esp-hal/hil-test/tests/spi_full_duplex.rs
Dániel Buga 3a4a7632b1
[DMA 4/8]: Apply Peripheral pattern (#2526)
* Create DMA Channels inside peripherals

* Add PARL_IO into_async functions

* Update tests and examples

* Restore configurable priority via DmaChannel

* Add mode param to DPI driver

* Fix test by raising SPI frequency

* Fix split

* Changelog

* Update esp-hal/CHANGELOG.md

Co-authored-by: Dominic Fischer <14130965+Dominaezzz@users.noreply.github.com>

---------

Co-authored-by: Dominic Fischer <14130965+Dominaezzz@users.noreply.github.com>
2024-11-22 09:05:22 +00:00

579 lines
19 KiB
Rust

//! SPI Full Duplex test suite.
//% CHIPS: esp32 esp32c2 esp32c3 esp32c6 esp32h2 esp32s2 esp32s3
//% FEATURES: generic-queue
// FIXME: add async test cases that don't rely on PCNT
#![no_std]
#![no_main]
use embedded_hal::spi::SpiBus;
#[cfg(pcnt)]
use embedded_hal_async::spi::SpiBus as SpiBusAsync;
use esp_hal::{
dma::{Dma, DmaDescriptor, DmaRxBuf, DmaTxBuf},
dma_buffers,
gpio::{Level, NoPin},
peripheral::Peripheral,
prelude::*,
spi::master::{Config, Spi},
Blocking,
};
#[cfg(pcnt)]
use esp_hal::{
gpio::interconnect::InputSignal,
pcnt::{channel::EdgeMode, unit::Unit, Pcnt},
};
use hil_test as _;
cfg_if::cfg_if! {
if #[cfg(any(esp32, esp32s2))] {
type DmaChannel = esp_hal::dma::Spi2DmaChannel;
} else {
type DmaChannel = esp_hal::dma::DmaChannel0;
}
}
struct Context {
spi: Spi<'static, Blocking>,
dma_channel: DmaChannel,
// Reuse the really large buffer so we don't run out of DRAM with many tests
rx_buffer: &'static mut [u8],
rx_descriptors: &'static mut [DmaDescriptor],
tx_buffer: &'static mut [u8],
tx_descriptors: &'static mut [DmaDescriptor],
#[cfg(pcnt)]
pcnt_source: InputSignal,
#[cfg(pcnt)]
pcnt_unit: Unit<'static, 0>,
}
#[cfg(test)]
#[embedded_test::tests(executor = esp_hal_embassy::Executor::new())]
mod tests {
use super::*;
#[init]
fn init() -> Context {
let peripherals = esp_hal::init(esp_hal::Config::default());
let sclk = peripherals.GPIO0;
let (_, mosi) = hil_test::common_test_pins!(peripherals);
let dma = Dma::new(peripherals.DMA);
cfg_if::cfg_if! {
if #[cfg(any(esp32, esp32s2))] {
let dma_channel = dma.spi2channel;
} else {
let dma_channel = dma.channel0;
}
}
#[cfg(pcnt)]
let (mosi_loopback_pcnt, mosi) = mosi.split();
// Need to set miso first so that mosi can overwrite the
// output connection (because we are using the same pin to loop back)
let spi = Spi::new_with_config(
peripherals.SPI2,
Config {
frequency: 10.MHz(),
..Config::default()
},
)
.with_sck(sclk)
.with_miso(unsafe { mosi.clone_unchecked() })
.with_mosi(mosi);
let (rx_buffer, rx_descriptors, tx_buffer, tx_descriptors) = dma_buffers!(32000);
#[cfg(pcnt)]
