }; + + ctx.ecc + .finite_field_division(curve, k, y) + .expect("Inputs data doesn't match the key length selected."); + + match prime_field.len() { + 24 => { + let modulus = DynResidueParams::new(&U192::from_be_slice(prime_field)); + let sw_y = DynResidue::new(&U192::from_be_slice(sw_y), modulus); + let sw_k = DynResidue::new(&U192::from_be_slice(sw_k), modulus); + let sw_inv_k = sw_k.invert().0; + sw_res.copy_from_slice( + sw_y.mul(&sw_inv_k).retrieve().to_be_bytes().as_slice(), + ); + } + 32 => { + let modulus = DynResidueParams::new(&U256::from_be_slice(prime_field)); + let sw_y = DynResidue::new(&U256::from_be_slice(sw_y), modulus); + let sw_k = DynResidue::new(&U256::from_be_slice(sw_k), modulus); + let sw_inv_k = sw_k.invert().0; + sw_res.copy_from_slice( + sw_y.mul(&sw_inv_k).retrieve().to_be_bytes().as_slice(), + ); + } + _ => unimplemented!(), + }; + + for (a, b) in y.iter().zip(sw_res) { + assert_eq!(a, b); + } + } + } + } + + #[test] + #[cfg(feature = "esp32h2")] + fn test_ecc_point_addition_256(mut ctx: Context<'static>) { + const ECC_256_X: [u8; 32] = [ + 0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4, 0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, + 0x03, 0x77, 0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8, 0x47, 0x42, 0x2C, 0xE1, + 0xF2, 0xD1, 0x17, 0x6B, + ]; + + const ECC_256_Y: [u8; 32] = [ + 0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB, 0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, + 0xCE, 0x2B, 0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E, 0x9B, 0x7F, 0x1A, 0xFE, + 0xE2, 0x42, 0xE3, 0x4F, + ]; + + const ECC_256_RES_X: [u8; 32] = [ + 0xf, 0xc7, 0xd6, 0x91, 0x83, 0x84, 0x7d, 0x1e, 0xcf, 0xdd, 0x61, 0x4f, 0x27, 0x42, + 0x4b, 0x80, 0x43, 0xde, 0xfc, 0xdc, 0x52, 0x7d, 0x0e, 0x57, 0xad, 0xb5, 0xd1, 0xac, + 0x59, 0x8f, 0x97, 0x9a, + ]; + + const ECC_256_RES_Y: [u8; 32] = [ + 0xd1, 0xf5, 0xd2, 0x90, 0x31, 0xbe, 0x59, 0xfd, 0xd0, 0x8b, 0x66, 0x88, 0x63, 0xc4, + 0x7f, 0xe7, 0x5f, 0x6d, 0x34, 0xe5, 0x38, 0x82, 0x33, 0x05, 0xf9, 0x6a, 0x78, 0x7f, + 0x5e, 0x88, 0x26, 0x41, + ]; + + const ECC_256_RES_Z: [u8; 32] = [ + 0xea, 0xa3, 0x7e, 0x6f, 0xd0, 0x80, 0x6c, 0x97, 0x9d, 0xbd, 0x62, 0xd6, 0xae, 0x66, + 0x9c, 0x57, 0x2c, 0x3c, 0x1f, 0xf8, 0x94, 0xd6, 0xcf, 0x1d, 0x37, 0xff, 0x34, 0xfc, + 0xc5, 0x85, 0xc6, 0x9f, + ]; + + let mut x_256 = ECC_256_X.clone(); + let mut y_256 = ECC_256_Y.clone(); + + let mut z: [u8; 32] = [0u8; 32]; + z[0] = 0x1; + + let mut x_256_1 = ECC_256_X.clone(); + let mut y_256_1 = ECC_256_Y.clone(); + + ctx.ecc + .affine_point_addition( + &EllipticCurve::P256, + &mut x_256, + &mut y_256, + &mut x_256_1, + &mut y_256_1, + &mut z, + ) + .unwrap(); + + assert_eq!