Björn Quentin 3c12be8d24
Move exception handler from esp-backtrace to esp-hal (#3887)
* Move exception handler from esp-backtrace to esp-hal

* CHANGELOG.md

* Fix

* Only use defmt compatible display hints

* Workaround xtensa-lx-rt and riscv-rt not implementing defmt::Format

* Add `defmt` feature to xtensa-lx-rt and esp-riscv-rt

* Favor feature gates over random `allow`s - remove unnecessary `allow`s
2025-08-01 07:57:42 +00:00

714 lines
24 KiB
Rust

#![cfg_attr(
all(docsrs, not(not_really_docsrs)),
doc = "<div style='padding:30px;background:#810;color:#fff;text-align:center;'><p>You might want to <a href='https://docs.espressif.com/projects/rust/'>browse the <code>esp-hal</code> documentation on the esp-rs website</a> instead.</p><p>The documentation here on <a href='https://docs.rs'>docs.rs</a> is built for a single chip only (ESP32-C6, in particular), while on the esp-rs website you can select your exact chip from the list of supported devices. Available peripherals and their APIs change depending on the chip.</p></div>\n\n<br/>\n\n"
)]
//! # Bare-metal (`no_std`) HAL for all Espressif ESP32 devices.
//!
//! This documentation is built for the
#![cfg_attr(esp32, doc = "**ESP32**")]
#![cfg_attr(esp32s2, doc = "**ESP32-S2**")]
#![cfg_attr(esp32s3, doc = "**ESP32-S3**")]
#![cfg_attr(esp32c2, doc = "**ESP32-C2**")]
#![cfg_attr(esp32c3, doc = "**ESP32-C3**")]
#![cfg_attr(esp32c6, doc = "**ESP32-C6**")]
#![cfg_attr(esp32h2, doc = "**ESP32-H2**")]
//! . Please ensure you are reading the correct [documentation] for your target
//! device.
//!
//! ## Choosing a Device
//!
//! Depending on your target device, you need to enable the chip feature
//! for that device. You may also need to do this on ancillary esp-hal crates.
//!
//! ## Overview
//!
//! ### Peripheral drivers
//!
//! The HAL implements both blocking _and_ async APIs for many peripherals.
//! Where applicable, driver implement the [embedded-hal] and
//! [embedded-hal-async] traits.
//!
//! ### Peripheral singletons
//!
//! Each peripheral driver needs a peripheral singleton that tells the driver
//! which hardware block to use. The peripheral singletons are created by the
//! HAL initialization, and are returned from [`init`] as fields of the
//! [`Peripherals`] struct.
//!
//! These singletons, by default, represent peripherals for the entire lifetime
//! of the program. To allow for reusing peripherals, the HAL provides a
//! `reborrow` method on each peripheral singleton. This method creates a new
//! handle to the peripheral with a shorter lifetime. This allows you to pass
//! the handle to a driver, while still keeping the original handle alive. Once
//! you drop the driver, you will be able to reborrow the peripheral again.
//!
//! For example, if you want to use the [`I2c`](i2c::master::I2c) driver and you
//! don't intend to drop the driver, you can pass the peripheral singleton to
//! the driver by value:
//!
//! ```rust, ignore
//! // Peripheral singletons are returned from the `init` function.
//! let peripherals = esp_hal::init(esp_hal::Config::default());
//!
//! let mut i2c = I2C::new(peripherals.I2C0, /* ... */);
//! ```
//!
//! If you want to use the peripheral in multiple places (for example, you want
//! to drop the driver for some period of time to minimize power consumption),
//! you can reborrow the peripheral singleton and pass it to the driver by
//! reference:
//!
//! ```rust, ignore
//! // Note that in this case, `peripherals` needs to be mutable.
//! let mut peripherals = esp_hal::init(esp_hal::Config::default());
//!
//! let i2c = I2C::new(peripherals.I2C0.reborrow(), /* ... */);
//!
//! // Do something with the I2C driver...
//!
//! core::mem::drop(i2c); // Drop the driver to minimize power consumption.
//!
//! // Do something else...
//!
//! // You can then take or reborrow the peripheral singleton again.
//! let i2c = I2C::new(peripherals.I2C0.reborrow(), /* ... */);
//! ```
//!
//! ## Examples
//!
//! We have a plethora of [examples] in the esp-hal repository. We use
//! an [xtask] to automate the building, running, and testing of code and
//! examples within esp-hal.
