Björn Quentin 2faa2654cb
GPIO Refactoring (#1542)
* GPIO Refactoring

* CHANGELOG.md

* Addressed review comments

* Use `Level` instead of plain bool in public API

* Let drivers enable analog functions
2024-05-15 08:49:33 +00:00

2849 lines
84 KiB
Rust

//! # General Purpose I/Os
//!
//! ## Overview
//! The GPIO peripheral provides access to General Purpose Input/Output pins on
//! ESP chips.
//!
//! This driver supports various operations on GPIO pins, including setting the
//! pin mode, direction, and manipulating the pin state (setting high/low,
//! toggling). It provides an interface to interact with GPIO pins on ESP chips,
//! allowing developers to control and read the state of the pins. This module
//! also implements a number of traits from [embedded-hal] to provide a common
//! interface for GPIO pins.
//!
//! To get access to the pins, you first need to convert them into a HAL
//! designed struct from the pac struct `GPIO` and `IO_MUX` using `Io::new`.
//!
//! ## Example
//! ```no_run
//! let io = Io::new(peripherals.GPIO, peripherals.IO_MUX);
//! let mut led = Output::new(io.pins.gpio5);
//! ```
//!
//! [embedded-hal]: https://docs.rs/embedded-hal/latest/embedded_hal/
#![warn(missing_docs)]
use core::{cell::Cell, marker::PhantomData};
use critical_section::Mutex;
#[cfg(any(adc, dac))]
pub(crate) use crate::analog;
pub(crate) use crate::gpio;
#[cfg(any(xtensa, esp32c3))]
pub(crate) use crate::rtc_pins;
pub use crate::soc::gpio::*;
use crate::{
interrupt::InterruptHandler,
peripheral::PeripheralRef,
peripherals::{GPIO, IO_MUX},
private,
};
pub mod any_pin;
#[cfg(soc_etm)]
pub mod etm;
#[cfg(lp_io)]
pub mod lp_io;
#[cfg(all(rtc_io, not(esp32)))]
pub mod rtc_io;
/// Convenience type-alias for a no-pin / don't care - pin
pub type NoPinType = Gpio0;
/// Convenience constant for `Option::None` pin
pub const NO_PIN: Option<NoPinType> = None;
static USER_INTERRUPT_HANDLER: Mutex<Cell<Option<InterruptHandler>>> = Mutex::new(Cell::new(None));
/// Event used to trigger interrupts.
#[derive(Copy, Clone)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Event {
/// Interrupts trigger on rising pin edge.
RisingEdge = 1,
/// Interrupts trigger on falling pin edge.
FallingEdge = 2,
/// Interrupts trigger on either rising or falling pin edges.
AnyEdge = 3,
/// Interrupts trigger on low level
LowLevel = 4,
/// Interrupts trigger on high level
HighLevel = 5,
}
/// Digital input or output level.
#[derive(Debug, Eq, PartialEq, Copy, Clone)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Level {
/// Low
Low,
/// High
High,
}
impl From<bool> for Level {
fn from(val: bool) -> Self {
match val {
true => Self::High,
false => Self::Low,
}
}
}
impl From<Level> for bool {
fn from(level: Level) -> bool {
match level {
Level::Low => false,
Level::High => true,
}
}
}
/// Pull setting for an input.
#[derive(Debug, Eq, PartialEq, Copy, Clone)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Pull {
/// No pull
None,
/// Pull up
Up,
/// Pull down
Down,
}
/// RTC input pin mode
pub struct RtcInput;
/// RTC output pin mode
pub struct RtcOutput;
/// Analog mode
pub struct Analog;
/// Drive strength (values are approximates)
#[allow(missing_docs)]
pub enum DriveStrength {
I5mA = 0,
I10mA = 1,
I20mA = 2,
I40mA = 3,
}
/// Alternate functions
#[derive(PartialEq)]
#[allow(missing_docs)]
pub enum AlternateFunction {
Function0 = 0,
Function1 = 1,
Function2 = 2,
Function3 = 3,
Function4 = 4,
Function5 = 5,
}
/// RTC function
#[derive(PartialEq)]
#[allow(missing_docs)]
pub enum RtcFunction {
Rtc = 0,
Digital = 1,
}
/// Trait implemented by RTC pins
pub trait RtcPin: Pin {
/// RTC number of the pin
#[cfg(xtensa)]
fn rtc_number(&self) -> u8;
/// Configure the pin
#[cfg(any(xtensa, esp32c6))]
fn rtc_set_config(&mut self, input_enable: bool, mux: bool, func: RtcFunction);
/// Enable or disable PAD_HOLD
fn rtcio_pad_hold(&mut self, enable: bool);
/// # Safety
///
/// The `level` argument needs to be a valid setting for the
/// `rtc_cntl.gpio_wakeup.gpio_pinX_int_type`.
#[cfg(any(esp32c3, esp32c6))]
unsafe fn apply_wakeup(&mut self, wakeup: bool, level: u8);
}
/// Trait implemented by RTC pins which supporting internal pull-up / pull-down
/// resistors.
pub trait RtcPinWithResistors: RtcPin {
/// Enable/disable the internal pull-up resistor
fn rtcio_pullup(&mut self, enable: bool);
/// Enable/disable the internal pull-down resistor
fn rtcio_pulldown(&mut self, enable: bool);
}
/// Marker for RTC pins which support input mode
pub trait RtcInputPin: RtcPin {}
/// Marker for RTC pins which support output mode
pub trait RtcOutputPin: RtcPin {}
/// Common trait implemented by pins
pub trait Pin: private::Sealed {
/// GPIO number
fn number(&self, _: private::Internal) -> u8;
/// Enable/disable sleep-mode
fn sleep_mode(&mut self, on: bool, _: private::Internal);
/// Configure the alternate function
fn set_alternate_function(&mut self, alternate: AlternateFunction, _: private::Internal);
/// Listen for interrupts
fn listen(&mut self, event: Event, _: private::Internal) {
self.listen_with_options(event, true, false, false, private::Internal)
}
/// Checks if listening for interrupts is enabled for this Pin
fn is_listening(&self, _: private::Internal) -> bool;
/// Listen for interrupts
fn listen_with_options(
&mut self,
event: Event,
int_enable: bool,
nmi_enable: bool,
wake_up_from_light_sleep: bool,
_: private::Internal,
);
/// Stop listening for interrupts
fn unlisten(&mut self, _: private::Internal);
/// Checks if the interrupt status bit for this Pin is set
fn is_interrupt_set(&self, _: private::Internal) -> bool;
/// Clear the interrupt status bit for this Pin
fn clear_interrupt(&mut self, _: private::Internal);
}
/// Trait implemented by pins which can be used as inputs
pub trait InputPin: Pin {
/// Init as input with the given pull-up/pull-down
fn init_input(&self, pull_down: bool, pull_up: bool, _: private::Internal);
/// Set the pin to input mode without internal pull-up / pull-down resistors
fn set_to_input(&mut self, _: private::Internal);
/// Enable input for the pin
fn enable_input(&mut self, on: bool, _: private::Internal);
/// Enable input in sleep mode for the pin
fn enable_input_in_sleep_mode(&mut self, on: bool, _: private::Internal);
/// The current state of the input
fn is_input_high(&self, _: private::Internal) -> bool;
/// Connect the pin to a peripheral input signal
fn connect_input_to_peripheral(&mut self, signal: InputSignal, _: private::Internal);
/// Connect the pin to a peripheral input signal.
///
/// Optionally invert the signal. When `force_via_gpio_mux` is true it will
/// won't use the alternate function even if it matches
fn connect_input_to_peripheral_with_options(
&mut self,
signal: InputSignal,
invert: bool,
force_via_gpio_mux: bool,
_: private::Internal,
);
/// Remove a connected `signal` from this input pin.
///
/// Clears the entry in the GPIO matrix / Io mux that associates this input
/// pin with the given [input `signal`](`InputSignal`). Any other
/// connected signals remain intact.
fn disconnect_input_from_peripheral(&mut self, signal: InputSignal, _: private::Internal);
}
/// Trait implemented by pins which can be used as outputs
pub trait OutputPin: Pin {
/// Configure open-drain mode
fn set_to_open_drain_output(&mut self, _: private::Internal);
/// Configure output mode
fn set_to_push_pull_output(&mut self, _: private::Internal);
/// Enable/disable the pin as output
fn enable_output(&mut self, on: bool, _: private::Internal);
/// Set the pin's level to high or low
fn set_output_high(&mut self, on: bool, _: private::Internal);
/// Configure the [DriveStrength] of the pin
fn set_drive_strength(&mut self, strength: DriveStrength, _: private::Internal);
/// Enable/disable open-drain mode
fn enable_open_drain(&mut self, on: bool, _: private::Internal);
/// Enable/disable output in sleep mode
fn enable_output_in_sleep_mode(&mut self, on: bool, _: private::Internal);
/// Configure internal pull-up resistor in sleep mode
fn internal_pull_up_in_sleep_mode(&mut self, on: bool, _: private::Internal);
/// Configure internal pull-down resistor in sleep mode
fn internal_pull_down_in_sleep_mode(&mut self, on: bool, _: private::Internal);
/// Enable/disable internal pull-up resistor for normal operation
fn internal_pull_up(&mut self, on: bool, _: private::Internal);
/// Enable/disable internal pull-down resistor for normal operation
fn internal_pull_down(&mut self, on: bool, _: private::Internal);
/// Connect the pin to a peripheral output signal
fn connect_peripheral_to_output(&mut self, signal: OutputSignal, _: private::Internal);
/// Connect the pin to a peripheral output signal.
///
/// invert: Configures whether or not to invert the output value
///
/// invert_enable: Configures whether or not to invert the output enable
/// signal
///
/// enable_from_gpio: Configures to select the source of output enable
/// signal.
/// - false = Use output enable signal from peripheral
/// - true = Force the output enable signal to be sourced from bit n of
/// GPIO_ENABLE_REG
///
/// force_via_gpio_mux: if true don't use the alternate function even if it
/// matches
fn connect_peripheral_to_output_with_options(
&mut self,
signal: OutputSignal,
invert: bool,
invert_enable: bool,
enable_from_gpio: bool,
force_via_gpio_mux: bool,
_: private::Internal,
);
/// Remove this output pin from a connected [signal](`InputSignal`).
