C2D 59d02f5f6e
Add SHA accelerator implementation (#257)
* Add untested basic SHA for esp-sX/cX chips

* Fix ptr type inconsistency for S2

* Add ESP32 impl & fix process_buffer latch issue

* Add debug example for SHA accelerator

* Clean up no-op buffer prints

* Test vector parity (on esp32s3)

* Checkpoint for converting to alignment helper

* Finish refactoring & additional parity tests on esp32s3

* Remove core_intrinsics requirement for now

* Fix case where (src.len() % 4) == 3

* Finish sha2 example with performance comparison (12-61x speedup)

* Refactor ESP32 to alignment helper & Clean up example

* Prevent out-of-bounds reads in ESP32 version

* Revert Cargo debug changes

* Remove cargo config.toml

* Clean up example

* Remove common/rust-toolchain & ignore in future

* Might as well use actual size_of const

* Remove SHA512/SHA384 for C2/C3

* Directly import nb::block! to remove unused import warning & fix c2 feature detect

* Remove stray newlines

* Fix esp32c2 having SHA256

* ESP32 also has SHA384

* Remove comments that don't have a purpose

* Clean up example & finish() handling

* Add examples & add ESP32 free()

* Update C2/C3 examples to show accurate algorithm used

* Fix busy check for ESP32

* Remove outdated TODO comment

* Update PAC for ESP3 and (actually) fix busy check

* Refactor ESP32 version to reduce search space

* Add debug printlns to sha example & clean up comments

* Fix ESP32 version, finally

Co-authored-by: ferris <ferris@devdroplets.com>
Co-authored-by: Jesse Braham <jesse@beta7.io>
2022-11-28 14:20:31 -08:00

80 lines
3.0 KiB
Rust

//! Demonstrates the use of the SHA peripheral and compares the speed of hardware-accelerated and pure software hashing.
//!
#![no_std]
#![no_main]
use esp32s3_hal::{
clock::ClockControl,
pac::Peripherals,
prelude::*,
timer::TimerGroup,
Rtc,
sha::{Sha, ShaMode},
};
use nb::block;
use esp_backtrace as _;
use esp_println::println;
use xtensa_lx_rt::entry;
use sha2::{Sha512, Digest};
#[entry]
fn main() -> ! {
let peripherals = Peripherals::take().unwrap();
let system = peripherals.SYSTEM.split();
let clocks = ClockControl::boot_defaults(system.clock_control).freeze();
let timer_group0 = TimerGroup::new(peripherals.TIMG0, &clocks);
let mut wdt = timer_group0.wdt;
let mut rtc = Rtc::new(peripherals.RTC_CNTL);
// Disable MWDT and RWDT (Watchdog) flash boot protection
wdt.disable();
rtc.rwdt.disable();
let source_data = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa".as_bytes();
let mut remaining = source_data.clone();
let mut hasher = Sha::new(peripherals.SHA, ShaMode::SHA512);
// Short hashes can be created by decreasing the output buffer to the desired length
let mut output = [0u8; 64];
let pre_calc = xtensa_lx::timer::get_cycle_count();
// The hardware implementation takes a subslice of the input, and returns the unprocessed parts
// The unprocessed parts can be input in the next iteration, you can always add more data until
// finish() is called. After finish() is called update()'s will contribute to a new hash which
// can be extracted again with finish().
while remaining.len() > 0 {
// Can add println to view progress, however println takes a few orders of magnitude longer than
// the Sha function itself so not useful for comparing processing time
// println!("Remaining len: {}", remaining.len());
// All the HW Sha functions are infallible so unwrap is fine to use if you use block!
remaining = block!(hasher.update(remaining)).unwrap();
}
// Finish can be called as many times as desired to get mutliple copies of the output.
block!(hasher.finish(output.as_mut_slice())).unwrap();
let post_calc = xtensa_lx::timer::get_cycle_count();
let hw_time = post_calc - pre_calc;
println!("Took {} cycles", hw_time);
println!("SHA512 Hash output {:02x?}", output);
let _usha = hasher.free();
let pre_calc = xtensa_lx::timer::get_cycle_count();
let mut hasher = Sha512::new();
hasher.update(source_data);
let soft_result = hasher.finalize();
let post_calc = xtensa_lx::timer::get_cycle_count();
let soft_time = post_calc - pre_calc;
println!("Took {} cycles", soft_time);
println!("SHA512 Hash output {:02x?}", soft_result);
println!("HW SHA is {}x faster", soft_time/hw_time);
loop {}
}