//!
//! Invoke the following command in the root of the esp-hal repository to get
//! started:
//!
//! ```bash
//! cargo xtask help
//! ```
//!
//! ## Creating a Project
//!
//! We have a [book] that explains the full esp-rs ecosystem
//! and how to get started, it's advisable to give that a read
//! before proceeding. We also have a [training] that covers some common
//! scenarios with examples.
//!
//! We have developed a project generation tool, [esp-generate], which we
//! recommend when starting new projects. It can be installed and run, e.g.
//! for the ESP32-C6, as follows:
//!
//! ```bash
//! cargo install esp-generate
//! esp-generate --chip=esp32c6 your-project
//! ```
//!
//! ## Blinky
//!
//! Some minimal code to blink an LED looks like this:
//!
//! ```rust, no_run
//! #![no_std]
//! #![no_main]
//!
//! use esp_hal::{
//! clock::CpuClock,
//! gpio::{Io, Level, Output, OutputConfig},
//! main,
//! time::{Duration, Instant},
//! };
//!
//! // You need a panic handler. Usually, you you would use esp_backtrace, panic-probe, or
//! // something similar, but you can also bring your own like this:
//! #[panic_handler]
//! fn panic(_: &core::panic::PanicInfo) -> ! {
//! esp_hal::system::software_reset()
//! }
//!
//! #[main]
//! fn main() -> ! {
//! let config = esp_hal::Config::default().with_cpu_clock(CpuClock::max());
//! let peripherals = esp_hal::init(config);
//!
//! // Set GPIO0 as an output, and set its state high initially.
//! let mut led = Output::new(peripherals.GPIO0, Level::High, OutputConfig::default());
//!
//! loop {
//! led.toggle();
//! // Wait for half a second
//! let delay_start = Instant::now();
//! while delay_start.elapsed() < Duration::from_millis(500) {}
//! }
//! }
//! ```
//!
//! ## Additional configuration
//!
//! We've exposed some configuration options that don't fit into cargo
//! features. These can be set via environment variables, or via cargo's `[env]`
//! section inside `.cargo/config.toml`. Note that unstable options can only be
//! enabled when the `unstable` feature is enabled for the crate. Below is a
//! table of tunable parameters for this crate:
#![doc = ""]
#![doc = include_str!(concat!(env!("OUT_DIR"), "/esp_hal_config_table.md"))]
#![doc = ""]
//! ## Don't use `core::mem::forget`
//!
//! You should never use `core::mem::forget` on any type defined in the HAL.
//! Some types heavily rely on their `Drop` implementation to not leave the
//! hardware in undefined state and causing UB.
//!
//! You might want to consider using [`#[deny(clippy::mem_forget)`](https://rust-lang.github.io/rust-clippy/v0.0.212/index.html#mem_forget) in your project.
//!
//! ## Library usage
//!
//! If you intend to write a library that uses esp-hal, you should import it as follows:
//!
//! ```toml
//! [dependencies]
//! esp-hal = { version = "1", default-features = false } }
//! ```
//!
//! This ensures that the `rt` feature is not enabled, nor any chip features. The application that
//! uses your library will then be able to choose the chip feature it needs and enable `rt` such
//! that only the final user application calls [`init`].
//!
//! If your library depends on `unstable` features, you *must* use the `requires-unstable` feature,
//! and *not* the unstable feature itself. Doing so, improves the quality of the error messages if a
//! user hasn't enabled the unstable feature of esp-hal.
//!
//! [documentation]: https://docs.espressif.com/projects/rust/esp-hal/latest/
//! [examples]: https://github.com/esp-rs/esp-hal/tree/main/examples
//! [embedded-hal]: https://docs.rs/embedded-hal/latest/embedded_hal/
//! [embedded-hal-async]: https://docs.rs/embedded-hal-async/latest/embedded_hal_async/
//! [xtask]: https://github.com/matklad/cargo-xtask
//! [esp-generate]: https://github.com/esp-rs/esp-generate
//! [book]: https://docs.espressif.com/projects/rust/book/
//! [training]: https://docs.espressif.com/projects/rust/no_std-training/
//!