///
/// Clears the entry in the GPIO matrix / Io mux that associates this output
/// pin with a previously connected [signal](`InputSignal`). Any other
/// outputs connected to the signal remain intact.
fn disconnect_peripheral_from_output(&mut self, _: private::Internal);
/// Is the output set to high
fn is_set_high(&self, _: private::Internal) -> bool;
}
/// Trait implemented by pins which can be used as analog pins
pub trait AnalogPin: Pin {
/// Configure the pin for analog operation
fn set_analog(&self, _: private::Internal);
}
#[doc(hidden)]
pub trait CreateErasedPin: Pin {
fn erased_pin(&self, _: private::Internal) -> ErasedPin;
}
#[doc(hidden)]
pub trait InterruptStatusRegisterAccess {
fn pro_cpu_interrupt_status_read() -> u32;
fn pro_cpu_nmi_status_read() -> u32;
fn app_cpu_interrupt_status_read() -> u32 {
Self::pro_cpu_interrupt_status_read()
}
fn app_cpu_nmi_status_read() -> u32 {
Self::pro_cpu_nmi_status_read()
}
fn interrupt_status_read() -> u32 {
match crate::get_core() {
crate::Cpu::ProCpu => Self::pro_cpu_interrupt_status_read(),
#[cfg(multi_core)]
crate::Cpu::AppCpu => Self::app_cpu_interrupt_status_read(),
}
}
fn nmi_status_read() -> u32 {
match crate::get_core() {
crate::Cpu::ProCpu => Self::pro_cpu_nmi_status_read(),
#[cfg(multi_core)]
crate::Cpu::AppCpu => Self::app_cpu_nmi_status_read(),
}
}
}
#[doc(hidden)]
pub struct InterruptStatusRegisterAccessBank0;
#[doc(hidden)]
pub struct InterruptStatusRegisterAccessBank1;
#[doc(hidden)]
pub trait InterruptStatusRegisters<RegisterAccess>
where
RegisterAccess: InterruptStatusRegisterAccess,
{
fn pro_cpu_interrupt_status_read() -> u32 {
RegisterAccess::pro_cpu_interrupt_status_read()
}
fn pro_cpu_nmi_status_read() -> u32 {
RegisterAccess::pro_cpu_nmi_status_read()
}
fn app_cpu_interrupt_status_read() -> u32 {
RegisterAccess::app_cpu_interrupt_status_read()
}
fn app_cpu_nmi_status_read() -> u32 {
RegisterAccess::app_cpu_nmi_status_read()
}
}
#[doc(hidden)]
pub trait GpioSignal {
fn output_signals() -> [Option<OutputSignal>; 6];
fn input_signals() -> [Option<InputSignal>; 6];
}
#[doc(hidden)]
pub struct Bank0GpioRegisterAccess;
#[doc(hidden)]
pub struct Bank1GpioRegisterAccess;
#[doc(hidden)]
pub trait BankGpioRegisterAccess {
fn write_out_en_clear(word: u32);
fn write_out_en_set(word: u32);
fn read_input() -> u32;
fn read_output() -> u32;
fn read_interrupt_status() -> u32;
fn write_interrupt_status_clear(word: u32);
fn write_output_set(word: u32);
fn write_output_clear(word: u32);
}
impl BankGpioRegisterAccess for Bank0GpioRegisterAccess {
fn write_out_en_clear(word: u32) {
unsafe { &*GPIO::PTR }
.enable_w1tc()
.write(|w| unsafe { w.bits(word) });
}
fn write_out_en_set(word: u32) {
unsafe { &*GPIO::PTR }
.enable_w1ts()
.write(|w| unsafe { w.bits(word) });
}
fn read_input() -> u32 {
unsafe { &*GPIO::PTR }.in_().read().bits()
}
fn read_output() -> u32 {
unsafe { &*GPIO::PTR }.out().read().bits()
}
fn read_interrupt_status() -> u32 {
unsafe { &*GPIO::PTR }.status().read().bits()
}
fn write_interrupt_status_clear(word: u32) {
unsafe { &*GPIO::PTR }
.status_w1tc()
.write(|w| unsafe { w.bits(word) });
}
fn write_output_set(word: u32) {
unsafe { &*GPIO::PTR }
.out_w1ts()
.write(|w| unsafe { w.bits(word) });
}
fn write_output_clear(word: u32) {
unsafe { &*GPIO::PTR }
.out_w1tc()
.write(|w| unsafe { w.bits(word) });
}
}
#[cfg(not(any(esp32c2, esp32c3, esp32c6, esp32h2)))]
impl BankGpioRegisterAccess for Bank1GpioRegisterAccess {
fn write_out_en_clear(word: u32) {
unsafe { &*GPIO::PTR }
.enable1_w1tc()
.write(|w| unsafe { w.bits(word) });
}
fn write_out_en_set(word: u32) {
unsafe { &*GPIO::PTR }
.enable1_w1ts()
.write(|w| unsafe { w.bits(word) });
}
fn read_input() -> u32 {
unsafe { &*GPIO::PTR }.in1().read().bits()
}
fn read_output() -> u32 {
unsafe { &*GPIO::PTR }.out1().read().bits()
}
fn read_interrupt_status() -> u32 {
unsafe { &*GPIO::PTR }.status1().read().bits()
}
fn write_interrupt_status_clear(word: u32) {
unsafe { &*GPIO::PTR }
.status1_w1tc()
.write(|w| unsafe { w.bits(word) });
}
fn write_output_set(word: u32) {
unsafe { &*GPIO::PTR }
.out1_w1ts()
.write(|w| unsafe { w.bits(word) });
}
fn write_output_clear(word: u32) {
unsafe { &*GPIO::PTR }
.out1_w1tc()
.write(|w| unsafe { w.bits(word) });
}
}
/// Connect an always-low signal to the peripheral input signal
pub fn connect_low_to_peripheral(signal: InputSignal) {
unsafe { &*GPIO::PTR }
.func_in_sel_cfg(signal as usize - FUNC_IN_SEL_OFFSET)
.modify(|_, w| unsafe {
w.sel()
.set_bit()
.in_inv_sel()
.bit(false)
.in_sel()
.bits(ZERO_INPUT)
});
}
/// Connect an always-high signal to the peripheral input signal
pub fn connect_high_to_peripheral(signal: InputSignal) {
unsafe { &*GPIO::PTR }
.func_in_sel_cfg(signal as usize - FUNC_IN_SEL_OFFSET)
.modify(|_, w| unsafe {
w.sel()
.set_bit()
.in_inv_sel()
.bit(false)
.in_sel()
.bits(ONE_INPUT)
});
}
#[doc(hidden)]
pub trait PinType {}
#[doc(hidden)]
pub trait IsOutputPin: PinType {}
#[doc(hidden)]
pub trait IsInputPin: PinType {}
#[doc(hidden)]
pub trait IsAnalogPin: PinType {}
#[doc(hidden)]
pub struct InputOutputPinType;
#[doc(hidden)]
pub struct InputOnlyPinType;
#[doc(hidden)]
pub struct InputOutputAnalogPinType;
#[doc(hidden)]
pub struct InputOnlyAnalogPinType;
impl PinType for InputOutputPinType {}
impl IsOutputPin for InputOutputPinType {}
impl IsInputPin for InputOutputPinType {}
impl PinType for InputOnlyPinType {}
impl IsInputPin for InputOnlyPinType {}
impl PinType for InputOutputAnalogPinType {}
impl IsOutputPin for InputOutputAnalogPinType {}
impl IsInputPin for InputOutputAnalogPinType {}
impl IsAnalogPin for InputOutputAnalogPinType {}
impl PinType for InputOnlyAnalogPinType {}
impl IsInputPin for InputOnlyAnalogPinType {}
impl IsAnalogPin for InputOnlyAnalogPinType {}
/// GPIO pin
pub struct GpioPin<const GPIONUM: u8>;
impl<const GPIONUM: u8> GpioPin<GPIONUM>
where
Self: GpioProperties,
<Self as GpioProperties>::PinType: IsOutputPin,
{
/// Is the input pin high?
#[inline]
pub fn is_high(&self) -> bool {
<Self as GpioProperties>::Bank::read_input() & (1 << (GPIONUM % 32)) != 0
}
/// Is the input pin low?
#[inline]
pub fn is_low(&self) -> bool {
!self.is_high()
}
}
impl<const GPIONUM: u8> GpioPin<GPIONUM>
where
Self: GpioProperties,
<Self as GpioProperties>::PinType: IsInputPin,
{
pub(crate) fn new() -> Self {
Self
}
}
impl<const GPIONUM: u8> InputPin for GpioPin<GPIONUM>
where
Self: GpioProperties,
<Self as GpioProperties>::PinType: IsInputPin,
{
fn init_input(&self, pull_down: bool, pull_up: bool, _: private::Internal) {
let gpio = unsafe { &*GPIO::PTR };
<Self as GpioProperties>::Bank::write_out_en_clear(1 << (GPIONUM % 32));
gpio.func_out_sel_cfg(GPIONUM as usize)
.modify(|_, w| unsafe { w.out_sel().bits(OutputSignal::GPIO as OutputSignalType) });
#[cfg(esp32)]
crate::soc::gpio::errata36(GPIONUM, Some(pull_up), Some(pull_down));
// NOTE: Workaround to make GPIO18 and GPIO19 work on the ESP32-C3, which by
// default are assigned to the `USB_SERIAL_JTAG` peripheral.