(x_256_1, ECC_256_RES_X); + assert_eq!(y_256_1, ECC_256_RES_Y); + assert_eq!(z, ECC_256_RES_Z); + } + + #[test] + #[cfg(feature = "esp32h2")] + fn test_ecc_point_addition_192(mut ctx: Context<'static>) { + const ECC_192_X: [u8; 24] = [ + 0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4, 0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, + 0xBF, 0x7C, 0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18, + ]; + + const ECC_192_Y: [u8; 24] = [ + 0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73, 0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, + 0x10, 0x63, 0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07, + ]; + + const ECC_192_RES_X: [u8; 24] = [ + 0x6, 0x6c, 0xd8, 0x6e, 0x9b, 0xef, 0x62, 0x7a, 0x54, 0xd3, 0x75, 0xfa, 0xdb, 0x36, + 0x83, 0xc1, 0x8f, 0x2b, 0xeb, 0xbd, 0x18, 0x1, 0xf, 0xe1, + ]; + + const ECC_192_RES_Y: [u8; 24] = [ + 0x42, 0xc0, 0x1d, 0x71, 0x0c, 0x1e, 0x4e, 0x29, 0x22, 0x69, 0x21, 0x5b, 0x05, 0x91, + 0xea, 0x60, 0xcf, 0x05, 0x07, 0xfd, 0x79, 0x29, 0x6c, 0x19, + ]; + + const ECC_192_RES_Z: [u8; 24] = [ + 0x22, 0x90, 0xf2, 0x3c, 0x42, 0xef, 0xf2, 0xe7, 0xaa, 0x9b, 0x49, 0xd6, 0xda, 0x23, + 0x20, 0xc6, 0xf0, 0xb4, 0x91, 0xff, 0x2b, 0x57, 0x32, 0xe, + ]; + + let mut x_192 = ECC_192_X.clone(); + let mut y_192 = ECC_192_Y.clone(); + let mut z: [u8; 24] = [0u8; 24]; + z[0] = 0x1; + + let mut x_192_1 = ECC_192_X.clone(); + let mut y_192_1 = ECC_192_Y.clone(); + + ctx.ecc + .affine_point_addition( + &EllipticCurve::P192, + &mut x_192, + &mut y_192, + &mut x_192_1, + &mut y_192_1, + &mut z, + ) + .unwrap(); + + assert_eq!(x_192_1, ECC_192_RES_X); + assert_eq!(y_192_1, ECC_192_RES_Y); + assert_eq!(z, ECC_192_RES_Z); + } + + #[test] + #[cfg(feature = "esp32h2")] + fn test_ecc_mod_operations_256(mut ctx: Context<'static>) { + const ECC_256_X: [u8; 32] = [ + 0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4, 0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, + 0x03, 0x77, 0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8, 0x47, 0x42, 0x2C, 0xE1, + 0xF2, 0xD1, 0x17, 0x6B, + ]; + + const ECC_256_Y: [u8; 32] = [ + 0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB, 0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, + 0xCE, 0x2B, 0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E, 0x9B, 0x7F, 0x1A, 0xFE, + 