//! ## Feature Flags
#![doc = document_features::document_features!(feature_label = r#"<span class="stab portability"><code>{feature}</code></span>"#)]
#![doc(html_logo_url = "https://avatars.githubusercontent.com/u/46717278")]
#![allow(asm_sub_register, async_fn_in_trait, stable_features)]
#![cfg_attr(xtensa, feature(asm_experimental_arch))]
#![deny(missing_docs, rust_2018_idioms, rustdoc::all)]
#![allow(rustdoc::private_doc_tests)] // compile tests are done via rustdoc
#![cfg_attr(docsrs, feature(doc_cfg, custom_inner_attributes, proc_macro_hygiene))]
// Don't trip up on broken/private links when running semver-checks
#![cfg_attr(
semver_checks,
allow(rustdoc::private_intra_doc_links, rustdoc::broken_intra_doc_links)
)]
#![no_std]
// MUST be the first module
mod fmt;
#[macro_use]
extern crate esp_metadata_generated;
use core::marker::PhantomData;
pub use esp_metadata_generated::chip;
use esp_rom_sys as _;
metadata!("build_info", CHIP_NAME, chip!());
#[cfg(all(riscv, feature = "rt"))]
#[cfg_attr(docsrs, doc(cfg(all(feature = "unstable", feature = "rt"))))]
#[cfg_attr(not(feature = "unstable"), doc(hidden))]
pub use esp_riscv_rt::{self, riscv};
pub(crate) use peripherals::pac;
#[cfg(xtensa)]
#[cfg(all(xtensa, feature = "rt"))]
#[cfg_attr(docsrs, doc(cfg(all(feature = "unstable", feature = "rt"))))]
#[cfg_attr(not(feature = "unstable"), doc(hidden))]
pub use xtensa_lx_rt::{self, xtensa_lx};
#[cfg(lp_core)]
#[instability::unstable]
#[cfg_attr(not(feature = "unstable"), allow(unused))]
pub use self::soc::lp_core;
#[cfg(ulp_riscv_core)]
#[instability::unstable]
#[cfg_attr(not(feature = "unstable"), allow(unused))]
pub use self::soc::ulp_core;
#[cfg(any(soc_has_dport, soc_has_hp_sys, soc_has_pcr, soc_has_system))]
pub mod clock;
#[cfg(soc_has_gpio)]
pub mod gpio;
#[cfg(any(soc_has_i2c0, soc_has_i2c1))]
pub mod i2c;
pub mod peripherals;
#[cfg(all(feature = "unstable", any(soc_has_hmac, soc_has_sha)))]
mod reg_access;
#[cfg(any(soc_has_spi0, soc_has_spi1, soc_has_spi2, soc_has_spi3))]
pub mod spi;
pub mod system;
pub mod time;
#[cfg(any(soc_has_uart0, soc_has_uart1, soc_has_uart2))]
pub mod uart;
mod macros;
#[cfg(feature = "rt")]
pub use procmacros::blocking_main as main;
#[cfg(any(lp_core, ulp_riscv_core))]
#[cfg(feature = "unstable")]
#[cfg_attr(docsrs, doc(cfg(feature = "unstable")))]
pub use procmacros::load_lp_code;
#[cfg_attr(docsrs, doc(cfg(feature = "unstable")))]
#[instability::unstable]
#[cfg_attr(not(feature = "unstable"), allow(unused))]
pub use procmacros::{handler, ram};
#[cfg(all(feature = "rt", feature = "exception-handler"))]
mod exception_handler;
// can't use instability on inline module definitions, see https://github.com/rust-lang/rust/issues/54727
#[doc(hidden)]
macro_rules! unstable_module {
($(
$(#[$meta:meta])*
pub mod $module:ident;
)*) => {
$(
$(#[$meta])*
#[cfg(feature = "unstable")]
#[cfg_attr(docsrs, doc(cfg(feature = "unstable")))]
pub mod $module;
$(#[$meta])*
#[cfg(not(feature = "unstable"))]
#[cfg_attr(docsrs, doc(cfg(feature = "unstable")))]
#[allow(unused)]
pub(crate) mod $module;
)*
};
}
// can't use instability on inline module definitions, see https://github.com/rust-lang/rust/issues/54727
// we don't want unstable drivers to be compiled even, unless enabled
#[doc(hidden)]
macro_rules! unstable_driver {
($(
$(#[$meta:meta])*
pub mod $module:ident;
)*) => {
$(
$(#[$meta])*
#[cfg(feature = "unstable")]
#[cfg_attr(docsrs, doc(cfg(feature = "unstable")))]
pub mod $module;
)*
};
}
pub(crate) use unstable_driver;
pub(crate) use unstable_module;
unstable_module! {
pub mod asynch;
pub mod config;
pub mod debugger;
#[cfg(any(soc_has_dport, soc_has_interrupt_core0, soc_has_interrupt_core1))]
pub mod interrupt;
pub mod rom;
#[doc(hidden)]
pub mod sync;
// Drivers needed for initialization or they are tightly coupled to something else.