#[cfg(esp32c3)]
if GPIONUM == 18 || GPIONUM == 19 {
unsafe { &*crate::peripherals::USB_DEVICE::PTR }
.conf0()
.modify(|_, w| {
w.usb_pad_enable()
.clear_bit()
.dm_pullup()
.clear_bit()
.dm_pulldown()
.clear_bit()
.dp_pullup()
.clear_bit()
.dp_pulldown()
.clear_bit()
});
}
// Same workaround as above for ESP32-S3
#[cfg(esp32s3)]
if GPIONUM == 19 || GPIONUM == 20 {
unsafe { &*crate::peripherals::USB_DEVICE::PTR }
.conf0()
.modify(|_, w| {
w.usb_pad_enable()
.clear_bit()
.dm_pullup()
.clear_bit()
.dm_pulldown()
.clear_bit()
.dp_pullup()
.clear_bit()
.dp_pulldown()
.clear_bit()
});
}
get_io_mux_reg(GPIONUM).modify(|_, w| unsafe {
w.mcu_sel()
.bits(GPIO_FUNCTION as u8)
.fun_ie()
.set_bit()
.fun_wpd()
.bit(pull_down)
.fun_wpu()
.bit(pull_up)
.slp_sel()
.clear_bit()
});
}
fn set_to_input(&mut self, _: private::Internal) {
self.init_input(false, false, private::Internal);
}
fn enable_input(&mut self, on: bool, _: private::Internal) {
get_io_mux_reg(GPIONUM).modify(|_, w| w.fun_ie().bit(on));
}
fn enable_input_in_sleep_mode(&mut self, on: bool, _: private::Internal) {
get_io_mux_reg(GPIONUM).modify(|_, w| w.mcu_ie().bit(on));
}
fn is_input_high(&self, _: private::Internal) -> bool {
<Self as GpioProperties>::Bank::read_input() & (1 << (GPIONUM % 32)) != 0
}
fn connect_input_to_peripheral(&mut self, signal: InputSignal, _: private::Internal) {
self.connect_input_to_peripheral_with_options(signal, false, false, private::Internal);
}
fn connect_input_to_peripheral_with_options(
&mut self,
signal: InputSignal,
invert: bool,
force_via_gpio_mux: bool,
_: private::Internal,
) {
let af = if force_via_gpio_mux {
GPIO_FUNCTION
} else {
let mut res = GPIO_FUNCTION;
for (i, input_signal) in <Self as GpioProperties>::Signals::input_signals()
.iter()
.enumerate()
{
if let Some(input_signal) = input_signal {
if *input_signal == signal {
res = match i {
0 => AlternateFunction::Function0,
1 => AlternateFunction::Function1,
2 => AlternateFunction::Function2,
3 => AlternateFunction::Function3,
4 => AlternateFunction::Function4,
5 => AlternateFunction::Function5,
_ => unreachable!(),
};
break;
}
}
}
res
};
if af == GPIO_FUNCTION && signal as usize > INPUT_SIGNAL_MAX as usize {
panic!("Cannot connect GPIO to this peripheral");
}
self.set_alternate_function(af, private::Internal);
if (signal as usize) <= INPUT_SIGNAL_MAX as usize {
unsafe { &*GPIO::PTR }
.func_in_sel_cfg(signal as usize - FUNC_IN_SEL_OFFSET)
.modify(|_, w| unsafe {
w.sel()
.set_bit()
.in_inv_sel()
.bit(invert)
.in_sel()
.bits(GPIONUM)
});
}
}
fn disconnect_input_from_peripheral(&mut self, signal: InputSignal, _: private::Internal) {
self.set_alternate_function(GPIO_FUNCTION, private::Internal);
unsafe { &*GPIO::PTR }
.func_in_sel_cfg(signal as usize - FUNC_IN_SEL_OFFSET)
.modify(|_, w| w.sel().clear_bit());
}
}
impl<const GPIONUM: u8> GpioPin<GPIONUM>
where
Self: GpioProperties,
{
/// Create a pin out of thin air.
///
/// # Safety
///
/// Ensure that only one instance of a pin exists at one time.
pub unsafe fn steal() -> Self {
Self
}
}
impl<const GPIONUM: u8> Pin for GpioPin<GPIONUM>
where
Self: GpioProperties,
{
fn number(&self, _: private::Internal) -> u8 {
GPIONUM
}
fn sleep_mode(&mut self, on: bool, _: private::Internal) {
get_io_mux_reg(GPIONUM).modify(|_, w| w.slp_sel().bit(on));
}
fn set_alternate_function(&mut self, alternate: AlternateFunction, _: private::Internal) {
get_io_mux_reg(GPIONUM).modify(|_, w| unsafe { w.mcu_sel().bits(alternate as u8) });
}
fn listen_with_options(
&mut self,
event: Event,
int_enable: bool,
nmi_enable: bool,
wake_up_from_light_sleep: bool,
_: private::Internal,
) {
if wake_up_from_light_sleep {
match event {
Event::AnyEdge | Event::RisingEdge | Event::FallingEdge => {
panic!("Edge triggering is not supported for wake-up from light sleep");
}
_ => {}
}
}
unsafe {
(*GPIO::PTR).pin(GPIONUM as usize).modify(|_, w| {
w.int_ena()
.bits(gpio_intr_enable(int_enable, nmi_enable))
.int_type()
.bits(event as u8)
.wakeup_enable()
.bit(wake_up_from_light_sleep)
});
}
}
fn is_listening(&self, _: private::Internal) -> bool {
let bits = unsafe { &*GPIO::PTR }
.pin(GPIONUM as usize)
.read()
.int_ena()
.bits();
bits != 0
}
fn unlisten(&mut self, _: private::Internal) {
unsafe {
(*GPIO::PTR)
.pin(GPIONUM as usize)
.modify(|_, w| w.int_ena().bits(0).int_type().bits(0).int_ena().bits(0));
}
}
fn is_interrupt_set(&self, _: private::Internal) -> bool {
<Self as GpioProperties>::Bank::read_interrupt_status() & 1 << (GPIONUM % 32) != 0
}
fn clear_interrupt(&mut self, _: private::Internal) {
<Self as GpioProperties>::Bank::write_interrupt_status_clear(1 << (GPIONUM % 32));
}
}
impl<const GPIONUM: u8> GpioPin<GPIONUM>
where
Self: GpioProperties,
<Self as GpioProperties>::PinType: IsOutputPin,
{
/// Drives the pin high.
#[inline]
pub fn set_high(&mut self) {
<Self as GpioProperties>::Bank::write_output_set(1 << (GPIONUM % 32));
}
/// Drives the pin low.
#[inline]
pub fn set_low(&mut self) {
<Self as GpioProperties>::Bank::write_output_clear(1 << (GPIONUM % 32));
}
/// Drives the pin high or low depending on the provided value.
#[inline]
pub fn set_state(&mut self, state: bool) {
match state {
true => self.set_high(),
false => self.set_low(),
}
}
/// Is the pin in drive high mode?
#[inline]
pub fn is_set_high(&self) -> bool {
<Self as GpioProperties>::Bank::read_output() & (1 << (GPIONUM % 32)) != 0
}
/// Is the pin in drive low mode?
#[inline]
pub fn is_set_low(&self) -> bool {
!self.is_set_high()
}
/// Toggle pin output.
#[inline]
pub fn toggle(&mut self) {
if self.is_set_high() {
self.set_low();
} else {
self.set_high();
}
}
}
impl<const GPIONUM: u8> crate::peripheral::Peripheral for GpioPin<GPIONUM>
where
Self: GpioProperties,
{
type P = GpioPin<GPIONUM>;
unsafe fn clone_unchecked(&mut self) -> Self::P {
core::ptr::read(self as *const _)
}
}
impl<const GPIONUM: u8> private::Sealed for GpioPin<GPIONUM> where Self: GpioProperties {}
impl<const GPIONUM: u8> GpioPin<GPIONUM>
where
Self: GpioProperties,
<Self as GpioProperties>::PinType: IsOutputPin,
{
fn init_output(&self, alternate: AlternateFunction, open_drain: bool, _: private::Internal) {
let gpio = unsafe { &*GPIO::PTR };
#[cfg(esp32)]
crate::soc::gpio::errata36(GPIONUM, Some(false), Some(false));
<Self as GpioProperties>::Bank::write_out_en_set(1 << (GPIONUM % 32));
gpio.pin(GPIONUM as usize)
.modify(|_, w| w.pad_driver().bit(open_drain));
gpio.func_out_sel_cfg(GPIONUM as usize)
.modify(|_, w| unsafe { w.out_sel().bits(OutputSignal::GPIO as OutputSignalType) });
// NOTE: Workaround to make GPIO18 and GPIO19 work on the ESP32-C3, which by
// default are assigned to the `USB_SERIAL_JTAG` peripheral.
