Dániel Buga 517b5ccbe2
Make cargo xfmt respect the format config (#3739)
* Make cargo xfmt respect the format config

* Make sure comments and doc code have the same width
2025-07-03 08:18:02 +00:00

568 lines
18 KiB
Rust

//! GPIO Test
//% CHIPS: esp32 esp32c2 esp32c3 esp32c6 esp32h2 esp32s2 esp32s3
//% FEATURES(unstable): unstable embassy
//% FEATURES(stable):
#![no_std]
#![no_main]
use esp_hal::gpio::{AnyPin, Input, InputConfig, Level, Output, OutputConfig, Pin, Pull};
use hil_test as _;
cfg_if::cfg_if! {
if #[cfg(feature = "unstable")] {
use core::cell::RefCell;
use critical_section::Mutex;
use embassy_time::{Duration, Timer};
use esp_hal::{
// OutputOpenDrain is here because will be unused otherwise
delay::Delay,
gpio::{DriveMode, Event, Flex, Io},
handler,
timer::timg::TimerGroup,
};
use portable_atomic::{AtomicUsize, Ordering};
static COUNTER: Mutex<RefCell<u32>> = Mutex::new(RefCell::new(0));
static INPUT_PIN: Mutex<RefCell<Option<Input>>> = Mutex::new(RefCell::new(None));
}
}
cfg_if::cfg_if! {
if #[cfg(all(multi_core, feature = "unstable"))] {
use embassy_sync::{blocking_mutex::raw::CriticalSectionRawMutex, signal::Signal};
}
}
esp_bootloader_esp_idf::esp_app_desc!();
struct Context {
test_gpio1: AnyPin<'static>,
test_gpio2: AnyPin<'static>,
#[cfg(feature = "unstable")]
delay: Delay,
#[cfg(feature = "unstable")]
io: Io<'static>,
}
#[cfg_attr(feature = "unstable", handler)]
#[cfg(feature = "unstable")]
pub fn interrupt_handler() {
critical_section::with(|cs| {
*COUNTER.borrow_ref_mut(cs) += 1;
INPUT_PIN
.borrow_ref_mut(cs)
.as_mut()
.map(|pin| pin.clear_interrupt());
});
}
// Compile-time test to check that GPIOs can be passed by reference.
fn _gpios_can_be_reused() {
let p = esp_hal::init(esp_hal::Config::default());
let mut gpio1 = p.GPIO1;
{
let _driver = Input::new(
gpio1.reborrow(),
InputConfig::default().with_pull(Pull::Down),
);
}
{
let _driver = esp_hal::spi::master::Spi::new(p.SPI2, Default::default())
.unwrap()
.with_mosi(gpio1.reborrow());
}
{
let _driver = Input::new(
gpio1.reborrow(),
InputConfig::default().with_pull(Pull::Down),
);
}
}
#[cfg(all(multi_core, feature = "unstable"))]
#[embassy_executor::task]
async fn edge_counter_task(
mut in_pin: Input<'static>,
signal: &'static Signal<CriticalSectionRawMutex, u32>,
) {
let mut edge_count = 0;
loop {
// This join will:
// - first set up the pin to listen
// - then poll the pin future once (which will return Pending)
// - then signal that the pin is listening, which enables the other core to toggle the
// matching OutputPin
// - then will wait for the pin future to resolve.
embassy_futures::join::join(in_pin.wait_for_any_edge(), async {
signal.signal(edge_count);
})
.await;
edge_count += 1;
}
}
#[cfg(test)]
#[embedded_test::tests(default_timeout = 3, executor = hil_test::Executor::new())]
mod tests {
use super::*;
#[init]
fn init() -> Context {
let peripherals = esp_hal::init(esp_hal::Config::default());
#[cfg(feature = "unstable")]
let delay = Delay::new();
let (gpio1, gpio2) = hil_test::common_test_pins!(peripherals);
// Interrupts are unstable
#[cfg(feature = "unstable")]
let io = Io::new(peripherals.IO_MUX);
#[cfg(feature = "unstable")]
{
// Timers are unstable
let timg0 = TimerGroup::new(peripherals.TIMG0);
esp_hal_embassy::init(timg0.timer0);
}
Context {
test_gpio1: gpio1.degrade(),
test_gpio2: gpio2.degrade(),
#[cfg(feature = "unstable")]
delay,
#[cfg(feature = "unstable")]
io,
}
}
#[test]
#[cfg(feature = "unstable")] // Timers are unstable
async fn async_edge(ctx: Context) {
let counter = AtomicUsize::new(0);
let Context {
test_gpio1,
test_gpio2,
..