#[cfg(any(adc, dac))]
pub mod analog;
#[cfg(any(systimer, timergroup))]
pub mod timer;
#[cfg(soc_has_lpwr)]
pub mod rtc_cntl;
#[cfg(any(gdma, pdma))]
pub mod dma;
#[cfg(soc_has_etm)]
pub mod etm;
#[cfg(soc_has_usb0)]
pub mod otg_fs;
#[cfg(psram)] // DMA needs some things from here
pub mod psram;
pub mod efuse;
}
unstable_driver! {
#[cfg(soc_has_aes)]
pub mod aes;
#[cfg(soc_has_assist_debug)]
pub mod assist_debug;
pub mod delay;
#[cfg(soc_has_ecc)]
pub mod ecc;
#[cfg(soc_has_hmac)]
pub mod hmac;
#[cfg(any(soc_has_i2s0, soc_has_i2s1))]
pub mod i2s;
#[cfg(soc_has_lcd_cam)]
pub mod lcd_cam;
#[cfg(soc_has_ledc)]
pub mod ledc;
#[cfg(any(soc_has_mcpwm0, soc_has_mcpwm1))]
pub mod mcpwm;
#[cfg(soc_has_parl_io)]
pub mod parl_io;
#[cfg(soc_has_pcnt)]
pub mod pcnt;
#[cfg(soc_has_rmt)]
pub mod rmt;
#[cfg(soc_has_rng)]
pub mod rng;
#[cfg(soc_has_rsa)]
pub mod rsa;
#[cfg(soc_has_sha)]
pub mod sha;
#[cfg(touch)]
pub mod touch;
#[cfg(soc_has_trace0)]
pub mod trace;
#[cfg(soc_has_tsens)]
pub mod tsens;
#[cfg(any(soc_has_twai0, soc_has_twai1))]
pub mod twai;
#[cfg(soc_has_usb_device)]
pub mod usb_serial_jtag;
}
/// State of the CPU saved when entering exception or interrupt
#[instability::unstable]
#[cfg(feature = "rt")]
#[allow(unused_imports)]
pub mod trapframe {
#[cfg(riscv)]
pub use esp_riscv_rt::TrapFrame;
#[cfg(xtensa)]
pub use xtensa_lx_rt::exception::Context as TrapFrame;
}
// The `soc` module contains chip-specific implementation details and should not
// be directly exposed.
mod soc;
#[cfg(is_debug_build)]
procmacros::warning! {"
WARNING: use --release
We *strongly* recommend using release profile when building esp-hal.
The dev profile can potentially be one or more orders of magnitude
slower than release, and may cause issues with timing-senstive
peripherals and/or devices.
"}
/// A marker trait for driver modes.
///
/// Different driver modes offer different features and different API. Using
/// this trait as a generic parameter ensures that the driver is initialized in
/// the correct mode.
pub trait DriverMode: crate::private::Sealed {}
#[procmacros::doc_replace]
/// Marker type signalling that a driver is initialized in blocking mode.
///
/// Drivers are constructed in blocking mode by default. To learn about the
/// differences between blocking and async drivers, see the [`Async`] mode
/// documentation.
///
/// [`Async`] drivers can be converted to a [`Blocking`] driver using the
/// `into_blocking` method, for example:
///
/// ```rust, no_run
/// # {before_snippet}
/// # use esp_hal::uart::{Config, Uart};
/// let uart = Uart::new(peripherals.UART0, Config::default())?
/// .with_rx(peripherals.GPIO1)
/// .with_tx(peripherals.GPIO2)
/// .into_async();
///
/// let blocking_uart = uart.into_blocking();
///
/// # {after_snippet}
/// ```
#[derive(Debug)]
#[non_exhaustive]
pub struct Blocking;
#[procmacros::doc_replace]
/// Marker type signalling that a driver is initialized in async mode.
///
/// Drivers are constructed in blocking mode by default. To set up an async
/// driver, a [`Blocking`] driver must be converted to an `Async` driver using
/// the `into_async` method, for example:
///
/// ```rust, no_run
/// # {before_snippet}
/// # use esp_hal::uart::{Config, Uart};
/// let uart = Uart::new(peripherals.UART0, Config::default())?