#[cfg(esp32c3)]
if GPIONUM == 18 || GPIONUM == 19 {
unsafe { &*crate::peripherals::USB_DEVICE::PTR }
.conf0()
.modify(|_, w| w.usb_pad_enable().clear_bit());
}
// Same workaround as above for ESP32-S3
#[cfg(esp32s3)]
if GPIONUM == 19 || GPIONUM == 20 {
unsafe { &*crate::peripherals::USB_DEVICE::PTR }
.conf0()
.modify(|_, w| w.usb_pad_enable().clear_bit());
}
get_io_mux_reg(GPIONUM).modify(|_, w| unsafe {
w.mcu_sel()
.bits(alternate as u8)
.fun_ie()
.bit(open_drain)
.fun_wpd()
.clear_bit()
.fun_wpu()
.clear_bit()
.fun_drv()
.bits(DriveStrength::I20mA as u8)
.slp_sel()
.clear_bit()
});
}
}
impl<const GPIONUM: u8> OutputPin for GpioPin<GPIONUM>
where
Self: GpioProperties,
<Self as GpioProperties>::PinType: IsOutputPin,
{
fn set_to_open_drain_output(&mut self, _: private::Internal) {
self.init_output(GPIO_FUNCTION, true, private::Internal);
}
fn set_to_push_pull_output(&mut self, _: private::Internal) {
self.init_output(GPIO_FUNCTION, false, private::Internal);
}
fn enable_output(&mut self, on: bool, _: private::Internal) {
if on {
<Self as GpioProperties>::Bank::write_out_en_set(1 << (GPIONUM % 32));
} else {
<Self as GpioProperties>::Bank::write_out_en_clear(1 << (GPIONUM % 32));
}
}
fn set_output_high(&mut self, high: bool, _: private::Internal) {
if high {
<Self as GpioProperties>::Bank::write_output_set(1 << (GPIONUM % 32));
} else {
<Self as GpioProperties>::Bank::write_output_clear(1 << (GPIONUM % 32));
}
}
fn set_drive_strength(&mut self, strength: DriveStrength, _: private::Internal) {
get_io_mux_reg(GPIONUM).modify(|_, w| unsafe { w.fun_drv().bits(strength as u8) });
}
fn enable_open_drain(&mut self, on: bool, _: private::Internal) {
unsafe { &*GPIO::PTR }
.pin(GPIONUM as usize)
.modify(|_, w| w.pad_driver().bit(on));
}
fn internal_pull_up_in_sleep_mode(&mut self, on: bool, _: private::Internal) {
get_io_mux_reg(GPIONUM).modify(|_, w| w.mcu_wpu().bit(on));
}
fn internal_pull_down_in_sleep_mode(&mut self, on: bool, _: private::Internal) {
get_io_mux_reg(GPIONUM).modify(|_, w| w.mcu_wpd().bit(on));
}
fn enable_output_in_sleep_mode(&mut self, on: bool, _: private::Internal) {
get_io_mux_reg(GPIONUM).modify(|_, w| w.mcu_oe().bit(on));
}
fn internal_pull_up(&mut self, on: bool, _: private::Internal) {
#[cfg(esp32)]
crate::soc::gpio::errata36(GPIONUM, Some(on), None);
get_io_mux_reg(GPIONUM).modify(|_, w| w.fun_wpu().bit(on));
}
fn internal_pull_down(&mut self, on: bool, _: private::Internal) {
#[cfg(esp32)]
crate::soc::gpio::errata36(GPIONUM, None, Some(on));
get_io_mux_reg(GPIONUM).modify(|_, w| w.fun_wpd().bit(on));
}
fn connect_peripheral_to_output(&mut self, signal: OutputSignal, _: private::Internal) {
self.connect_peripheral_to_output_with_options(
signal,
false,
false,
false,
false,
private::Internal,
)
}
fn connect_peripheral_to_output_with_options(
&mut self,
signal: OutputSignal,
invert: bool,
invert_enable: bool,
enable_from_gpio: bool,
force_via_gpio_mux: bool,
_: private::Internal,
) {
let af = if force_via_gpio_mux {
GPIO_FUNCTION
} else {
let mut res = GPIO_FUNCTION;
for (i, output_signal) in <Self as GpioProperties>::Signals::output_signals()
.iter()
.enumerate()
{
if let Some(output_signal) = output_signal {
if *output_signal == signal {
res = match i {
0 => AlternateFunction::Function0,
1 => AlternateFunction::Function1,
2 => AlternateFunction::Function2,
3 => AlternateFunction::Function3,
4 => AlternateFunction::Function4,
5 => AlternateFunction::Function5,
_ => unreachable!(),
};
break;
}
}
}
res
};
if af == GPIO_FUNCTION && signal as usize > OUTPUT_SIGNAL_MAX as usize {
panic!("Cannot connect this peripheral to GPIO");
}
self.set_alternate_function(af, private::Internal);
let clipped_signal = if signal as usize <= OUTPUT_SIGNAL_MAX as usize {
signal as OutputSignalType
} else {
OUTPUT_SIGNAL_MAX
};
unsafe { &*GPIO::PTR }
.func_out_sel_cfg(GPIONUM as usize)
.modify(|_, w| unsafe {
w.out_sel()
.bits(clipped_signal)
.inv_sel()
.bit(invert)
.oen_sel()
.bit(enable_from_gpio)
.oen_inv_sel()
.bit(invert_enable)
});
}
fn disconnect_peripheral_from_output(&mut self, _: private::Internal) {
self.set_alternate_function(GPIO_FUNCTION, private::Internal);
unsafe { &*GPIO::PTR }
.func_out_sel_cfg(GPIONUM as usize)
.modify(|_, w| unsafe { w.out_sel().bits(OutputSignal::GPIO as OutputSignalType) });
}
fn is_set_high(&self, _: private::Internal) -> bool {
<Self as GpioProperties>::Bank::read_output() & (1 << (GPIONUM % 32)) != 0
}
}
#[cfg(any(adc, dac))]
impl<const GPIONUM: u8> AnalogPin for GpioPin<GPIONUM>
where
Self: GpioProperties,
<Self as GpioProperties>::PinType: IsAnalogPin,
{
/// Configures the pin for analog mode.
fn set_analog(&self, _: private::Internal) {
crate::soc::gpio::internal_into_analog(GPIONUM);
}
}
/// General Purpose Input/Output driver
pub struct Io {
_io_mux: IO_MUX,
/// The pins available on this chip
pub pins: Pins,
}
impl Io {
/// Initialize the I/O driver.
pub fn new(gpio: GPIO, io_mux: IO_MUX) -> Self {
Self::new_with_priority(gpio, io_mux, crate::interrupt::Priority::min())
}
/// Initialize the I/O driver with a interrupt priority.
///
/// This decides the priority for the interrupt when using async.
pub fn new_with_priority(
mut gpio: GPIO,
io_mux: IO_MUX,
prio: crate::interrupt::Priority,
) -> Self {
gpio.bind_gpio_interrupt(gpio_interrupt_handler);
crate::interrupt::enable(crate::peripherals::Interrupt::GPIO, prio).unwrap();
let pins = gpio.pins();
Io {
_io_mux: io_mux,
pins,
}
}
/// Install the given interrupt handler replacing any previously set
/// handler.
///
/// When the async feature is enabled the handler will be called first and
/// the internal async handler will run after. In that case it's
/// important to not reset the interrupt status when mixing sync and
/// async (i.e. using async wait) interrupt handling.
pub fn set_interrupt_handler(&mut self, handler: InterruptHandler) {
critical_section::with(|cs| {
crate::interrupt::enable(crate::peripherals::Interrupt::GPIO, handler.priority())
.unwrap();
USER_INTERRUPT_HANDLER.borrow(cs).set(Some(handler));
});
}
}
extern "C" fn gpio_interrupt_handler() {
if let Some(user_handler) = critical_section::with(|cs| USER_INTERRUPT_HANDLER.borrow(cs).get())
{
user_handler.call();
}
#[cfg(feature = "async")]
asynch::handle_gpio_interrupt();
}
#[doc(hidden)]
pub trait GpioProperties {
type Bank: BankGpioRegisterAccess;
type InterruptStatus: InterruptStatusRegisterAccess;
type Signals: GpioSignal;
type PinType: PinType;
}
#[doc(hidden)]
#[macro_export]
macro_rules! gpio {
(
$(
($gpionum:literal, $bank:literal, $type:ident
$(
( $( $af_input_num:literal => $af_input_signal:ident )* )
( $( $af_output_num:literal => $af_output_signal:ident )* )
)?
)
)+
) => {
paste::paste! {
impl GPIO {
pub(crate) fn pins(self) -> Pins {
Pins {
$(
[< gpio $gpionum >]: {
GpioPin::new()
},
)+
}
}
}
$(
impl $crate::gpio::GpioProperties for GpioPin<$gpionum> {
type Bank = $crate::gpio::[< Bank $bank GpioRegisterAccess >];
type InterruptStatus = $crate::gpio::[< InterruptStatusRegisterAccessBank $bank >];
type Signals = [< Gpio $gpionum Signals >];
type PinType = $crate::gpio::[<$type PinType>];
}
#[doc(hidden)]
pub struct [<Gpio $gpionum Signals>];
impl $crate::gpio::GpioSignal for [<Gpio $gpionum Signals>] {
fn output_signals() -> [Option<OutputSignal>; 6]{
#[allow(unused_mut)]
let mut output_signals = [None, None, None, None, None, None];
$(
$(
output_signals[ $af_output_num ] = Some( OutputSignal::$af_output_signal );
)*
)?
output_signals
}
fn input_signals() -> [Option<InputSignal>; 6] {
#[allow(unused_mut)]
let mut input_signals = [None, None, None, None, None, None];
$(
$(
input_signals[ $af_input_num ] = Some( InputSignal::$af_input_signal );
)*
)?
input_signals
}
}
impl $crate::gpio::CreateErasedPin for GpioPin<$gpionum> {
fn erased_pin(&self, _: $crate::private::Internal) -> ErasedPin {
$crate::gpio::ErasedPin::[< Gpio $gpionum >](unsafe { Self::steal() })
}
}
)+
/// Pins available on this chip
#[allow(missing_docs)]
pub struct Pins {
$(
pub [< gpio $gpionum >] : GpioPin<$gpionum>,
)+
}
$(
#[doc = concat!("Alias for GpioPin<MODE, ", $gpionum, ">")]
pub type [<Gpio $gpionum >] = GpioPin<$gpionum>;
)+
#[doc(hidden)]
pub enum ErasedPin {
$(
[<Gpio $gpionum >]([<Gpio $gpionum >]),
)+
}
impl ErasedPin {
pub(crate) unsafe fn clone_unchecked(&mut self) -> Self {
match self {
$(
ErasedPin::[<Gpio $gpionum >](_) => {
$crate::gpio::ErasedPin::[< Gpio $gpionum >](unsafe { GpioPin::steal() })
}
)+
}
}
}
procmacros::make_gpio_enum_dispatch_macro!(
handle_gpio_output
{ InputOutputAnalog, InputOutput, }
{
$(
$type,$gpionum
)+
}
);
procmacros::make_gpio_enum_dispatch_macro!(
handle_gpio_input
{ InputOutputAnalog, InputOutput, InputOnlyAnalog }
{
$(
$type,$gpionum
)+
}
);
}
};
}
#[cfg(xtensa)]
#[doc(hidden)]
#[macro_export]
macro_rules! rtc_pins {
(
$pin_num:expr, $rtc_pin:expr, $pin_reg:expr, $prefix:pat, $hold:ident $(, $rue:ident, $rde:ident)?