} = ctx;
let mut test_gpio1 = Input::new(test_gpio1, InputConfig::default().with_pull(Pull::Down));
let mut test_gpio2 = Output::new(test_gpio2, Level::Low, OutputConfig::default());
embassy_futures::select::select(
async {
loop {
test_gpio1.wait_for_rising_edge().await;
counter.fetch_add(1, Ordering::SeqCst);
}
},
async {
for _ in 0..5 {
test_gpio2.set_high();
Timer::after(Duration::from_millis(25)).await;
test_gpio2.set_low();
Timer::after(Duration::from_millis(25)).await;
}
},
)
.await;
assert_eq!(counter.load(Ordering::SeqCst), 5);
}
#[test]
async fn a_pin_can_wait(ctx: Context) {
let mut first = Input::new(ctx.test_gpio1, InputConfig::default().with_pull(Pull::Down));
embassy_futures::select::select(
first.wait_for_rising_edge(),
// Other futures won't return, this one will, make sure its last so all other futures
// are polled first
embassy_futures::yield_now(),
)
.await;
}
#[test]
#[cfg(feature = "unstable")] // Interrupts are unstable
async fn a_pin_can_wait_with_custom_handler(mut ctx: Context) {
ctx.io.set_interrupt_handler(interrupt_handler);
let mut first = Input::new(ctx.test_gpio1, InputConfig::default().with_pull(Pull::Down));
embassy_futures::select::select(
first.wait_for_rising_edge(),
// Other futures won't return, this one will, make sure its last so all other futures
// are polled first
embassy_futures::yield_now(),
)
.await;
}
#[test]
fn gpio_input(ctx: Context) {
let test_gpio1 = Input::new(ctx.test_gpio1, InputConfig::default().with_pull(Pull::Down));
// `InputPin`:
assert_eq!(test_gpio1.is_low(), true);
assert_eq!(test_gpio1.is_high(), false);
}
#[test]
async fn waiting_for_level_does_not_hang(ctx: Context) {
let mut test_gpio1 =
Input::new(ctx.test_gpio1, InputConfig::default().with_pull(Pull::Down));
let _test_gpio2 = Output::new(ctx.test_gpio2, Level::High, OutputConfig::default());
test_gpio1.wait_for_high().await;
}
#[test]
fn gpio_output(ctx: Context) {
let mut test_gpio2 = Output::new(ctx.test_gpio2, Level::Low, OutputConfig::default());
// `StatefulOutputPin`:
assert_eq!(test_gpio2.is_set_low(), true);
assert_eq!(test_gpio2.is_set_high(), false);
test_gpio2.set_high();
assert_eq!(test_gpio2.is_set_low(), false);
assert_eq!(test_gpio2.is_set_high(), true);
// `ToggleableOutputPin`:
test_gpio2.toggle();
assert_eq!(test_gpio2.is_set_low(), true);
assert_eq!(test_gpio2.is_set_high(), false);
test_gpio2.toggle();
assert_eq!(test_gpio2.is_set_low(), false);
assert_eq!(test_gpio2.is_set_high(), true);
}
#[test]
fn gpio_output_embedded_hal_1_0(ctx: Context) {
let test_gpio1 = Input::new(ctx.test_gpio1, InputConfig::default().with_pull(Pull::Down));
let mut test_gpio2 = Output::new(ctx.test_gpio2, Level::Low, OutputConfig::default());
fn set<T>(pin: &mut T, state: bool)
where
T: embedded_hal::digital::OutputPin,
{
if state {
pin.set_high().ok();
} else {
pin.set_low().ok();
}
}
fn toggle<T>(pin: &mut T)
where
T: embedded_hal::digital::StatefulOutputPin,
{
pin.toggle().ok();
}
// `StatefulOutputPin`:
assert_eq!(test_gpio2.is_set_low(), true);
assert_eq!(test_gpio2.is_set_high(), false);
assert_eq!(test_gpio1.is_low(), true);
assert_eq!(test_gpio1.is_high(), false);
set(&mut test_gpio2, true);
assert_eq!(test_gpio2.is_set_low(), false);
assert_eq!(test_gpio2.is_set_high(), true);
assert_eq!(test_gpio1.is_low(), false);
assert_eq!(test_gpio1.is_high(), true);
// `ToggleableOutputPin`:
toggle(&mut test_gpio2);
assert_eq!(test_gpio2.is_set_low(), true);
assert_eq!(test_gpio2.is_set_high(), false);
assert_eq!(test_gpio1.is_low(), true);
assert_eq!(test_gpio1.is_high(), false);
toggle(&mut test_gpio2);
assert_eq!(test_gpio2.is_set_low(), false);
assert_eq!(test_gpio2.is_set_high(), true);
assert_eq!(test_gpio1.is_low(), false);
assert_eq!(test_gpio1.is_high(), true);
}
#[test]
#[cfg(feature = "unstable")] // Interrupts are unstable
