mirror of
https://github.com/esp-rs/esp-hal.git
synced 2025-10-02 14:44:42 +00:00

* Add the peripheral module plus some helper macros in preparation * peripheral macro * Add peripheral generation macro * Fixes after rebase * Update the signature of Peripherals::take * syncronise hello world example * fmt the entire repo Co-authored-by: Jesse Braham <jesse@beta7.io>
102 lines
3.0 KiB
Rust
102 lines
3.0 KiB
Rust
//! RGB LED Demo
|
|
//!
|
|
//! This example drives an SK68XX RGB LED that is connected to GPIO18.
|
|
//! A RGB LED is connected to that pin on the official DevKits.
|
|
//!
|
|
//! The demo will leverage the [`smart_leds`](https://crates.io/crates/smart-leds)
|
|
//! crate functionality to circle through the HSV hue color space (with
|
|
//! saturation and value both at 255). Additionally, we apply a gamma correction
|
|
//! and limit the brightness to 10 (out of 255).
|
|
|
|
#![no_std]
|
|
#![no_main]
|
|
|
|
use esp32s2_hal::{
|
|
clock::ClockControl,
|
|
peripherals::Peripherals,
|
|
prelude::*,
|
|
timer::TimerGroup,
|
|
utils::{smartLedAdapter, SmartLedsAdapter},
|
|
Delay,
|
|
PulseControl,
|
|
Rtc,
|
|
IO,
|
|
};
|
|
#[allow(unused_imports)]
|
|
use esp_backtrace as _;
|
|
use smart_leds::{
|
|
brightness,
|
|
gamma,
|
|
hsv::{hsv2rgb, Hsv},
|
|
SmartLedsWrite,
|
|
};
|
|
use xtensa_atomic_emulation_trap as _;
|
|
use xtensa_lx_rt::entry;
|
|
|
|
#[entry]
|
|
fn main() -> ! {
|
|
let peripherals = Peripherals::take();
|
|
let mut system = peripherals.SYSTEM.split();
|
|
let clocks = ClockControl::boot_defaults(system.clock_control).freeze();
|
|
|
|
let mut rtc = Rtc::new(peripherals.RTC_CNTL);
|
|
let timer_group0 = TimerGroup::new(peripherals.TIMG0, &clocks);
|
|
let mut wdt = timer_group0.wdt;
|
|
let io = IO::new(peripherals.GPIO, peripherals.IO_MUX);
|
|
|
|
// Disable MWDT and RWDT (Watchdog) flash boot protection
|
|
wdt.disable();
|
|
rtc.rwdt.disable();
|
|
|
|
// Configure RMT peripheral globally
|
|
let pulse = PulseControl::new(peripherals.RMT, &mut system.peripheral_clock_control).unwrap();
|
|
|
|
// We use one of the RMT channels to instantiate a `SmartLedsAdapter` which can
|
|
// be used directly with all `smart_led` implementations
|
|
let mut led = <smartLedAdapter!(1)>::new(pulse.channel0, io.pins.gpio18);
|
|
|
|
// Initialize the Delay peripheral, and use it to toggle the LED state in a
|
|
// loop.
|
|
let mut delay = Delay::new(&clocks);
|
|
|
|
let mut color = Hsv {
|
|
hue: 0,
|
|
sat: 255,
|
|
val: 255,
|
|
};
|
|
let mut data;
|
|
|
|
loop {
|
|
// Iterate over the rainbow!
|
|
for hue in 0..=255 {
|
|
color.hue = hue;
|
|
// Convert from the HSV color space (where we can easily transition from one
|
|
// color to the other) to the RGB color space that we can then send to the LED
|
|
data = [hsv2rgb(color)];
|
|
// When sending to the LED, we do a gamma correction first (see smart_leds
|
|
// documentation for details) and then limit the brightness to 10 out of 255 so
|
|
// that the output it's not too bright.
|
|
led.write(brightness(gamma(data.iter().cloned()), 10))
|
|
.unwrap();
|
|
delay.delay_ms(20u8);
|
|
}
|
|
}
|
|
}
|
|
|
|
#[xtensa_lx_rt::exception]
|
|
fn exception(
|
|
cause: xtensa_lx_rt::exception::ExceptionCause,
|
|
frame: xtensa_lx_rt::exception::Context,
|
|
) {
|
|
use esp_println::*;
|
|
|
|
println!("\n\nException occured {:?} {:x?}", cause, frame);
|
|
|
|
let backtrace = esp_backtrace::arch::backtrace();
|
|
for b in backtrace.iter() {
|
|
if let Some(addr) = b {
|
|
println!("0x{:x}", addr)
|
|
}
|
|
}
|
|
}
|