) => {
impl $crate::gpio::RtcPin for GpioPin<$pin_num>
{
fn rtc_number(&self) -> u8 {
$rtc_pin
}
/// Set the RTC properties of the pin. If `mux` is true then then pin is
/// routed to RTC, when false it is routed to IO_MUX.
fn rtc_set_config(&mut self, input_enable: bool, mux: bool, func: $crate::gpio::RtcFunction) {
use $crate::peripherals::RTC_IO;
let rtcio = unsafe{ &*RTC_IO::ptr() };
#[cfg(esp32s3)]
unsafe { $crate::peripherals::SENS::steal() }.sar_peri_clk_gate_conf().modify(|_,w| w.iomux_clk_en().set_bit());
#[cfg(esp32s2)]
unsafe { $crate::peripherals::SENS::steal() }.sar_io_mux_conf().modify(|_,w| w.iomux_clk_gate_en().set_bit());
// disable input
paste::paste!{
rtcio.$pin_reg.modify(|_,w| unsafe {w
.[<$prefix fun_ie>]().bit(input_enable)
.[<$prefix mux_sel>]().bit(mux)
.[<$prefix fun_sel>]().bits(func as u8)
});
}
}
fn rtcio_pad_hold(&mut self, enable: bool) {
let rtc_ctrl = unsafe { &*$crate::peripherals::LPWR::PTR };
#[cfg(esp32)]
rtc_ctrl.hold_force().modify(|_, w| w.$hold().bit(enable));
#[cfg(not(esp32))]
rtc_ctrl.pad_hold().modify(|_, w| w.$hold().bit(enable));
}
}
$(
impl $crate::gpio::RtcPinWithResistors for GpioPin<$pin_num>
{
fn rtcio_pullup(&mut self, enable: bool) {
let rtcio = unsafe { &*$crate::peripherals::RTC_IO::PTR };
paste::paste! {
rtcio.$pin_reg.modify(|_, w| w.$rue().bit([< enable >]));
}
}
fn rtcio_pulldown(&mut self, enable: bool) {
let rtcio = unsafe { &*$crate::peripherals::RTC_IO::PTR };
paste::paste! {
rtcio.$pin_reg.modify(|_, w| w.$rde().bit([< enable >]));
}
}
}
)?
};
(
$( ( $pin_num:expr, $rtc_pin:expr, $pin_reg:expr, $prefix:pat, $hold:ident $(, $rue:ident, $rde:ident)? ) )+
) => {
$(
$crate::gpio::rtc_pins!($pin_num, $rtc_pin, $pin_reg, $prefix, $hold $(, $rue, $rde)?);
)+
};
}
#[cfg(esp32c3)]
#[doc(hidden)]
#[macro_export]
macro_rules! rtc_pins {
(
$pin_num:expr
) => {
impl $crate::gpio::RtcPin for GpioPin<$pin_num> {
unsafe fn apply_wakeup(&mut self, wakeup: bool, level: u8) {
let rtc_cntl = unsafe { &*$crate::peripherals::RTC_CNTL::ptr() };
paste::paste! {
rtc_cntl.gpio_wakeup().modify(|_, w| w.[< gpio_pin $pin_num _wakeup_enable >]().bit(wakeup));
rtc_cntl.gpio_wakeup().modify(|_, w| w.[< gpio_pin $pin_num _int_type >]().bits(level));
}
}
fn rtcio_pad_hold(&mut self, enable: bool) {
let rtc_cntl = unsafe { &*$crate::peripherals::RTC_CNTL::ptr() };
paste::paste! {
rtc_cntl.pad_hold().modify(|_, w| w.[< gpio_pin $pin_num _hold >]().bit(enable));
}
}
}
impl $crate::gpio::RtcPinWithResistors for GpioPin<$pin_num> {
fn rtcio_pullup(&mut self, enable: bool) {
let io_mux = unsafe { &*$crate::peripherals::IO_MUX::ptr() };
io_mux.gpio($pin_num).modify(|_, w| w.fun_wpu().bit(enable));
}
fn rtcio_pulldown(&mut self, enable: bool) {
let io_mux = unsafe { &*$crate::peripherals::IO_MUX::ptr() };
io_mux.gpio($pin_num).modify(|_, w| w.fun_wpd().bit(enable));
}
}
};
( $( $pin_num:expr )+ ) => { $( $crate::gpio::rtc_pins!($pin_num); )+ };
}
// Following code enables `into_analog`
#[doc(hidden)]
pub fn enable_iomux_clk_gate() {
#[cfg(esp32s2)]
{
use crate::peripherals::SENS;
let sensors = unsafe { &*SENS::ptr() };
sensors
.sar_io_mux_conf()
.modify(|_, w| w.iomux_clk_gate_en().set_bit());
}
}
#[cfg(any(esp32, esp32s2, esp32s3))]
#[doc(hidden)]
#[macro_export]
macro_rules! analog {
(
$(
(
$pin_num:expr, $rtc_pin:expr, $pin_reg:expr,
$mux_sel:ident, $fun_sel:ident, $fun_ie:ident $(, $rue:ident, $rde:ident)?
)
)+
) => {
pub(crate) fn internal_into_analog(pin: u8) {
use $crate::peripherals::RTC_IO;
let rtcio = unsafe{ &*RTC_IO::ptr() };
$crate::gpio::enable_iomux_clk_gate();
match pin {
$(
$pin_num => {
// We need `paste` (and a [< >] in it) to rewrite the token stream to
// handle indexed pins.
paste::paste! {
// disable input
rtcio.$pin_reg.modify(|_,w| w.$fun_ie().bit([< false >]));
// disable output
rtcio.enable_w1tc().write(|w| unsafe { w.enable_w1tc().bits(1 << $rtc_pin) });
// disable open drain
rtcio.pin($rtc_pin).modify(|_,w| w.pad_driver().bit(false));
rtcio.$pin_reg.modify(|_,w| {
w.$fun_ie().clear_bit();
// Connect pin to analog / RTC module instead of standard GPIO
w.$mux_sel().set_bit();
// Select function "RTC function 1" (GPIO) for analog use
unsafe { w.$fun_sel().bits(0b00) }
});
// Disable pull-up and pull-down resistors on the pin, if it has them
$(
rtcio.$pin_reg.modify(|_,w| {
w
.$rue().bit(false)
.$rde().bit(false)
});
)?
}
}
)+
_ => unreachable!(),
}
}
}
}
#[cfg(any(esp32c2, esp32c3, esp32c6, esp32h2))]
#[doc(hidden)]
#[macro_export]
macro_rules! analog {
(
$($pin_num:literal)+
) => {
pub(crate) fn internal_into_analog(pin: u8) {
use $crate::peripherals::IO_MUX;
use $crate::peripherals::GPIO;
let io_mux = unsafe{ &*IO_MUX::PTR };
let gpio = unsafe{ &*GPIO::PTR };
match pin {
$(
$pin_num => {
io_mux.gpio($pin_num).modify(|_,w| unsafe {
w.mcu_sel().bits(1)
.fun_ie().clear_bit()
.fun_wpu().clear_bit()
.fun_wpd().clear_bit()
});
gpio.enable_w1tc().write(|w| unsafe { w.bits(1 << $pin_num) });
}
)+
_ => unreachable!()
}
}
}
}
/// GPIO output driver.
pub struct Output<'d, P> {
pin: PeripheralRef<'d, P>,
}
impl<'d, P> Output<'d, P>
where
P: OutputPin,
{
/// Create GPIO output driver for a [GpioPin] with the provided level
#[inline]
pub fn new(pin: impl crate::peripheral::Peripheral<P = P> + 'd, initial_output: bool) -> Self {
crate::into_ref!(pin);
pin.set_output_high(initial_output, private::Internal);
pin.set_to_push_pull_output(private::Internal);
Self { pin }
}
/// Set the output as high.
#[inline]
pub fn set_high(&mut self) {
self.pin.set_output_high(true, private::Internal);
}
/// Set the output as low.
#[inline]
pub fn set_low(&mut self) {
self.pin.set_output_high(false, private::Internal);
}
/// Set the output level.
#[inline]
pub fn set_level(&mut self, level: Level) {
self.pin.set_output_high(level.into(), private::Internal);
}
/// Is the output pin set as high?
#[inline]
pub fn is_set_high(&self) -> bool {
self.pin.is_set_high(private::Internal)
}
/// Is the output pin set as low?
#[inline]
pub fn is_set_low(&self) -> bool {
!self.pin.is_set_high(private::Internal)
}
/// What level output is set to
#[inline]
pub fn get_output_level(&self) -> Level {
self.pin.is_set_high(private::Internal).into()
}
/// Toggle pin output
#[inline]
pub fn toggle(&mut self) {
let level = !self.pin.is_set_high(private::Internal);
self.pin.set_output_high(level, private::Internal);
}
/// Configure the [DriveStrength] of the pin
pub fn set_drive_strength(&mut self, strength: DriveStrength) {
self.pin.set_drive_strength(strength, private::Internal);
}
}
/// GPIO input driver.
pub struct Input<'d, P> {
pin: PeripheralRef<'d, P>,
}
impl<'d, P> Input<'d, P>
where
P: InputPin,
{
/// Create GPIO input driver for a [Pin] with the provided [Pull]
/// configuration.
#[inline]
pub fn new(pin: impl crate::peripheral::Peripheral<P = P> + 'd, pull: Pull) -> Self {
crate::into_ref!(pin);
pin.init_input(pull == Pull::Down, pull == Pull::Up, private::Internal);
Self { pin }
}
/// Get whether the pin input level is high.
#[inline]
pub fn is_high(&self) -> bool {
self.pin.is_input_high(private::Internal)
}
/// Get whether the pin input level is low.
#[inline]
pub fn is_low(&self) -> bool {
!self.is_high()
}
/// Get the current pin input level.
#[inline]
pub fn get_level(&self) -> Level {
self.is_high().into()
}
/// Listen for interrupts
#[inline]
pub fn listen(&mut self, event: Event) {
self.pin.listen(event, private::Internal);
}
/// Stop listening for interrupts
pub fn unlisten(&mut self) {
self.pin.unlisten(private::Internal);
}
/// Clear the interrupt status bit for this Pin
#[inline]
pub fn clear_interrupt(&mut self) {
self.pin.clear_interrupt(private::Internal);
}
}
/// GPIO open-drain output driver.
pub struct OutputOpenDrain<'d, P> {
pin: PeripheralRef<'d, P>,
}
impl<'d, P> OutputOpenDrain<'d, P>
where
P: InputPin + OutputPin,
{
/// Create GPIO open-drain output driver for a [Pin] with the provided
/// initial output-level and [Pull] configuration.
#[inline]
pub fn new(
pin: impl crate::peripheral::Peripheral<P = P> + 'd,
initial_output: bool,
pull: Pull,
) -> Self {
crate::into_ref!(pin);
pin.set_output_high(initial_output, private::Internal);
pin.set_to_open_drain_output(private::Internal);
pin.internal_pull_down(pull == Pull::Down, private::Internal);
pin.internal_pull_up(pull == Pull::Up, private::Internal);
Self { pin }
}
/// Get whether the pin input level is high.
#[inline]
pub fn is_high(&self) -> bool {
self.pin.is_input_high(private::Internal)
}
/// Get whether the pin input level is low.