fn gpio_interrupt(mut ctx: Context) {
ctx.io.set_interrupt_handler(interrupt_handler);
let mut test_gpio1 =
Input::new(ctx.test_gpio1, InputConfig::default().with_pull(Pull::Down));
let mut test_gpio2 = Output::new(ctx.test_gpio2, Level::Low, OutputConfig::default());
critical_section::with(|cs| {
*COUNTER.borrow_ref_mut(cs) = 0;
test_gpio1.listen(Event::AnyEdge);
INPUT_PIN.borrow_ref_mut(cs).replace(test_gpio1);
});
test_gpio2.set_high();
ctx.delay.delay_millis(1);
test_gpio2.set_low();
ctx.delay.delay_millis(1);
test_gpio2.set_high();
ctx.delay.delay_millis(1);
test_gpio2.set_low();
ctx.delay.delay_millis(1);
test_gpio2.set_high();
ctx.delay.delay_millis(1);
test_gpio2.set_low();
ctx.delay.delay_millis(1);
test_gpio2.set_high();
ctx.delay.delay_millis(1);
test_gpio2.set_low();
ctx.delay.delay_millis(1);
test_gpio2.set_high();
ctx.delay.delay_millis(1);
let count = critical_section::with(|cs| *COUNTER.borrow_ref(cs));
assert_eq!(count, 9);
let mut test_gpio1 =
critical_section::with(|cs| INPUT_PIN.borrow_ref_mut(cs).take().unwrap());
test_gpio1.unlisten();
}
#[test]
#[cfg(feature = "unstable")] // delay is unstable
fn gpio_od(ctx: Context) {
let input_pull_up = InputConfig::default().with_pull(Pull::Up);
let input_pull_down = InputConfig::default().with_pull(Pull::Down);
let input_no_pull = InputConfig::default().with_pull(Pull::None);
let mut output = Output::new(
ctx.test_gpio1,
Level::High,
OutputConfig::default()
.with_drive_mode(DriveMode::OpenDrain)
.with_pull(Pull::None),
);
let mut input = Input::new(ctx.test_gpio2, input_pull_up);
ctx.delay.delay_millis(1);
// With pull up resistor
assert_eq!(input.level(), Level::High);
output.set_low();
ctx.delay.delay_millis(1);
assert_eq!(input.level(), Level::Low);
output.set_high();
ctx.delay.delay_millis(1);
assert_eq!(input.level(), Level::High);
// With pull down resistor
input.apply_config(&input_pull_down);
output.set_high();
ctx.delay.delay_millis(1);
assert_eq!(input.level(), Level::Low);
output.set_low();
ctx.delay.delay_millis(1);
assert_eq!(input.level(), Level::Low);
// With pull up on output
input.apply_config(&input_no_pull);
output.apply_config(
&OutputConfig::default()
.with_drive_mode(DriveMode::OpenDrain)
.with_pull(Pull::Up),
);
ctx.delay.delay_millis(1);
assert_eq!(input.level(), Level::Low);
output.set_high();
ctx.delay.delay_millis(1);
assert_eq!(input.level(), Level::High);
}
#[test]
#[cfg(feature = "unstable")]
fn gpio_flex(ctx: Context) {
let mut test_gpio1 = Flex::new(ctx.test_gpio1);
let mut test_gpio2 = Flex::new(ctx.test_gpio2);
test_gpio1.set_high();
test_gpio1.set_output_enable(true);
test_gpio2.set_input_enable(true);
ctx.delay.delay_millis(1);
assert_eq!(test_gpio1.is_set_high(), true);
assert_eq!(test_gpio2.is_high(), true);
test_gpio1.set_low();
ctx.delay.delay_millis(1);
assert_eq!(test_gpio1.is_set_high(), false);
assert_eq!(test_gpio2.is_high(), false);
test_gpio1.set_input_enable(true);
test_gpio2.set_output_enable(true);
ctx.delay.delay_millis(1);
assert_eq!(test_gpio1.is_high(), false);
assert_eq!(test_gpio2.is_set_high(), false);
test_gpio2.set_high();
ctx.delay.delay_millis(1);
assert_eq!(test_gpio1.is_high(), true);
assert_eq!(test_gpio2.is_set_high(), true);
test_gpio2.set_low();
ctx.delay.delay_millis(1);
assert_eq!(test_gpio1.is_low(), true);
assert_eq!(test_gpio2.is_set_low(), true);
}
// Tests touch pin (GPIO2) as AnyPin and Output
// https://github.com/esp-rs/esp-hal/issues/1943
#[test]
fn gpio_touch_anypin_output(ctx: Context) {
let any_pin2 = ctx.test_gpio1;
let any_pin3 = ctx.test_gpio2;
let out_pin = Output::new(any_pin2, Level::High, OutputConfig::default());
let in_pin = Input::new(any_pin3, InputConfig::default().with_pull(Pull::Down));
assert_eq!(out_pin.is_set_high(), true);
assert_eq!(in_pin.is_high(), true);
}
// Tests touch pin (GPIO2) as AnyPin and Input