let pcnt = Pcnt::new(peripherals.PCNT);
Context {
spi,
dma_channel,
rx_buffer,
rx_descriptors,
tx_buffer,
tx_descriptors,
#[cfg(pcnt)]
pcnt_source: mosi_loopback_pcnt,
#[cfg(pcnt)]
pcnt_unit: pcnt.unit0,
}
}
#[test]
#[timeout(3)]
fn test_symmetric_transfer(mut ctx: Context) {
let write = [0xde, 0xad, 0xbe, 0xef];
let mut read: [u8; 4] = [0x00u8; 4];
SpiBus::transfer(&mut ctx.spi, &mut read[..], &write[..])
.expect("Symmetric transfer failed");
assert_eq!(write, read);
}
#[test]
#[timeout(3)]
fn test_asymmetric_transfer(mut ctx: Context) {
let write = [0xde, 0xad, 0xbe, 0xef];
let mut read: [u8; 4] = [0x00; 4];
SpiBus::transfer(&mut ctx.spi, &mut read[0..2], &write[..])
.expect("Asymmetric transfer failed");
assert_eq!(write[0], read[0]);
assert_eq!(read[2], 0x00u8);
}
#[test]
#[timeout(3)]
#[cfg(pcnt)]
fn test_asymmetric_write(mut ctx: Context) {
let write = [0xde, 0xad, 0xbe, 0xef];
let unit = ctx.pcnt_unit;
unit.channel0.set_edge_signal(ctx.pcnt_source);
unit.channel0
.set_input_mode(EdgeMode::Hold, EdgeMode::Increment);
SpiBus::write(&mut ctx.spi, &write[..]).expect("Asymmetric write failed");
// Flush because we're not reading, so the write may happen in the background
ctx.spi.flush().expect("Flush failed");
assert_eq!(unit.value(), 9);
}
#[test]
#[timeout(3)]
#[cfg(pcnt)]
fn test_asymmetric_write_transfer(mut ctx: Context) {
let write = [0xde, 0xad, 0xbe, 0xef];
let unit = ctx.pcnt_unit;
unit.channel0.set_edge_signal(ctx.pcnt_source);
unit.channel0
.set_input_mode(EdgeMode::Hold, EdgeMode::Increment);
SpiBus::transfer(&mut ctx.spi, &mut [], &write[..]).expect("Asymmetric transfer failed");
// Flush because we're not reading, so the write may happen in the background
ctx.spi.flush().expect("Flush failed");
assert_eq!(unit.value(), 9);
}
#[test]
#[timeout(3)]
fn test_symmetric_transfer_huge_buffer(mut ctx: Context) {
let mut write = [0x55u8; 4096];
for byte in 0..write.len() {
write[byte] = byte as u8;
}
let mut read = [0x00u8; 4096];
SpiBus::transfer(&mut ctx.spi, &mut read[..], &write[..]).expect("Huge transfer failed");
assert_eq!(write, read);
}
#[test]
#[timeout(3)]
fn test_symmetric_transfer_huge_buffer_no_alloc(mut ctx: Context) {
let mut write = [0x55u8; 4096];
for byte in 0..write.len() {
write[byte] = byte as u8;
}
ctx.spi
.transfer_in_place(&mut write[..])
.expect("Huge transfer failed");
for byte in 0..write.len() {
assert_eq!(write[byte], byte as u8);
}
}
#[test]
#[timeout(3)]
#[cfg(pcnt)]
fn test_dma_read_dma_write_pcnt(ctx: Context) {
const DMA_BUFFER_SIZE: usize = 5;
let (rx_buffer, rx_descriptors, tx_buffer, tx_descriptors) = dma_buffers!(DMA_BUFFER_SIZE);
let mut dma_rx_buf = DmaRxBuf::new(rx_descriptors, rx_buffer).unwrap();