#[inline]
pub fn is_low(&self) -> bool {
!self.is_high()
}
/// Get the current pin input level.
#[inline]
pub fn get_level(&self) -> Level {
self.is_high().into()
}
/// Listen for interrupts
#[inline]
pub fn listen(&mut self, event: Event) {
self.pin.listen(event, private::Internal);
}
/// Clear the interrupt status bit for this Pin
#[inline]
pub fn clear_interrupt(&mut self) {
self.pin.clear_interrupt(private::Internal);
}
/// Set the output as high.
#[inline]
pub fn set_high(&mut self) {
self.pin.set_output_high(true, private::Internal);
}
/// Set the output as low.
#[inline]
pub fn set_low(&mut self) {
self.pin.set_output_high(false, private::Internal);
}
/// Set the output level.
#[inline]
pub fn set_level(&mut self, level: Level) {
self.pin.set_output_high(level.into(), private::Internal);
}
/// Is the output pin set as high?
#[inline]
pub fn is_set_high(&self) -> bool {
self.pin.is_set_high(private::Internal)
}
/// Is the output pin set as low?
#[inline]
pub fn is_set_low(&self) -> bool {
!self.pin.is_set_high(private::Internal)
}
/// What level output is set to
#[inline]
pub fn get_output_level(&self) -> Level {
self.pin.is_set_high(private::Internal).into()
}
/// Toggle pin output
#[inline]
pub fn toggle(&mut self) {
let level = !self.pin.is_set_high(private::Internal);
self.pin.set_output_high(level, private::Internal);
}
/// Configure the [DriveStrength] of the pin
pub fn set_drive_strength(&mut self, strength: DriveStrength) {
self.pin.set_drive_strength(strength, private::Internal);
}
}
/// Generic GPIO output driver.
pub struct AnyOutput<'d> {
pin: ErasedPin,
_phantom: PhantomData<&'d ()>,
}
impl<'d> AnyOutput<'d> {
/// Create GPIO output driver for a [GpioPin] with the provided level
#[inline]
pub fn new<P: OutputPin + CreateErasedPin>(
pin: impl crate::peripheral::Peripheral<P = P> + 'd,
initial_output: bool,
) -> Self {
crate::into_ref!(pin);
pin.set_output_high(initial_output, private::Internal);
pin.set_to_push_pull_output(private::Internal);
let pin = pin.erased_pin(private::Internal);
Self {
pin,
_phantom: PhantomData,
}
}
/// Set the output as high.
#[inline]
pub fn set_high(&mut self) {
self.pin.set_output_high(true, private::Internal);
}
/// Set the output as low.
#[inline]
pub fn set_low(&mut self) {
self.pin.set_output_high(false, private::Internal);
}
/// Set the output level.
#[inline]
pub fn set_level(&mut self, level: Level) {
self.pin.set_output_high(level.into(), private::Internal);
}
/// Is the output pin set as high?
#[inline]
pub fn is_set_high(&self) -> bool {
self.pin.is_set_high(private::Internal)
}
/// Is the output pin set as low?
#[inline]
pub fn is_set_low(&self) -> bool {
!self.pin.is_set_high(private::Internal)
}
/// What level output is set to
#[inline]
pub fn get_output_level(&self) -> Level {
self.pin.is_set_high(private::Internal).into()
}
/// Toggle pin output
#[inline]
pub fn toggle(&mut self) {
let pin = &mut self.pin;
pin.set_output_high(!pin.is_set_high(private::Internal), private::Internal);
}
}
/// Generic GPIO input driver.
pub struct AnyInput<'d> {
pin: ErasedPin,
_phantom: PhantomData<&'d ()>,
}
impl<'d> AnyInput<'d> {
/// Create GPIO input driver for a [Pin] with the provided [Pull]
/// configuration.
#[inline]
pub fn new<P: InputPin + CreateErasedPin>(
pin: impl crate::peripheral::Peripheral<P = P> + 'd,
pull: Pull,
) -> Self {
crate::into_ref!(pin);
pin.init_input(pull == Pull::Down, pull == Pull::Up, private::Internal);
let pin = pin.erased_pin(private::Internal);
Self {
pin,
_phantom: PhantomData,
}
}
/// Get whether the pin input level is high.
#[inline]
pub fn is_high(&self) -> bool {
self.pin.is_input_high(private::Internal)
}
/// Get whether the pin input level is low.
#[inline]
pub fn is_low(&self) -> bool {
!self.is_high()
}
/// Get the current pin input level.
#[inline]
pub fn get_level(&self) -> Level {
self.is_high().into()
}
/// Listen for interrupts
#[inline]
pub fn listen(&mut self, event: Event) {
self.pin.listen(event, private::Internal);
}
/// Clear the interrupt status bit for this Pin
#[inline]
pub fn clear_interrupt(&mut self) {
self.pin.clear_interrupt(private::Internal);
}
}
/// Generic GPIO open-drain output driver.
pub struct AnyOutputOpenDrain<'d> {
pin: ErasedPin,
_phantom: PhantomData<&'d ()>,
}
impl<'d> AnyOutputOpenDrain<'d> {
/// Create GPIO open-drain output driver for a [Pin] with the provided
/// initial output-level and [Pull] configuration.
#[inline]
pub fn new<P: OutputPin + InputPin + CreateErasedPin>(
pin: impl crate::peripheral::Peripheral<P = P> + 'd,
initial_output: bool,
pull: Pull,
) -> Self {
crate::into_ref!(pin);
pin.set_output_high(initial_output, private::Internal);
pin.internal_pull_down(pull == Pull::Down, private::Internal);
pin.internal_pull_up(pull == Pull::Up, private::Internal);
pin.set_to_open_drain_output(private::Internal);
let pin = pin.erased_pin(private::Internal);
Self {
pin,
_phantom: PhantomData,
}
}
/// Get whether the pin input level is high.
#[inline]
pub fn is_high(&self) -> bool {
self.pin.is_input_high(private::Internal)
}
/// Get whether the pin input level is low.
#[inline]
pub fn is_low(&self) -> bool {
!self.is_high()
}
/// Get the current pin input level.
#[inline]
pub fn get_level(&self) -> Level {
self.is_high().into()
}
/// Listen for interrupts
#[inline]
pub fn listen(&mut self, event: Event) {
self.pin.listen(event, private::Internal);
}
/// Clear the interrupt status bit for this Pin
#[inline]
pub fn clear_interrupt(&mut self) {
self.pin.clear_interrupt(private::Internal);
}
/// Set the output as high.
#[inline]
pub fn set_high(&mut self) {
self.pin.set_output_high(true, private::Internal);
}
/// Set the output as low.
#[inline]
pub fn set_low(&mut self) {
self.pin.set_output_high(false, private::Internal);
}
/// Set the output level.
#[inline]
pub fn set_level(&mut self, level: Level) {
self.pin.set_output_high(level.into(), private::Internal);
}
/// Is the output pin set as high?
#[inline]
pub fn is_set_high(&self) -> bool {
self.pin.is_set_high(private::Internal)
}
/// Is the output pin set as low?
#[inline]
pub fn is_set_low(&self) -> bool {
!self.pin.is_set_high(private::Internal)
}
/// What level output is set to
#[inline]
pub fn get_output_level(&self) -> Level {
self.pin.is_set_high(private::Internal).into()
}
/// Toggle pin output
#[inline]
pub fn toggle(&mut self) {
let pin = &mut self.pin;
pin.set_output_high(!pin.is_set_high(private::Internal), private::Internal);
}
}
pub(crate) mod internal {
use super::*;
impl private::Sealed for ErasedPin {}
impl Pin for ErasedPin {
fn number(&self, _: private::Internal) -> u8 {
handle_gpio_input!(self, target, { Pin::number(target, private::Internal) })
}
fn sleep_mode(&mut self, on: bool, _: private::Internal) {
handle_gpio_input!(self, target, {
Pin::sleep_mode(target, on, private::Internal)
})
}
fn set_alternate_function(&mut self, alternate: AlternateFunction, _: private::Internal) {
handle_gpio_input!(self, target, {
Pin::set_alternate_function(target, alternate, private::Internal)
})
}
fn is_listening(&self, _: private::Internal) -> bool {
handle_gpio_input!(self, target, {
Pin::is_listening(target, private::Internal)
})
}
fn listen_with_options(
&mut self,
event: Event,
int_enable: bool,
nmi_enable: bool,
wake_up_from_light_sleep: bool,
_: private::Internal,
) {
handle_gpio_input!(self, target, {
Pin::listen_with_options(
target,
event,
int_enable,
nmi_enable,
wake_up_from_light_sleep,
private::Internal,
)
})
}
fn unlisten(&mut self, _: private::Internal) {
handle_gpio_input!(self, target, { Pin::unlisten(target, private::Internal) })
}
fn is_interrupt_set(&self, _: private::Internal) -> bool {
handle_gpio_input!(self, target, {
Pin::is_interrupt_set(target, private::Internal)
})
}
fn clear_interrupt(&mut self, _: private::Internal) {
handle_gpio_input!(self, target, {
Pin::clear_interrupt(target, private::Internal)
})
}
}
impl InputPin for ErasedPin {
fn init_input(&self, pull_down: bool, pull_up: bool, _: private::Internal) {
handle_gpio_input!(self, target, {
InputPin::init_input(target, pull_down, pull_up, private::Internal)
})
}
fn set_to_input(&mut self, _: private::Internal) {
handle_gpio_input!(self, target, {
InputPin::set_to_input(target, private::Internal);
});
}
fn enable_input(&mut self, on: bool, _: private::Internal) {
handle_gpio_input!(self, target, {
InputPin::enable_input(target, on, private::Internal)
});
}
fn enable_input_in_sleep_mode(&mut self, on: bool, _: private::Internal) {
handle_gpio_input!(self, target, {
InputPin::enable_input_in_sleep_mode(target, on, private::Internal)