/// .with_rx(peripherals.GPIO1)
/// .with_tx(peripherals.GPIO2)
/// .into_async();
///
/// # {after_snippet}
/// ```
///
/// Drivers can be converted back to blocking mode using the `into_blocking`
/// method, see [`Blocking`] documentation for more details.
///
/// Async mode drivers offer most of the same features as blocking drivers, but
/// with the addition of async APIs. Interrupt-related functions are not
/// available in async mode, as they are handled by the driver's interrupt
/// handlers.
///
/// Note that async functions usually take up more space than their blocking
/// counterparts, and they are generally slower. This is because async functions
/// are implemented using a state machine that is driven by interrupts and is
/// polled by a runtime. For short operations, the overhead of the state machine
/// can be significant. Consider using the blocking functions on the async
/// driver for small transfers.
///
/// When initializing an async driver, the driver disables user-specified
/// interrupt handlers, and sets up internal interrupt handlers that drive the
/// driver's async API. The driver's interrupt handlers run on the same core as
/// the driver was initialized on. This means that the driver can not be sent
/// across threads, to prevent incorrect concurrent access to the peripheral.
///
/// Switching back to blocking mode will disable the interrupt handlers and
/// return the driver to a state where it can be sent across threads.
#[derive(Debug)]
#[non_exhaustive]
pub struct Async(PhantomData<*const ()>);
unsafe impl Sync for Async {}
impl crate::DriverMode for Blocking {}
impl crate::DriverMode for Async {}
impl crate::private::Sealed for Blocking {}
impl crate::private::Sealed for Async {}
pub(crate) mod private {
use core::mem::ManuallyDrop;
pub trait Sealed {}
#[non_exhaustive]
#[doc(hidden)]
/// Magical incantation to gain access to internal APIs.
pub struct Internal;
impl Internal {
/// Obtain magical powers to access internal APIs.
///
/// # Safety
///
/// By calling this function, you accept that you are using an internal
/// API that is not guaranteed to be documented, stable, working
/// and may change at any time.
///
/// You declare that you have tried to look for other solutions, that
/// you have opened a feature request or an issue to discuss the
/// need for this function.
pub unsafe fn conjure() -> Self {
Self
}
}
pub(crate) struct OnDrop<F: FnOnce()>(ManuallyDrop<F>);
impl<F: FnOnce()> OnDrop<F> {
pub fn new(cb: F) -> Self {
Self(ManuallyDrop::new(cb))
}
pub fn defuse(self) {
core::mem::forget(self);
}
}
impl<F: FnOnce()> Drop for OnDrop<F> {
fn drop(&mut self) {
unsafe { (ManuallyDrop::take(&mut self.0))() }
}
}
}
#[doc(hidden)]
pub use private::Internal;
/// Marker trait for types that can be safely used in `#[ram(persistent)]`.
///
/// # Safety
///
/// - The type must be inhabited
/// - The type must be valid for any bit pattern of its backing memory in case a reset occurs during
/// a write or a reset interrupts the zero initialization on first boot.
/// - Structs must contain only `Persistable` fields and padding
#[instability::unstable]
pub unsafe trait Persistable: Sized {}
macro_rules! impl_persistable {
($($t:ty),+) => {$(
unsafe impl Persistable for $t {}
)+};
(atomic $($t:ident),+) => {$(
unsafe impl Persistable for portable_atomic::$t {}
)+};
}
impl_persistable!(
u8, i8, u16, i16, u32, i32, u64, i64, u128, i128, usize, isize, f32, f64
);
impl_persistable!(atomic AtomicU8, AtomicI8, AtomicU16, AtomicI16, AtomicU32, AtomicI32, AtomicUsize, AtomicIsize);
unsafe impl<T: Persistable, const N: usize> Persistable for [T; N] {}
#[doc(hidden)]
pub mod __macro_implementation {
//! Private implementation details of esp-hal-procmacros.
#[instability::unstable]
pub const fn assert_is_zeroable<T: bytemuck::Zeroable>() {}
#[instability::unstable]
pub const fn assert_is_persistable<T: super::Persistable>() {}
#[cfg(feature = "rt")]
#[cfg(riscv)]
pub use esp_riscv_rt::entry as __entry;
#[cfg(feature = "rt")]
#[cfg(xtensa)]
pub use xtensa_lx_rt::entry as __entry;
}
use crate::clock::CpuClock;
#[cfg(feature = "unstable")]
use crate::config::{WatchdogConfig, WatchdogStatus};
#[cfg(feature = "rt")]
use crate::{clock::Clocks, peripherals::Peripherals};
/// System configuration.