let mut dma_tx_buf = DmaTxBuf::new(tx_descriptors, tx_buffer).unwrap();
let unit = ctx.pcnt_unit;
let mut spi = ctx.spi.with_dma(ctx.dma_channel);
unit.channel0.set_edge_signal(ctx.pcnt_source);
unit.channel0
.set_input_mode(EdgeMode::Hold, EdgeMode::Increment);
// Fill the buffer where each byte has 3 pos edges.
dma_tx_buf.as_mut_slice().fill(0b0110_1010);
for i in 1..4 {
dma_rx_buf.as_mut_slice().copy_from_slice(&[5, 5, 5, 5, 5]);
let transfer = spi.read(dma_rx_buf).map_err(|e| e.0).unwrap();
(spi, dma_rx_buf) = transfer.wait();
assert_eq!(dma_rx_buf.as_slice(), &[0, 0, 0, 0, 0]);
let transfer = spi.write(dma_tx_buf).map_err(|e| e.0).unwrap();
(spi, dma_tx_buf) = transfer.wait();
assert_eq!(unit.value(), (i * 3 * DMA_BUFFER_SIZE) as _);
}
}
#[test]
#[timeout(3)]
#[cfg(pcnt)]
fn test_dma_read_dma_transfer_pcnt(ctx: Context) {
const DMA_BUFFER_SIZE: usize = 5;
let (rx_buffer, rx_descriptors, tx_buffer, tx_descriptors) = dma_buffers!(DMA_BUFFER_SIZE);
let mut dma_rx_buf = DmaRxBuf::new(rx_descriptors, rx_buffer).unwrap();
let mut dma_tx_buf = DmaTxBuf::new(tx_descriptors, tx_buffer).unwrap();
let unit = ctx.pcnt_unit;
let mut spi = ctx.spi.with_dma(ctx.dma_channel);
unit.channel0.set_edge_signal(ctx.pcnt_source);
unit.channel0
.set_input_mode(EdgeMode::Hold, EdgeMode::Increment);
// Fill the buffer where each byte has 3 pos edges.
dma_tx_buf.as_mut_slice().fill(0b0110_1010);
for i in 1..4 {
dma_rx_buf.as_mut_slice().copy_from_slice(&[5, 5, 5, 5, 5]);
let transfer = spi.read(dma_rx_buf).map_err(|e| e.0).unwrap();
(spi, dma_rx_buf) = transfer.wait();
assert_eq!(dma_rx_buf.as_slice(), &[0, 0, 0, 0, 0]);
let transfer = spi
.transfer(dma_rx_buf, dma_tx_buf)
.map_err(|e| e.0)
.unwrap();
(spi, (dma_rx_buf, dma_tx_buf)) = transfer.wait();
assert_eq!(unit.value(), (i * 3 * DMA_BUFFER_SIZE) as _);
}
}
#[test]
fn test_symmetric_dma_transfer(ctx: Context) {
// This test case sends a large amount of data, multiple times to verify that
// https://github.com/esp-rs/esp-hal/issues/2151 is and remains fixed.
let mut dma_rx_buf = DmaRxBuf::new(ctx.rx_descriptors, ctx.rx_buffer).unwrap();
let mut dma_tx_buf = DmaTxBuf::new(ctx.tx_descriptors, ctx.tx_buffer).unwrap();
for (i, v) in dma_tx_buf.as_mut_slice().iter_mut().enumerate() {
*v = (i % 255) as u8;
}
let mut spi = ctx.spi.with_dma(ctx.dma_channel);
for i in 0..4 {
dma_tx_buf.as_mut_slice()[0] = i as u8;
*dma_tx_buf.as_mut_slice().last_mut().unwrap() = i as u8;
let transfer = spi
.transfer(dma_rx_buf, dma_tx_buf)
.map_err(|e| e.0)
.unwrap();
(spi, (dma_rx_buf, dma_tx_buf)) = transfer.wait();
if dma_tx_buf.as_slice() != dma_rx_buf.as_slice() {
defmt::info!("dma_tx_buf: {:?}", dma_tx_buf.as_slice()[0..100]);
