esp-hal/hil-test/tests/gpio_custom_handler.rs

180 lines
5.6 KiB
Rust

//! GPIO interrupt handler tests
//!
//! This test checks that during HAL initialization we do not overwrite custom
//! GPIO interrupt handlers. We also check that binding a custom interrupt
//! handler explicitly overwrites the handler set by the user, as well as the
//! async API works for user handlers automatically.
//% CHIPS: esp32 esp32c2 esp32c3 esp32c6 esp32h2 esp32s2 esp32s3
//% FEATURES: unstable embassy
#![no_std]
#![no_main]
use embassy_executor::task;
use embassy_sync::{blocking_mutex::raw::CriticalSectionRawMutex, signal::Signal};
use embassy_time::{Duration, Timer};
use esp_hal::{
gpio::{
AnyPin,
Flex,
Input,
InputConfig,
InputPin,
Io,
Level,
Output,
OutputConfig,
OutputPin,
Pin,
Pull,
},
handler,
interrupt::{Priority, software::SoftwareInterruptControl},
timer::timg::TimerGroup,
};
use esp_hal_embassy::InterruptExecutor;
use hil_test::mk_static;
use portable_atomic::{AtomicUsize, Ordering};
esp_bootloader_esp_idf::esp_app_desc!();
#[unsafe(no_mangle)]
unsafe extern "C" fn GPIO() {
// Prevents binding the default handler, but we need to clear the GPIO
// interrupts by hand.
let peripherals = unsafe { esp_hal::peripherals::Peripherals::steal() };
let (gpio1, _) = hil_test::common_test_pins!(peripherals);
// Using flex will reinitialize the pin, but it's okay here since we access an
// Input.
let mut gpio1 = Flex::new(gpio1);
gpio1.unlisten();
}
#[handler]
pub fn interrupt_handler() {
// Do nothing
}
async fn drive_pins(gpio1: impl InputPin, gpio2: impl OutputPin) -> usize {
let counter = AtomicUsize::new(0);
let mut test_gpio1 = Input::new(gpio1, InputConfig::default().with_pull(Pull::Down));
let mut test_gpio2 = Output::new(gpio2, Level::Low, OutputConfig::default());
embassy_futures::select::select(
async {
loop {
test_gpio1.wait_for_rising_edge().await;
counter.fetch_add(1, Ordering::SeqCst);
}
},
async {
for _ in 0..5 {
test_gpio2.set_high();
Timer::after(Duration::from_millis(25)).await;
test_gpio2.set_low();
Timer::after(Duration::from_millis(25)).await;
}
},
)
.await;
counter.load(Ordering::SeqCst)
}
#[task]
async fn drive_pin(gpio: AnyPin<'static>) {
let mut test_gpio = Output::new(gpio, Level::Low, OutputConfig::default());
for _ in 0..5 {
test_gpio.set_high();
Timer::after(Duration::from_millis(25)).await;
test_gpio.set_low();
Timer::after(Duration::from_millis(25)).await;
}
}
#[task]
async fn sense_pin(gpio: AnyPin<'static>, done: &'static Signal<CriticalSectionRawMutex, ()>) {
let mut test_gpio = Input::new(gpio, InputConfig::default().with_pull(Pull::Down));
test_gpio.wait_for_rising_edge().await;
test_gpio.wait_for_rising_edge().await;
test_gpio.wait_for_rising_edge().await;
test_gpio.wait_for_rising_edge().await;
test_gpio.wait_for_rising_edge().await;
done.signal(());
}
#[cfg(test)]
#[embedded_test::tests(executor = hil_test::Executor::new(), default_timeout = 3)]
mod tests {
use super::*;
#[test]
async fn default_handler_does_not_run_because_gpio_is_defined() {
let peripherals = esp_hal::init(esp_hal::Config::default());
let (gpio1, gpio2) = hil_test::common_test_pins!(peripherals);
let timg0 = TimerGroup::new(peripherals.TIMG0);
esp_hal_embassy::init(timg0.timer0);
let counter = drive_pins(gpio1, gpio2).await;
// GPIO is bound to something else, so we don't expect the async API to work.
assert_eq!(counter, 0);
}
#[test]
async fn default_handler_runs_because_handler_is_set() {
let peripherals = esp_hal::init(esp_hal::Config::default());
let mut io = Io::new(peripherals.IO_MUX);
io.set_interrupt_handler(interrupt_handler);
let (gpio1, gpio2) = hil_test::common_test_pins!(peripherals);
let timg0 = TimerGroup::new(peripherals.TIMG0);
esp_hal_embassy::init(timg0.timer0);
let counter = drive_pins(gpio1, gpio2).await;
// We expect the async API to keep working even if a user handler is set.
assert_eq!(counter, 5);
}
#[test]
async fn task_that_runs_at_handlers_priority_is_not_locked_up() {
let peripherals = esp_hal::init(esp_hal::Config::default());
// Register an interrupt handler. Since we are not dealing with raw interrupts
// here, it's okay to do nothing. Handling async GPIO events will
// disable the corresponding interrupts.
let mut io = Io::new(peripherals.IO_MUX);
io.set_interrupt_handler(interrupt_handler);
let (gpio1, gpio2) = hil_test::common_test_pins!(peripherals);
let timg0 = TimerGroup::new(peripherals.TIMG0);
esp_hal_embassy::init(timg0.timer0);
let sw_ints = SoftwareInterruptControl::new(peripherals.SW_INTERRUPT);
let interrupt_executor = mk_static!(
InterruptExecutor<1>,
InterruptExecutor::new(sw_ints.software_interrupt1)
);
// Run the executor at interrupt priority 1, which is the same as the default
// interrupt priority of the GPIO interrupt handler.
let interrupt_spawner = interrupt_executor.start(Priority::Priority1);
let done = mk_static!(Signal<CriticalSectionRawMutex, ()>, Signal::new());
interrupt_spawner.must_spawn(sense_pin(gpio1.degrade(), done));
interrupt_spawner.must_spawn(drive_pin(gpio2.degrade()));
done.wait().await;
}
}