0xE2, 0x42, 0xE3, 0x4F, + ]; + + const ECC_256_NUM: [u8; 32] = [ + 0x20, 0x56, 0x14, 0xB6, 0xAF, 0x94, 0xA0, 0xB6, 0x0C, 0xDF, 0x13, 0x1A, 0xE6, 0xBF, + 0x57, 0x87, 0xF1, 0x02, 0x73, 0x96, 0x53, 0x1A, 0xBC, 0xA9, 0x0F, 0x5E, 0xA1, 0xFC, + 0x0E, 0xFC, 0x9D, 0x9B, + ]; + + const ECC_256_DEN: [u8; 32] = [ + 0x54, 0x3B, 0x11, 0x78, 0xC4, 0xCA, 0x52, 0xFD, 0xCC, 0x89, 0x51, 0x0F, 0xFE, 0x7D, + 0x37, 0x83, 0x81, 0xD5, 0x2E, 0x58, 0x42, 0xF9, 0x4F, 0x19, 0x9A, 0x79, 0x78, 0x98, + 0xFA, 0x95, 0x40, 0x2E, + ]; + + const ECC_256_ADD_RES: [u8; 32] = [ + 0x8B, 0x14, 0x58, 0x10, 0xAE, 0x79, 0x57, 0xC0, 0x6F, 0x92, 0x1C, 0x99, 0xD8, 0xB0, + 0xD1, 0xA2, 0x08, 0xDF, 0xB3, 0xDF, 0x2F, 0xD2, 0xA4, 0x87, 0xE3, 0xC1, 0x46, 0xDF, + 0xD5, 0x14, 0xFB, 0xBA, + ]; + + const ECC_256_SUB_RES: [u8; 32] = [ + 0xA1, 0x70, 0xD9, 0xA0, 0xDD, 0xF8, 0xEA, 0x28, 0xD2, 0xD4, 0xB9, 0xC2, 0x29, 0x4A, + 0x35, 0x4B, 0xDC, 0xA2, 0x94, 0xE7, 0x9A, 0xFB, 0xD4, 0x69, 0xAC, 0xC2, 0x11, 0xE3, + 0x0F, 0x8F, 0x34, 0x1B, + ]; + + const ECC_256_MUL_RES: [u8; 32] = [ + 0x18, 0x4D, 0xCE, 0xCC, 0x1A, 0xA8, 0xEC, 0x72, 0xD7, 0x31, 0xDA, 0x41, 0x8C, 0x75, + 0x6B, 0xF1, 0x2A, 0x2E, 0x5B, 0x53, 0x8D, 0xCA, 0x79, 0x61, 0x6B, 0x46, 0xF9, 0x2E, + 0x27, 0xB5, 0x43, 0x15, + ]; + + const ECC_256_INV_MUL_RES: [u8; 32] = [ + 0x33, 0xF3, 0x55, 0x3B, 0x46, 0x8A, 0x13, 0xC0, 0x1D, 0x7E, 0x41, 0xA6, 0xFF, 0x53, + 0xFD, 0x78, 0xD5, 0xC0, 0xE5, 0x9F, 0x78, 0xD1, 0x86, 0x66, 0x77, 0x3C, 0x6E, 0xEF, + 0x58, 0xF6, 0x29, 0x34, + ]; + + let mut x_256 = ECC_256_X.clone(); + let mut y_256 = ECC_256_Y.clone(); + + ctx.ecc + .mod_operations( + &EllipticCurve::P256, + &mut x_256, + &mut y_256, + WorkMode::ModAdd, + ) + .unwrap(); + assert_eq!(x_256, ECC_256_ADD_RES); + + let mut x_256 = ECC_256_X.clone(); + let mut y_256 = ECC_256_Y.clone(); + ctx.ecc + .mod_operations( + &EllipticCurve::P256, + &mut x_256, + &mut y_256, + WorkMode::ModSub, + ) + .unwrap(); + assert_eq!(x_256, ECC_256_SUB_RES); + + let mut x_256 = ECC_256_X.clone(); + let mut y_256 = ECC_256_Y.clone(); + ctx.ecc + .mod_operations( + &EllipticCurve::P256, + &mut x_256, + &mut y_256, + WorkMode::ModMulti, + ) + .unwrap(); + assert_eq!(y_256, ECC_256_MUL_RES); + + let mut x_256 = ECC_256_NUM.clone(); + let mut y_256 = ECC_256_DEN.clone(); + ctx.ecc + .mod_operations( + &EllipticCurve::P256, + &mut x_256, + &mut y_256, + WorkMode::ModDiv, + ) + .unwrap(); + assert_eq!