defmt::info!("dma_rx_buf: {:?}", dma_rx_buf.as_slice()[0..100]);
panic!("Mismatch at iteration {}", i);
}
}
}
#[test]
#[timeout(3)]
fn test_asymmetric_dma_transfer(ctx: Context) {
let (rx_buffer, rx_descriptors, tx_buffer, tx_descriptors) = dma_buffers!(2, 4);
let dma_rx_buf = DmaRxBuf::new(rx_descriptors, rx_buffer).unwrap();
let mut dma_tx_buf = DmaTxBuf::new(tx_descriptors, tx_buffer).unwrap();
dma_tx_buf.fill(&[0xde, 0xad, 0xbe, 0xef]);
let spi = ctx.spi.with_dma(ctx.dma_channel);
let transfer = spi
.transfer(dma_rx_buf, dma_tx_buf)
.map_err(|e| e.0)
.unwrap();
let (spi, (dma_rx_buf, mut dma_tx_buf)) = transfer.wait();
assert_eq!(dma_tx_buf.as_slice()[0..2], dma_rx_buf.as_slice()[0..2]);
// Try transfer again to make sure DMA isn't in a broken state.
dma_tx_buf.fill(&[0xaa, 0xdd, 0xef, 0xbe]);
let transfer = spi
.transfer(dma_rx_buf, dma_tx_buf)
.map_err(|e| e.0)
.unwrap();
let (_, (dma_rx_buf, dma_tx_buf)) = transfer.wait();
assert_eq!(dma_tx_buf.as_slice()[0..2], dma_rx_buf.as_slice()[0..2]);
}
#[test]
#[timeout(3)]
fn test_dma_bus_symmetric_transfer(ctx: Context) {
let (rx_buffer, rx_descriptors, tx_buffer, tx_descriptors) = dma_buffers!(4);
let dma_rx_buf = DmaRxBuf::new(rx_descriptors, rx_buffer).unwrap();
let dma_tx_buf = DmaTxBuf::new(tx_descriptors, tx_buffer).unwrap();
let mut spi = ctx
.spi
.with_dma(ctx.dma_channel)
.with_buffers(dma_rx_buf, dma_tx_buf);
let tx_buf = [0xde, 0xad, 0xbe, 0xef];
let mut rx_buf = [0; 4];
spi.transfer(&mut rx_buf, &tx_buf).unwrap();
assert_eq!(tx_buf, rx_buf);
}
#[test]
#[timeout(3)]
fn test_dma_bus_asymmetric_transfer(ctx: Context) {
let (rx_buffer, rx_descriptors, tx_buffer, tx_descriptors) = dma_buffers!(4);
let dma_rx_buf = DmaRxBuf::new(rx_descriptors, rx_buffer).unwrap();
let dma_tx_buf = DmaTxBuf::new(tx_descriptors, tx_buffer).unwrap();
let mut spi = ctx
.spi
.with_dma(ctx.dma_channel)
.with_buffers(dma_rx_buf, dma_tx_buf);
let tx_buf = [0xde, 0xad, 0xbe, 0xef];
let mut rx_buf = [0; 4];
spi.transfer(&mut rx_buf, &tx_buf).unwrap();
assert_eq!(&tx_buf[0..1], &rx_buf[0..1]);
}
#[test]
#[timeout(3)]
fn test_dma_bus_symmetric_transfer_huge_buffer(ctx: Context) {
const DMA_BUFFER_SIZE: usize = 4096;
let (rx_buffer, rx_descriptors, tx_buffer, tx_descriptors) = dma_buffers!(40);
let dma_rx_buf = DmaRxBuf::new(rx_descriptors, rx_buffer).unwrap();
let dma_tx_buf = DmaTxBuf::new(tx_descriptors, tx_buffer).unwrap();
let mut spi = ctx
.spi
.with_dma(ctx.dma_channel)
.with_buffers(dma_rx_buf, dma_tx_buf);
let tx_buf = core::array::from_fn(|i| i as _);
let mut rx_buf = [0; DMA_BUFFER_SIZE];
spi.transfer(&mut rx_buf, &tx_buf).unwrap();
assert_eq!(tx_buf, rx_buf);
}
#[test]
#[timeout(3)]