});
}
fn is_input_high(&self, _: private::Internal) -> bool {
handle_gpio_input!(self, target, {
InputPin::is_input_high(target, private::Internal)
})
}
fn connect_input_to_peripheral(&mut self, signal: InputSignal, _: private::Internal) {
handle_gpio_input!(self, target, {
InputPin::connect_input_to_peripheral(target, signal, private::Internal)
});
}
fn connect_input_to_peripheral_with_options(
&mut self,
signal: InputSignal,
invert: bool,
force_via_gpio_mux: bool,
_: private::Internal,
) {
handle_gpio_input!(self, target, {
InputPin::connect_input_to_peripheral_with_options(
target,
signal,
invert,
force_via_gpio_mux,
private::Internal,
)
});
}
fn disconnect_input_from_peripheral(&mut self, signal: InputSignal, _: private::Internal) {
handle_gpio_input!(self, target, {
InputPin::disconnect_input_from_peripheral(target, signal, private::Internal)
});
}
}
impl OutputPin for ErasedPin {
fn set_to_open_drain_output(&mut self, _: private::Internal) {
handle_gpio_output!(self, target, {
OutputPin::set_to_open_drain_output(target, private::Internal)
});
}
fn set_to_push_pull_output(&mut self, _: private::Internal) {
handle_gpio_output!(self, target, {
OutputPin::set_to_push_pull_output(target, private::Internal)
});
}
fn enable_output(&mut self, on: bool, _: private::Internal) {
handle_gpio_output!(self, target, {
OutputPin::enable_output(target, on, private::Internal)
});
}
fn set_output_high(&mut self, on: bool, _: private::Internal) {
handle_gpio_output!(self, target, {
OutputPin::set_output_high(target, on, private::Internal)
});
}
fn set_drive_strength(&mut self, strength: DriveStrength, _: private::Internal) {
handle_gpio_output!(self, target, {
OutputPin::set_drive_strength(target, strength, private::Internal)
});
}
fn enable_open_drain(&mut self, on: bool, _: private::Internal) {
handle_gpio_output!(self, target, {
OutputPin::enable_open_drain(target, on, private::Internal)
});
}
fn enable_output_in_sleep_mode(&mut self, on: bool, _: private::Internal) {
handle_gpio_output!(self, target, {
OutputPin::enable_output_in_sleep_mode(target, on, private::Internal)
});
}
fn internal_pull_up_in_sleep_mode(&mut self, on: bool, _: private::Internal) {
handle_gpio_output!(self, target, {
OutputPin::internal_pull_up_in_sleep_mode(target, on, private::Internal)
});
}
fn internal_pull_down_in_sleep_mode(&mut self, on: bool, _: private::Internal) {
handle_gpio_output!(self, target, {
OutputPin::internal_pull_down_in_sleep_mode(target, on, private::Internal)
});
}
fn internal_pull_up(&mut self, on: bool, _: private::Internal) {
handle_gpio_output!(self, target, {
OutputPin::internal_pull_up(target, on, private::Internal)
});
}
fn internal_pull_down(&mut self, on: bool, _: private::Internal) {
handle_gpio_output!(self, target, {
OutputPin::internal_pull_down(target, on, private::Internal)
});
}
fn connect_peripheral_to_output(&mut self, signal: OutputSignal, _: private::Internal) {
handle_gpio_output!(self, target, {
OutputPin::connect_peripheral_to_output(target, signal, private::Internal)
});
}
fn connect_peripheral_to_output_with_options(
&mut self,
signal: OutputSignal,
invert: bool,
invert_enable: bool,
enable_from_gpio: bool,
force_via_gpio_mux: bool,
_: private::Internal,
) {
handle_gpio_output!(self, target, {
OutputPin::connect_peripheral_to_output_with_options(
target,
signal,
invert,
invert_enable,
enable_from_gpio,
force_via_gpio_mux,
private::Internal,
)
});
}
fn disconnect_peripheral_from_output(&mut self, _: private::Internal) {
handle_gpio_output!(self, target, {
OutputPin::disconnect_peripheral_from_output(target, private::Internal)
});
}
fn is_set_high(&self, _: private::Internal) -> bool {
handle_gpio_output!(self, target, {
OutputPin::is_set_high(target, private::Internal)
})
}
}
}
#[cfg(feature = "async")]
mod asynch {
use core::task::{Context, Poll};
use embassy_sync::waitqueue::AtomicWaker;
use super::*;
#[allow(clippy::declare_interior_mutable_const)]
const NEW_AW: AtomicWaker = AtomicWaker::new();
static PIN_WAKERS: [AtomicWaker; NUM_PINS] = [NEW_AW; NUM_PINS];
impl<'d, P> Input<'d, P>
where
P: InputPin,
{
/// Wait until the pin is high. If it is already high, return
/// immediately.
pub async fn wait_for_high(&mut self) {
self.listen(Event::HighLevel);
PinFuture::new(self.pin.number(private::Internal)).await
}
/// Wait until the pin is low. If it is already low, return immediately.
pub async fn wait_for_low(&mut self) {
self.listen(Event::LowLevel);
PinFuture::new(self.pin.number(private::Internal)).await
}
/// Wait for the pin to undergo a transition from low to high.
pub async fn wait_for_rising_edge(&mut self) {
self.listen(Event::RisingEdge);
PinFuture::new(self.pin.number(private::Internal)).await
}
/// Wait for the pin to undergo a transition from high to low.
pub async fn wait_for_falling_edge(&mut self) {
self.listen(Event::FallingEdge);
PinFuture::new(self.pin.number(private::Internal)).await
}
/// Wait for the pin to undergo any transition, i.e low to high OR high
/// to low.
pub async fn wait_for_any_edge(&mut self) {
self.listen(Event::AnyEdge);
PinFuture::new(self.pin.number(private::Internal)).await
}
}
impl<'d> AnyInput<'d> {
/// Wait until the pin is high. If it is already high, return
/// immediately.
pub async fn wait_for_high(&mut self) {
self.listen(Event::HighLevel);
PinFuture::new(self.pin.number(private::Internal)).await
}
/// Wait until the pin is low. If it is already low, return immediately.
pub async fn wait_for_low(&mut self) {
self.listen(Event::LowLevel);
PinFuture::new(self.pin.number(private::Internal)).await
}
/// Wait for the pin to undergo a transition from low to high.
pub async fn wait_for_rising_edge(&mut self) {
self.listen(Event::RisingEdge);
PinFuture::new(self.pin.number(private::Internal)).await
}
/// Wait for the pin to undergo a transition from high to low.
pub async fn wait_for_falling_edge(&mut self) {
self.listen(Event::FallingEdge);
PinFuture::new(self.pin.number(private::Internal)).await
}
/// Wait for the pin to undergo any transition, i.e low to high OR high
/// to low.
pub async fn wait_for_any_edge(&mut self) {
self.listen(Event::AnyEdge);
PinFuture::new(self.pin.number(private::Internal)).await
}
}
pub struct PinFuture {
pin_num: u8,
}
impl PinFuture {
pub fn new(pin_num: u8) -> Self {
Self { pin_num }
}
}
impl core::future::Future for PinFuture {
type Output = ();
fn poll(self: core::pin::Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
PIN_WAKERS[self.pin_num as usize].register(cx.waker());
// if pin is no longer listening its been triggered
// therefore the future has resolved
if !is_listening(self.pin_num) {
Poll::Ready(())
} else {
Poll::Pending
}
}
}
pub(crate) fn is_listening(gpio_num: u8) -> bool {
let bits = unsafe { &*GPIO::PTR }
.pin(gpio_num as usize)
.read()
.int_ena()
.bits();
bits != 0
}
pub(crate) fn set_int_enable(
gpio_num: u8,
int_ena: u8,
int_type: u8,
wake_up_from_light_sleep: bool,
) {
let gpio = unsafe { &*crate::peripherals::GPIO::PTR };
gpio.pin(gpio_num as usize).modify(|_, w| unsafe {
w.int_ena()
.bits(int_ena)
.int_type()
.bits(int_type)
.wakeup_enable()
.bit(wake_up_from_light_sleep)
});
}
pub(super) fn handle_gpio_interrupt() {
let intrs_bank0 = InterruptStatusRegisterAccessBank0::interrupt_status_read();
#[cfg(any(esp32, esp32s2, esp32s3))]
let intrs_bank1 = InterruptStatusRegisterAccessBank1::interrupt_status_read();
let mut intr_bits = intrs_bank0;
while intr_bits != 0 {
let pin_nr = intr_bits.trailing_zeros();
set_int_enable(pin_nr as u8, 0, 0, false);
PIN_WAKERS[pin_nr as usize].wake(); // wake task
intr_bits -= 1 << pin_nr;
}
// clear interrupt bits
Bank0GpioRegisterAccess::write_interrupt_status_clear(intrs_bank0);
#[cfg(any(esp32, esp32s2, esp32s3))]
{
let mut intr_bits = intrs_bank1;
while intr_bits != 0 {
let pin_nr = intr_bits.trailing_zeros();
set_int_enable(pin_nr as u8 + 32, 0, 0, false);
PIN_WAKERS[pin_nr as usize + 32].wake(); // wake task
intr_bits -= 1 << pin_nr;
}
Bank1GpioRegisterAccess::write_interrupt_status_clear(intrs_bank1);
}
}
}
#[cfg(feature = "embedded-hal-02")]
mod embedded_hal_02_impls {
use embedded_hal_02::digital::v2 as digital;
use super::*;
impl<'d, P> digital::InputPin for Input<'d, P>
where
P: InputPin,
{
type Error = core::convert::Infallible;
fn is_high(&self) -> Result<bool, Self::Error> {
Ok(self.pin.is_input_high(private::Internal))
}
fn is_low(&self) -> Result<bool, Self::Error> {
Ok(!self.pin.is_input_high(private::Internal))
}
}
impl<'d, P> digital::OutputPin for Output<'d, P>
where
P: OutputPin,
{