(y_256, ECC_256_INV_MUL_RES); + } + + #[test] + #[cfg(feature = "esp32h2")] + fn test_ecc_mod_operations_192(mut ctx: Context<'static>) { + const ECC_192_X: [u8; 24] = [ + 0x1A, 0x80, 0xA1, 0x5F, 0x1F, 0xB7, 0x59, 0x1B, 0x9F, 0xD7, 0xFB, 0xAE, 0xA9, 0xF9, + 0x1E, 0xBA, 0x67, 0xAE, 0x57, 0xB7, 0x27, 0x80, 0x9E, 0x1A, + ]; + + const ECC_192_Y: [u8; 24] = [ + 0x59, 0xC6, 0x3D, 0xD3, 0xD7, 0xDF, 0xA3, 0x44, 0x7C, 0x75, 0x52, 0xB4, 0x42, 0xF3, + 0xFC, 0xA6, 0x0F, 0xA8, 0x8A, 0x8D, 0x1F, 0xA3, 0xDF, 0x54, + ]; + + const ECC_192_NUM: [u8; 24] = [ + 0xBA, 0x0F, 0x2C, 0xD8, 0xBE, 0xCC, 0x2D, 0xD3, 0xD5, 0x74, 0xBD, 0x8C, 0xF3, 0x3E, + 0x3B, 0x7A, 0xA4, 0xD0, 0x71, 0xEC, 0x85, 0xF6, 0x70, 0x00, + ]; + + const ECC_192_DEN: [u8; 24] = [ + 0x15, 0xF9, 0x20, 0xD8, 0x46, 0x5C, 0x03, 0x97, 0x4A, 0x10, 0xEF, 0x8A, 0xFB, 0x12, + 0x2E, 0x65, 0x6E, 0xD6, 0x79, 0x1E, 0x65, 0x6F, 0x3E, 0x64, + ]; + + const ECC_192_ADD_RES: [u8; 24] = [ + 0x73, 0x46, 0xDF, 0x32, 0xF7, 0x96, 0xFD, 0x5F, 0x1B, 0x4D, 0x4E, 0x63, 0xEC, 0xEC, + 0x1B, 0x61, 0x77, 0x56, 0xE2, 0x44, 0x47, 0x23, 0x7E, 0x6F, + ]; + + const ECC_192_SUB_RES: [u8; 24] = [ + 0xF2, 0xE1, 0x35, 0x41, 0xF9, 0xA0, 0x21, 0xEB, 0x58, 0x5A, 0x88, 0x94, 0x66, 0x06, + 0x22, 0x13, 0x58, 0x06, 0xCD, 0x29, 0x08, 0xDD, 0xBE, 0xC5, + ]; + + const ECC_192_MUL_RES: [u8; 24] = [ + 0xB5, 0xB9, 0xFF, 0xBC, 0x52, 0xC8, 0xB8, 0x36, 0x8C, 0xFB, 0xA5, 0xCE, 0x1E, 0x7B, + 0xE6, 0xF3, 0x8F, 0x79, 0x71, 0xCF, 0xD6, 0xF3, 0x41, 0xE6, + ]; + + const ECC_192_INV_MUL_RES: [u8; 24] = [ + 0x6B, 0xB3, 0x6B, 0x2B, 0x56, 0x6A, 0xE5, 0xF7, 0x75, 0x82, 0xF0, 0xCC, 0x93, 0x63, + 0x40, 0xF8, 0xEF, 0x35, 0x2A, 0xAF, 0xBD, 0x56, 0xE9, 0x29, + ]; + + let mut x_192 = ECC_192_X.clone(); + let mut y_192 = ECC_192_Y.clone(); + + ctx.ecc + .mod_operations( + &EllipticCurve::P192, + &mut x_192, + &mut y_192, + WorkMode::ModAdd, + ) + .unwrap(); + assert_eq!(x_192, ECC_192_ADD_RES); + + let mut x_192 = ECC_192_X.clone(); + let mut y_192 = ECC_192_Y.clone(); + ctx.ecc + .mod_operations( + &EllipticCurve::P192, + &mut x_192, + &mut y_192, + WorkMode::ModSub, + ) + .unwrap(); + assert_eq!(x_192, ECC_192_SUB_RES); + + let mut x_192 = ECC_192_X.clone(); + let mut y_192 = ECC_192_Y.clone(); + ctx.ecc + .mod_operations( + &EllipticCurve::P192, + &mut x_192, + &mut y_192, + WorkMode::ModMulti, + ) + .unwrap(); + assert_eq!(y_192, ECC_192_MUL_RES); + + let mut x_192 = ECC_192_NUM.clone(); + let mut y_192 = ECC_192_DEN.clone(); + ctx.ecc + .mod_operations( + &EllipticCurve::P192, + &mut x_192, + &mut y_192, + WorkMode::ModDiv, + ) + .unwrap(); + assert_eq!(y_192, ECC_192_INV_MUL_RES); + } +}