#[cfg(pcnt)]
async fn test_async_dma_read_dma_write_pcnt(ctx: Context) {
const DMA_BUFFER_SIZE: usize = 5;
let (rx_buffer, rx_descriptors, tx_buffer, tx_descriptors) = dma_buffers!(DMA_BUFFER_SIZE);
let dma_rx_buf = DmaRxBuf::new(rx_descriptors, rx_buffer).unwrap();
let dma_tx_buf = DmaTxBuf::new(tx_descriptors, tx_buffer).unwrap();
let mut spi = ctx
.spi
.with_dma(ctx.dma_channel)
.with_buffers(dma_rx_buf, dma_tx_buf)
.into_async();
ctx.pcnt_unit.channel0.set_edge_signal(ctx.pcnt_source);
ctx.pcnt_unit
.channel0
.set_input_mode(EdgeMode::Hold, EdgeMode::Increment);
let mut receive = [0; DMA_BUFFER_SIZE];
// Fill the buffer where each byte has 3 pos edges.
let transmit = [0b0110_1010; DMA_BUFFER_SIZE];
for i in 1..4 {
receive.copy_from_slice(&[5, 5, 5, 5, 5]);
SpiBusAsync::read(&mut spi, &mut receive).await.unwrap();
assert_eq!(receive, [0, 0, 0, 0, 0]);
SpiBusAsync::write(&mut spi, &transmit).await.unwrap();
assert_eq!(ctx.pcnt_unit.value(), (i * 3 * DMA_BUFFER_SIZE) as _);
}
}
#[test]
#[timeout(3)]
#[cfg(pcnt)]
async fn test_async_dma_read_dma_transfer_pcnt(ctx: Context) {
const DMA_BUFFER_SIZE: usize = 5;
let (rx_buffer, rx_descriptors, tx_buffer, tx_descriptors) = dma_buffers!(DMA_BUFFER_SIZE);
let dma_rx_buf = DmaRxBuf::new(rx_descriptors, rx_buffer).unwrap();
let dma_tx_buf = DmaTxBuf::new(tx_descriptors, tx_buffer).unwrap();
let mut spi = ctx
.spi
.with_dma(ctx.dma_channel)
.with_buffers(dma_rx_buf, dma_tx_buf)
.into_async();
ctx.pcnt_unit.channel0.set_edge_signal(ctx.pcnt_source);
ctx.pcnt_unit
.channel0
.set_input_mode(EdgeMode::Hold, EdgeMode::Increment);
let mut receive = [0; DMA_BUFFER_SIZE];
// Fill the buffer where each byte has 3 pos edges.
let transmit = [0b0110_1010; DMA_BUFFER_SIZE];
for i in 1..4 {
receive.copy_from_slice(&[5, 5, 5, 5, 5]);
SpiBusAsync::read(&mut spi, &mut receive).await.unwrap();
assert_eq!(receive, [0, 0, 0, 0, 0]);
SpiBusAsync::transfer(&mut spi, &mut receive, &transmit)
.await
.unwrap();
assert_eq!(ctx.pcnt_unit.value(), (i * 3 * DMA_BUFFER_SIZE) as _);
}
}
#[test]
#[timeout(3)]
fn test_write_read(ctx: Context) {
let spi = ctx
.spi
.with_mosi(NoPin)
.with_miso(Level::High)
.with_dma(ctx.dma_channel);
let (rx_buffer, rx_descriptors, tx_buffer, tx_descriptors) = dma_buffers!(4);
let mut dma_rx_buf = DmaRxBuf::new(rx_descriptors, rx_buffer).unwrap();
let mut dma_tx_buf = DmaTxBuf::new(tx_descriptors, tx_buffer).unwrap();
dma_tx_buf.fill(&[0xde, 0xad, 0xbe, 0xef]);
let transfer = spi.write(dma_tx_buf).map_err(|e| e.0).unwrap();
let (spi, dma_tx_buf) = transfer.wait();
dma_rx_buf.as_mut_slice().fill(0);
let transfer = spi.read(dma_rx_buf).map_err(|e| e.0).unwrap();
let (spi, mut dma_rx_buf) = transfer.wait();