type Error = core::convert::Infallible;
fn set_high(&mut self) -> Result<(), Self::Error> {
self.pin.set_output_high(true, private::Internal);
Ok(())
}
fn set_low(&mut self) -> Result<(), Self::Error> {
self.pin.set_output_high(false, private::Internal);
Ok(())
}
}
impl<'d, P> digital::StatefulOutputPin for Output<'d, P>
where
P: OutputPin,
{
fn is_set_high(&self) -> Result<bool, Self::Error> {
Ok(self.is_set_high())
}
fn is_set_low(&self) -> Result<bool, Self::Error> {
Ok(self.is_set_low())
}
}
impl<'d, P> digital::ToggleableOutputPin for Output<'d, P>
where
P: OutputPin,
{
type Error = core::convert::Infallible;
fn toggle(&mut self) -> Result<(), Self::Error> {
self.toggle();
Ok(())
}
}
impl<'d, P> digital::InputPin for OutputOpenDrain<'d, P>
where
P: InputPin + OutputPin,
{
type Error = core::convert::Infallible;
fn is_high(&self) -> Result<bool, Self::Error> {
Ok(self.pin.is_input_high(private::Internal))
}
fn is_low(&self) -> Result<bool, Self::Error> {
Ok(!self.pin.is_input_high(private::Internal))
}
}
impl<'d, P> digital::OutputPin for OutputOpenDrain<'d, P>
where
P: InputPin + OutputPin,
{
type Error = core::convert::Infallible;
fn set_high(&mut self) -> Result<(), Self::Error> {
self.pin.set_output_high(true, private::Internal);
Ok(())
}
fn set_low(&mut self) -> Result<(), Self::Error> {
self.pin.set_output_high(false, private::Internal);
Ok(())
}
}
impl<'d, P> digital::StatefulOutputPin for OutputOpenDrain<'d, P>
where
P: InputPin + OutputPin,
{
fn is_set_high(&self) -> Result<bool, Self::Error> {
Ok(self.is_set_high())
}
fn is_set_low(&self) -> Result<bool, Self::Error> {
Ok(self.is_set_low())
}
}
impl<'d, P> digital::ToggleableOutputPin for OutputOpenDrain<'d, P>
where
P: InputPin + OutputPin,
{
type Error = core::convert::Infallible;
fn toggle(&mut self) -> Result<(), Self::Error> {
self.toggle();
Ok(())
}
}
// TODO AnyInput, AnyOutput, AnyOpenDrainOutput
impl<'d> digital::InputPin for AnyInput<'d> {
type Error = core::convert::Infallible;
fn is_high(&self) -> Result<bool, Self::Error> {
Ok(self.pin.is_input_high(private::Internal))
}
fn is_low(&self) -> Result<bool, Self::Error> {
Ok(!self.pin.is_input_high(private::Internal))
}
}
impl<'d> digital::OutputPin for AnyOutput<'d> {
type Error = core::convert::Infallible;
fn set_high(&mut self) -> Result<(), Self::Error> {
self.pin.set_output_high(true, private::Internal);
Ok(())
}
fn set_low(&mut self) -> Result<(), Self::Error> {
self.pin.set_output_high(false, private::Internal);
Ok(())
}
}
impl<'d> digital::StatefulOutputPin for AnyOutput<'d> {
fn is_set_high(&self) -> Result<bool, Self::Error> {
Ok(self.is_set_high())
}
fn is_set_low(&self) -> Result<bool, Self::Error> {
Ok(self.is_set_low())
}
}
impl<'d> digital::ToggleableOutputPin for AnyOutput<'d> {
type Error = core::convert::Infallible;
fn toggle(&mut self) -> Result<(), Self::Error> {
self.toggle();
Ok(())
}
}
impl<'d> digital::InputPin for AnyOutputOpenDrain<'d> {
type Error = core::convert::Infallible;
fn is_high(&self) -> Result<bool, Self::Error> {
Ok(self.pin.is_input_high(private::Internal))
}
fn is_low(&self) -> Result<bool, Self::Error> {
Ok(!self.pin.is_input_high(private::Internal))
}
}
impl<'d> digital::OutputPin for AnyOutputOpenDrain<'d> {
type Error = core::convert::Infallible;
fn set_high(&mut self) -> Result<(), Self::Error> {
self.pin.set_output_high(true, private::Internal);
Ok(())
}
fn set_low(&mut self) -> Result<(), Self::Error> {
self.pin.set_output_high(false, private::Internal);
Ok(())
}
}
impl<'d> digital::StatefulOutputPin for AnyOutputOpenDrain<'d> {
fn is_set_high(&self) -> Result<bool, Self::Error> {
Ok(self.is_set_high())
}
fn is_set_low(&self) -> Result<bool, Self::Error> {
Ok(self.is_set_low())
}
}
impl<'d> digital::ToggleableOutputPin for AnyOutputOpenDrain<'d> {
type Error = core::convert::Infallible;
fn toggle(&mut self) -> Result<(), Self::Error> {
self.toggle();
Ok(())
}
}
}
#[cfg(feature = "embedded-hal")]
mod embedded_hal_impls {
use embedded_hal::digital;
use super::*;
impl<'d, P> digital::ErrorType for Input<'d, P>
where
P: InputPin,
{
type Error = core::convert::Infallible;
}
impl<'d, P> digital::InputPin for Input<'d, P>
where
P: InputPin,
{
fn is_high(&mut self) -> Result<bool, Self::Error> {
Ok(Input::is_high(self))
}
fn is_low(&mut self) -> Result<bool, Self::Error> {
Ok(Input::is_low(self))
}
}
impl<'d, P> digital::ErrorType for Output<'d, P>
where
P: OutputPin,
{
type Error = core::convert::Infallible;
}
impl<'d, P> digital::OutputPin for Output<'d, P>
where
P: OutputPin,
{
fn set_low(&mut self) -> Result<(), Self::Error> {
self.set_low();
Ok(())
}
fn set_high(&mut self) -> Result<(), Self::Error> {
self.set_high();
Ok(())
}
}
impl<'d, P> digital::StatefulOutputPin for Output<'d, P>
where
P: OutputPin,
{
fn is_set_high(&mut self) -> Result<bool, Self::Error> {
Ok(Self::is_set_high(self))
}
fn is_set_low(&mut self) -> Result<bool, Self::Error> {
Ok(Self::is_set_low(self))
}
}
impl<'d, P> digital::InputPin for OutputOpenDrain<'d, P>
where
P: InputPin + OutputPin,
{
fn is_high(&mut self) -> Result<bool, Self::Error> {
Ok(OutputOpenDrain::is_high(self))
}
fn is_low(&mut self) -> Result<bool, Self::Error> {
Ok(OutputOpenDrain::is_low(self))
}
}
impl<'d, P> digital::ErrorType for OutputOpenDrain<'d, P>
where
P: InputPin + OutputPin,
{
type Error = core::convert::Infallible;
}
impl<'d, P> digital::OutputPin for OutputOpenDrain<'d, P>
where
P: InputPin + OutputPin,
{
fn set_low(&mut self) -> Result<(), Self::Error> {
self.set_low();
Ok(())
}
fn set_high(&mut self) -> Result<(), Self::Error> {
self.set_high();
Ok(())
}
}
impl<'d, P> digital::StatefulOutputPin for OutputOpenDrain<'d, P>
where
P: InputPin + OutputPin,
{
fn is_set_high(&mut self) -> Result<bool, Self::Error> {
Ok(Self::is_set_high(self))
}
fn is_set_low(&mut self) -> Result<bool, Self::Error> {
Ok(Self::is_set_low(self))
}
}
impl<'d> digital::ErrorType for AnyInput<'d> {
type Error = core::convert::Infallible;
}
impl<'d> digital::InputPin for AnyInput<'d> {
fn is_high(&mut self) -> Result<bool, Self::Error> {
Ok(AnyInput::is_high(self))
}
fn is_low(&mut self) -> Result<bool, Self::Error> {
Ok(AnyInput::is_low(self))
}
}
impl<'d> digital::ErrorType for AnyOutput<'d> {
type Error = core::convert::Infallible;
}
impl<'d> digital::OutputPin for AnyOutput<'d> {
fn set_low(&mut self) -> Result<(), Self::Error> {
self.set_low();
Ok(())
}
fn set_high(&mut self) -> Result<(), Self::Error> {
self.set_high();
Ok(())
}
}
impl<'d> digital::StatefulOutputPin for AnyOutput<'d> {
fn is_set_high(&mut self) -> Result<bool, Self::Error> {
Ok(Self::is_set_high(self))
}
fn is_set_low(&mut self) -> Result<bool, Self::Error> {
Ok(Self::is_set_low(self))
}
}
impl<'d> digital::ErrorType for AnyOutputOpenDrain<'d> {
type Error = core::convert::Infallible;
}
impl<'d> digital::OutputPin for AnyOutputOpenDrain<'d> {
fn set_low(&mut self) -> Result<(), Self::Error> {
self.set_low();
Ok(())
}
fn set_high(&mut self) -> Result<(), Self::Error> {
self.set_high();
Ok(())
}
}
impl<'d> digital::StatefulOutputPin for AnyOutputOpenDrain<'d> {
fn is_set_high(&mut self) -> Result<bool, Self::Error> {
Ok(Self::is_set_high(self))
}
fn is_set_low(&mut self) -> Result<bool, Self::Error> {
Ok(Self::is_set_low(self))
}
}
}
#[cfg(feature = "embedded-hal")]
#[cfg(feature = "async")]
mod embedded_hal_async_impls {
use embedded_hal_async::digital::Wait;
use super::*;
impl<'d, P> Wait for Input<'d, P>
where
P: InputPin,
{
async fn wait_for_high(&mut self) -> Result<(), Self::Error> {
self.wait_for_high().await;
Ok(())
}
async fn wait_for_low(&mut self) -> Result<(), Self::Error> {
self.wait_for_low().await;
Ok(())
}
async fn wait_for_rising_edge(&mut self) -> Result<(), Self::Error> {
self.wait_for_rising_edge().await;
Ok(())
}
async fn wait_for_falling_edge(&mut self) -> Result<(), Self::Error> {
self.wait_for_falling_edge().await;
Ok(())
}
async fn wait_for_any_edge(&mut self) -> Result<(), Self::Error> {
self.wait_for_any_edge().await;
Ok(())
}
}
impl<'d> Wait for AnyInput<'d> {
async fn wait_for_high(&mut self) -> Result<(), Self::Error> {
self.wait_for_high().await;
Ok(())
}
async fn wait_for_low(&mut self) -> Result<(), Self::Error> {
self.wait_for_low().await;
Ok(())
}
async fn wait_for_rising_edge(&mut self) -> Result<(), Self::Error> {
self.wait_for_rising_edge().await;
Ok(())
}
async fn wait_for_falling_edge(&mut self) -> Result<(), Self::Error> {
self.wait_for_falling_edge().await;
Ok(())
}
async fn wait_for_any_edge(&mut self) -> Result<(), Self::Error> {
self.wait_for_any_edge().await;
Ok(())
}
}
}