///
/// This `struct` is marked with `#[non_exhaustive]` and can't be instantiated
/// directly. This is done to prevent breaking changes when new fields are added
/// to the `struct`. Instead, use the [`Config::default()`] method to create a
/// new instance.
///
/// For usage examples, see the [config module documentation](crate::config).
#[non_exhaustive]
#[derive(Default, Clone, Copy, procmacros::BuilderLite)]
pub struct Config {
/// The CPU clock configuration.
cpu_clock: CpuClock,
/// Enable watchdog timer(s).
#[cfg(feature = "unstable")]
#[cfg_attr(docsrs, doc(cfg(feature = "unstable")))]
#[builder_lite(unstable)]
watchdog: WatchdogConfig,
/// PSRAM configuration.
#[cfg(feature = "unstable")]
#[cfg_attr(docsrs, doc(cfg(feature = "unstable")))]
#[cfg(feature = "psram")]
#[builder_lite(unstable)]
psram: psram::PsramConfig,
}
#[procmacros::doc_replace]
/// Initialize the system.
///
/// This function sets up the CPU clock and watchdog, then, returns the
/// peripherals and clocks.
///
/// # Example
///
/// ```rust, no_run
/// # {before_snippet}
/// use esp_hal::{Config, init};
/// let peripherals = init(Config::default());
/// # {after_snippet}
/// ```
#[cfg_attr(docsrs, doc(cfg(feature = "rt")))]
#[cfg(feature = "rt")]
pub fn init(config: Config) -> Peripherals {
crate::soc::pre_init();
system::disable_peripherals();
let mut peripherals = Peripherals::take();
// RTC domain must be enabled before we try to disable
let mut rtc = crate::rtc_cntl::Rtc::new(peripherals.LPWR.reborrow());
Clocks::init(config.cpu_clock);
// Handle watchdog configuration with defaults
cfg_if::cfg_if! {
if #[cfg(feature = "unstable")]
{
#[cfg(not(any(esp32, esp32s2)))]
if config.watchdog.swd() {
rtc.swd.enable();
} else {
rtc.swd.disable();
}
match config.watchdog.rwdt() {
WatchdogStatus::Enabled(duration) => {
rtc.rwdt.set_timeout(crate::rtc_cntl::RwdtStage::Stage0, duration);
rtc.rwdt.enable();
}
WatchdogStatus::Disabled => {
rtc.rwdt.disable();
}
}
#[cfg(timergroup_timg0)]
match config.watchdog.timg0() {
WatchdogStatus::Enabled(duration) => {
let mut timg0_wd = crate::timer::timg::Wdt::<crate::peripherals::TIMG0<'static>>::new();
timg0_wd.set_timeout(crate::timer::timg::MwdtStage::Stage0, duration);
timg0_wd.enable();
}
WatchdogStatus::Disabled => {
crate::timer::timg::Wdt::<crate::peripherals::TIMG0<'static>>::new().disable();
}
}
#[cfg(timergroup_timg1)]
match config.watchdog.timg1() {
WatchdogStatus::Enabled(duration) => {
let mut timg1_wd = crate::timer::timg::Wdt::<crate::peripherals::TIMG1<'static>>::new();
timg1_wd.set_timeout(crate::timer::timg::MwdtStage::Stage0, duration);
timg1_wd.enable();
}
WatchdogStatus::Disabled => {
crate::timer::timg::Wdt::<crate::peripherals::TIMG1<'static>>::new().disable();
}
}
}
else
{
#[cfg(not(any(esp32, esp32s2)))]
rtc.swd.disable();
rtc.rwdt.disable();
#[cfg(timergroup_timg0)]
crate::timer::timg::Wdt::<crate::peripherals::TIMG0<'static>>::new().disable();
#[cfg(timergroup_timg1)]
crate::timer::timg::Wdt::<crate::peripherals::TIMG1<'static>>::new().disable();
}
}
#[cfg(esp32)]
crate::time::time_init();
crate::gpio::interrupt::bind_default_interrupt_handler();
#[cfg(feature = "psram")]
crate::psram::init_psram(config.psram);
peripherals
}