Dániel Buga 280caad378
RISC-V: Make atomic emulation opt-in (#904)
* RISC-V: Make atomic emulation opt-in

* Update embassy-executor, embassy-sync

* Don't automatically enable portable-atomic

* Update changelog

* Fix warnings
2023-11-10 11:51:47 +00:00

167 lines
6.0 KiB
Rust

//! `no_std` HAL for the ESP32-S2 from Espressif.
//!
//! Implements a number of the traits defined by the various packages in the
//! [embedded-hal] repository.
//!
//! [embedded-hal]: https://github.com/rust-embedded/embedded-hal
//!
//! ### Cargo Features
//!
//! - `async` - Enable support for asynchronous operation, with interfaces
//! provided by [embedded-hal-async] and [embedded-io-async]
//! - `debug` - Enable debug features in the HAL (used for development)
//! - `defmt` - Enable [`defmt::Format`] on certain types
//! - `eh1` - Implement the traits defined in the `1.0.0-xxx` pre-releases of
//! [embedded-hal], [embedded-hal-nb], and [embedded-io]
//! - `embassy` - Enable support for [embassy], a modern asynchronous embedded
//! framework. One of `embassy-time-*` features must also be enabled when
//! using this feature.
//! - `embassy-executor-interrupt` - Use the interrupt-mode embassy executor
//! - `embassy-executor-thread` - Use the thread-mode embassy executor
//! - `embassy-time-systick` - Enable the [embassy] time driver using the
//! `SYSTIMER` peripheral
//! - `embassy-time-timg0` - Enable the [embassy] time driver using the `TIMG0`
//! peripheral
//! - `log` - enable log output using the `log` crate
//! - `psram-2m` - Use externally connected PSRAM (2MB)
//! - `psram-4m` - Use externally connected PSRAM (4MB)
//! - `psram-8m` - Use externally connected PSRAM (8MB)
//! - `rt` - Runtime support
//! - `ufmt` - Implement the [`ufmt_write::uWrite`] trait for the UART driver
//! - `vectored` - Enable interrupt vectoring
//!
//! #### Default Features
//!
//! The `rt` and `vectored` features are enabled by default.
//!
//! [embedded-hal-async]: https://github.com/rust-embedded/embedded-hal/tree/master/embedded-hal-async
//! [embedded-io-async]: https://github.com/rust-embedded/embedded-hal/tree/master/embedded-io-async
//! [embedded-hal]: https://github.com/rust-embedded/embedded-hal/tree/master/embedded-hal
//! [embedded-hal-nb]: https://github.com/rust-embedded/embedded-hal/tree/master/embedded-hal-nb
//! [embedded-io]: https://github.com/rust-embedded/embedded-hal/tree/master/embedded-io
//! [embassy]: https://github.com/embassy-rs/embassy
//! [`ufmt_write::uWrite`]: https://docs.rs/ufmt-write/latest/ufmt_write/trait.uWrite.html
//! [`defmt::Format`]: https://docs.rs/defmt/0.3.5/defmt/trait.Format.html
#![no_std]
#![doc(html_logo_url = "https://avatars.githubusercontent.com/u/46717278")]
use esp_hal_common::xtensa_lx_rt::exception::ExceptionCause;
pub use esp_hal_common::*;
/// Function initializes ESP32 specific memories (RTC slow and fast) and
/// then calls original Reset function
///
/// ENTRY point is defined in memory.x
/// *Note: the pre_init function is called in the original reset handler
/// after the initializations done in this function*
#[cfg(feature = "rt")]
#[doc(hidden)]
#[no_mangle]
pub unsafe extern "C" fn ESP32Reset() -> ! {
// These symbols come from `memory.x`
extern "C" {
static mut _rtc_fast_bss_start: u32;
static mut _rtc_fast_bss_end: u32;
static mut _rtc_slow_bss_start: u32;
static mut _rtc_slow_bss_end: u32;
static mut _stack_end_cpu0: u32;
}
// set stack pointer to end of memory: no need to retain stack up to this point
esp_hal_common::xtensa_lx::set_stack_pointer(&mut _stack_end_cpu0);
// copying data from flash to various data segments is done by the bootloader
// initialization to zero needs to be done by the application
// Initialize RTC RAM
esp_hal_common::xtensa_lx_rt::zero_bss(&mut _rtc_fast_bss_start, &mut _rtc_fast_bss_end);
esp_hal_common::xtensa_lx_rt::zero_bss(&mut _rtc_slow_bss_start, &mut _rtc_slow_bss_end);
// continue with default reset handler
esp_hal_common::xtensa_lx_rt::Reset();
}
/// The ESP32 has a first stage bootloader that handles loading program data
/// into the right place therefore we skip loading it again.
#[doc(hidden)]
#[no_mangle]
#[rustfmt::skip]
pub extern "Rust" fn __init_data() -> bool {
false
}
/// Atomic Emulation is always enabled on ESP32-S2
#[doc(hidden)]
#[no_mangle]
#[export_name = "__exception"] // this overrides the exception handler in xtensa_lx_rt
#[link_section = ".rwtext"]
unsafe fn exception(cause: ExceptionCause, save_frame: &mut trapframe::TrapFrame) {
if let ExceptionCause::Illegal = cause {
let mut regs = [
save_frame.A0,
save_frame.A1,
save_frame.A2,
save_frame.A3,
save_frame.A4,
save_frame.A5,
save_frame.A6,
save_frame.A7,
save_frame.A8,
save_frame.A9,
save_frame.A10,
save_frame.A11,
save_frame.A12,
save_frame.A13,
save_frame.A14,
save_frame.A15,
];
if xtensa_atomic_emulation_trap::atomic_emulation(save_frame.PC, &mut regs) {
save_frame.PC += 3; // 24bit instruction
save_frame.A0 = regs[0];
save_frame.A1 = regs[1];
save_frame.A2 = regs[2];
save_frame.A3 = regs[3];
save_frame.A4 = regs[4];
save_frame.A5 = regs[5];
save_frame.A6 = regs[6];
save_frame.A7 = regs[7];
save_frame.A8 = regs[8];
save_frame.A9 = regs[9];
save_frame.A10 = regs[10];
save_frame.A11 = regs[11];
save_frame.A12 = regs[12];
save_frame.A13 = regs[13];
save_frame.A14 = regs[14];
save_frame.A15 = regs[15];
return;
}
}
extern "C" {
fn __user_exception(cause: ExceptionCause, save_frame: &mut trapframe::TrapFrame);
}
__user_exception(cause, save_frame);
}
#[export_name = "__post_init"]
unsafe fn post_init() {
use esp_hal_common::{
peripherals::{RTC_CNTL, TIMG0, TIMG1},
timer::Wdt,
};
// RTC domain must be enabled before we try to disable
let mut rtc = Rtc::new(RTC_CNTL::steal());
rtc.rwdt.disable();
Wdt::<TIMG0>::set_wdt_enabled(false);
Wdt::<TIMG1>::set_wdt_enabled(false);
}