let transfer = spi.write(dma_tx_buf).map_err(|e| e.0).unwrap();
let (spi, _dma_tx_buf) = transfer.wait();
dma_rx_buf.as_mut_slice().fill(0);
let transfer = spi.read(dma_rx_buf).map_err(|e| e.0).unwrap();
let (_, dma_rx_buf) = transfer.wait();
assert_eq!(&[0xff, 0xff, 0xff, 0xff], dma_rx_buf.as_slice());
}
#[test]
#[timeout(2)]
fn cancel_stops_transaction(mut ctx: Context) {
// Slow down. At 80kHz, the transfer is supposed to take a bit over 3 seconds.
// This means that without working cancellation, the test case should
// fail.
ctx.spi
.apply_config(&Config {
frequency: 80.kHz(),
..Config::default()
})
.unwrap();
// Set up a large buffer that would trigger a timeout
let dma_rx_buf = DmaRxBuf::new(ctx.rx_descriptors, ctx.rx_buffer).unwrap();
let dma_tx_buf = DmaTxBuf::new(ctx.tx_descriptors, ctx.tx_buffer).unwrap();
let spi = ctx.spi.with_dma(ctx.dma_channel);
let mut transfer = spi
.transfer(dma_rx_buf, dma_tx_buf)
.map_err(|e| e.0)
.unwrap();
transfer.cancel();
transfer.wait();
}
#[test]
#[timeout(3)]
fn can_transmit_after_cancel(mut ctx: Context) {
// Slow down. At 80kHz, the transfer is supposed to take a bit over 3 seconds.
ctx.spi
.apply_config(&Config {
frequency: 80.kHz(),
..Config::default()
})
.unwrap();
// Set up a large buffer that would trigger a timeout
let mut dma_rx_buf = DmaRxBuf::new(ctx.rx_descriptors, ctx.rx_buffer).unwrap();
let mut dma_tx_buf = DmaTxBuf::new(ctx.tx_descriptors, ctx.tx_buffer).unwrap();
let mut spi = ctx.spi.with_dma(ctx.dma_channel);
let mut transfer = spi
.transfer(dma_rx_buf, dma_tx_buf)
.map_err(|e| e.0)
.unwrap();
transfer.cancel();
(spi, (dma_rx_buf, dma_tx_buf)) = transfer.wait();
spi.apply_config(&Config {
frequency: 10.MHz(),
..Config::default()
})
.unwrap();
let transfer = spi
.transfer(dma_rx_buf, dma_tx_buf)
.map_err(|e| e.0)
.unwrap();
let (_, (dma_rx_buf, dma_tx_buf)) = transfer.wait();
if dma_tx_buf.as_slice() != dma_rx_buf.as_slice() {
defmt::info!("dma_tx_buf: {:?}", dma_tx_buf.as_slice()[0..100]);
defmt::info!("dma_rx_buf: {:?}", dma_rx_buf.as_slice()[0..100]);
panic!("Failed to transmit after cancel");
}
}
#[test]
#[timeout(3)]
async fn cancelling_an_awaited_transfer_does_nothing(ctx: Context) {
// Set up a large buffer that would trigger a timeout
let dma_rx_buf = DmaRxBuf::new(ctx.rx_descriptors, ctx.rx_buffer).unwrap();
let dma_tx_buf = DmaTxBuf::new(ctx.tx_descriptors, ctx.tx_buffer).unwrap();
let spi = ctx.spi.with_dma(ctx.dma_channel).into_async();
let mut transfer = spi
.transfer(dma_rx_buf, dma_tx_buf)
.map_err(|e| e.0)
.unwrap();
transfer.wait_for_done().await;
transfer.cancel();
transfer.wait_for_done().await;
transfer.cancel();
_ = transfer.wait();
}
}