//! SPI write and read a flash chip //! //! Folowing pins are used: //! SCLK GPIO4 //! MISO/IO0 GPIO5 //! MOSI/IO1 GPIO6 //! IO2 GPIO7 //! IO3 GPIO15 //! CS GPIO16 //! //! Depending on your target and the board you are using you have to change the //! pins. //! //! Connect a flash chip (GD25Q64C was used) and make sure QE in the status //! register is set. #![no_std] #![no_main] use esp32s2_hal::{ clock::ClockControl, dma::DmaPriority, gpio::IO, pdma::Dma, peripherals::Peripherals, prelude::*, spi::{Address, Command, Spi, SpiDataMode, SpiMode}, timer::TimerGroup, Delay, Rtc, }; use esp_backtrace as _; use esp_println::{print, println}; #[entry] fn main() -> ! { let peripherals = Peripherals::take(); let mut system = peripherals.SYSTEM.split(); let clocks = ClockControl::boot_defaults(system.clock_control).freeze(); // Disable the watchdog timers. For the ESP32-S2, this includes // the RTC WDT, and the TIMG WDTs. let mut rtc = Rtc::new(peripherals.RTC_CNTL); let timer_group0 = TimerGroup::new(peripherals.TIMG0, &clocks); let mut wdt0 = timer_group0.wdt; let timer_group1 = TimerGroup::new(peripherals.TIMG1, &clocks); let mut wdt1 = timer_group1.wdt; rtc.rwdt.disable(); wdt0.disable(); wdt1.disable(); let io = IO::new(peripherals.GPIO, peripherals.IO_MUX); let sclk = io.pins.gpio4; let miso = io.pins.gpio5; let mosi = io.pins.gpio6; let sio2 = io.pins.gpio7; let sio3 = io.pins.gpio15; let cs = io.pins.gpio16; let dma = Dma::new(system.dma, &mut system.peripheral_clock_control); let dma_channel = dma.spi2channel; let mut descriptors = [0u32; 8 * 3]; let mut rx_descriptors = [0u32; 8 * 3]; let mut spi = Spi::new_half_duplex( peripherals.SPI2, Some(sclk), Some(mosi), Some(miso), Some(sio2), Some(sio3), Some(cs), 100u32.kHz(), SpiMode::Mode0, &mut system.peripheral_clock_control, &clocks, ) .with_dma(dma_channel.configure( false, &mut descriptors, &mut rx_descriptors, DmaPriority::Priority0, )); let mut delay = Delay::new(&clocks); // DMA buffer require a static life-time let send = send_buffer(); let mut receive = receive_buffer(); let mut zero_buf = zero_buffer(); // write enable let transfer = spi .write( SpiDataMode::Single, Command::Command8(0x06, SpiDataMode::Single), Address::None, 0, zero_buf, ) .unwrap(); (zero_buf, spi) = transfer.wait(); delay.delay_ms(250u32); // erase sector let transfer = spi .write( SpiDataMode::Single, Command::Command8(0x20, SpiDataMode::Single), Address::Address24(0x000000, SpiDataMode::Single), 0, zero_buf, ) .unwrap(); (zero_buf, spi) = transfer.wait(); delay.delay_ms(250u32); // write enable let transfer = spi .write( SpiDataMode::Single, Command::Command8(0x06, SpiDataMode::Single), Address::None, 0, zero_buf, ) .unwrap(); (_, spi) = transfer.wait(); delay.delay_ms(250u32); // write data / program page send.fill(b'!'); send[0..][..5].copy_from_slice(&b"Hello"[..]); let transfer = spi .write( SpiDataMode::Quad, Command::Command8(0x32, SpiDataMode::Single), Address::Address24(0x000000, SpiDataMode::Single), 0, send, ) .unwrap(); (_, spi) = transfer.wait(); delay.delay_ms(250u32); loop { // quad fast read let transfer = spi .read( SpiDataMode::Quad, Command::Command8(0xeb, SpiDataMode::Single), Address::Address32(0x000000 << 8, SpiDataMode::Quad), 4, receive, ) .unwrap(); // here we could do something else while DMA transfer is in progress // the buffers and spi is moved into the transfer and we can get it back via // `wait` (receive, spi) = transfer.wait(); println!("{:x?}", &receive); for b in &mut receive.iter() { if *b >= 32 && *b <= 127 { print!("{}", *b as char); } else { print!("."); } } println!(); delay.delay_ms(250u32); } } fn zero_buffer() -> &'static mut [u8; 0] { static mut BUFFER: [u8; 0] = [0u8; 0]; unsafe { &mut BUFFER } } fn send_buffer() -> &'static mut [u8; 256] { static mut BUFFER: [u8; 256] = [0u8; 256]; unsafe { &mut BUFFER } } fn receive_buffer() -> &'static mut [u8; 320] { static mut BUFFER: [u8; 320] = [0u8; 320]; unsafe { &mut BUFFER } }