// https://github.com/esp-rs/esp-hal/issues/1943
#[test]
fn gpio_touch_anypin_input(ctx: Context) {
let any_pin2 = ctx.test_gpio1;
let any_pin3 = ctx.test_gpio2;
let out_pin = Output::new(any_pin3, Level::Low, OutputConfig::default());
let in_pin = Input::new(any_pin2, InputConfig::default().with_pull(Pull::Down));
assert_eq!(out_pin.is_set_high(), false);
assert_eq!(in_pin.is_high(), false);
}
#[cfg(esp32)]
#[test]
fn can_configure_rtcio_pins_as_input() {
let pin = unsafe { esp_hal::peripherals::GPIO37::steal() };
_ = Input::new(pin, InputConfig::default().with_pull(Pull::Down));
}
#[test]
#[cfg(feature = "unstable")]
fn interrupt_executor_is_not_frozen(ctx: Context) {
use esp_hal::interrupt::{Priority, software::SoftwareInterrupt};
use esp_hal_embassy::InterruptExecutor;
use static_cell::StaticCell;
static INTERRUPT_EXECUTOR: StaticCell<InterruptExecutor<1>> = StaticCell::new();
let interrupt_executor = INTERRUPT_EXECUTOR.init(InterruptExecutor::new(unsafe {
SoftwareInterrupt::<1>::steal()
}));
let spawner = interrupt_executor.start(Priority::max());
spawner.must_spawn(test_task(ctx.test_gpio1.degrade()));
#[embassy_executor::task]
async fn test_task(pin: AnyPin<'static>) {
let mut pin = Input::new(pin, InputConfig::default().with_pull(Pull::Down));
// This line must return, even if the executor
// is running at a higher priority than the GPIO handler.
pin.wait_for_low().await;
embedded_test::export::check_outcome(());
}
loop {}
}
#[test]
#[cfg(feature = "unstable")]
async fn pending_interrupt_does_not_cause_future_to_resolve_immediately(ctx: Context) {
use embassy_futures::{
select::{Either, select},
yield_now,
};
let mut out_pin = Output::new(ctx.test_gpio2, Level::Low, OutputConfig::default());
let mut in_pin = Input::new(ctx.test_gpio1, InputConfig::default().with_pull(Pull::Down));
in_pin.listen(Event::RisingEdge);
out_pin.set_high();
assert!(in_pin.is_interrupt_set());
let should_timeout = select(in_pin.wait_for_falling_edge(), async {
// Give the future a bit of time, don't rely on the first poll resolving
for _ in 0..5 {
yield_now().await;
}
})
.await;
assert!(matches!(should_timeout, Either::Second(_)));
}
#[test]
#[cfg(all(multi_core, feature = "unstable"))]
async fn pin_waits_on_core_different_from_interrupt_handler(ctx: Context) {
// This test exercises cross-core pin events. Core 1 will wait for edge events
// that Core 0 generates. Interrupts are handled on Core 0. A signal is used to
// throttle the toggling, so that Core 1 will be expected to count the
// exact number of edge transitions.
use esp_hal::{
peripherals::CPU_CTRL,
system::{CpuControl, Stack},
};
use esp_hal_embassy::Executor;
use hil_test::mk_static;
let mut out_pin = Output::new(ctx.test_gpio2, Level::Low, OutputConfig::default());
let in_pin = Input::new(ctx.test_gpio1, InputConfig::default().with_pull(Pull::Down));
// `edge_counter_task` also returns the edge count as part of this signal
let input_pin_listening = &*mk_static!(Signal<CriticalSectionRawMutex, u32>, Signal::new());
// No need to thread this through `Context` for one test case
let cpu_ctrl = unsafe { CPU_CTRL::steal() };
const CORE1_STACK_SIZE: usize = 8192;
let app_core_stack = mk_static!(Stack<CORE1_STACK_SIZE>, Stack::new());
let _second_core = CpuControl::new(cpu_ctrl)
.start_app_core(app_core_stack, {
move || {
let executor = mk_static!(Executor, Executor::new());
executor.run(|spawner| {
spawner.must_spawn(edge_counter_task(in_pin, input_pin_listening));
});
}
})
.unwrap();
// Now drive the OutputPin and assert that the other core saw exactly as many
// edges as we generated here.
const EDGE_COUNT: u32 = 10_000;
for _ in 0..EDGE_COUNT {
input_pin_listening.wait().await;
out_pin.toggle();
}
// wait for signal
let edge_counter = input_pin_listening.wait().await;
assert_eq!(edge_counter, EDGE_COUNT);
}
}