esp-hal/hil-test/tests/critical_section.rs
Dániel Buga 99e2b936df
Introduce esp-sync, avoid critical_section like the plague (#4023)
* Introduce esp-sync

* Avoid critical_section as much as possible
2025-09-03 09:34:18 +00:00

228 lines
6.8 KiB
Rust

//! Ensure invariants of locks are upheld.
//% CHIPS: esp32 esp32c2 esp32c3 esp32c6 esp32h2 esp32s2 esp32s3
//% FEATURES: unstable
#![no_std]
#![no_main]
use esp_hal::{
delay::Delay,
interrupt::{
InterruptHandler,
Priority,
software::{SoftwareInterrupt, SoftwareInterruptControl},
},
peripherals::Peripherals,
sync::RawPriorityLimitedMutex,
};
use esp_sync::NonReentrantMutex;
use hil_test as _;
use portable_atomic::{AtomicU32, Ordering};
fn test_access_at_priority(peripherals: Peripherals, priority: Priority) {
static LOCK: RawPriorityLimitedMutex = RawPriorityLimitedMutex::new(Priority::Priority1);
extern "C" fn access<const INT: u8>() {
unsafe { SoftwareInterrupt::<INT>::steal().reset() };
LOCK.lock(|| {});
embedded_test::export::check_outcome(());
}
let sw_ints = SoftwareInterruptControl::new(peripherals.SW_INTERRUPT);
let mut prio_2_interrupt = sw_ints.software_interrupt1;
prio_2_interrupt.set_interrupt_handler(InterruptHandler::new(access::<1>, priority));
prio_2_interrupt.raise();
loop {}
}
#[cfg(test)]
#[embedded_test::tests(default_timeout = 3)]
mod tests {
use super::*;
#[init]
fn init() -> Peripherals {
esp_hal::init(esp_hal::Config::default())
}
#[test]
fn critical_section_is_reentrant() {
let mut flag = false;
critical_section::with(|_| {
critical_section::with(|_| {
flag = true;
});
});
assert!(flag);
}
#[test]
fn non_reentrant_mutex_can_provide_mutable_access() {
let flag = NonReentrantMutex::new(false);
flag.with(|f| {
*f = true;
});
flag.with(|f| {
assert!(*f);
});
}
#[test]
#[should_panic]
fn non_reentrant_mutex_is_not_reentrant() {
let flag = NonReentrantMutex::new(false);
flag.with(|_f| {
flag.with(|f| {
*f = true;
});
});
}
#[test]
fn priority_lock_tests(peripherals: Peripherals) {
static COUNTER: AtomicU32 = AtomicU32::new(0);
extern "C" fn increment<const INT: u8>() {
unsafe { SoftwareInterrupt::<INT>::steal().reset() };
COUNTER.fetch_add(1, Ordering::AcqRel);
}
let sw_ints = SoftwareInterruptControl::new(peripherals.SW_INTERRUPT);
let mut prio_1_interrupt = sw_ints.software_interrupt0;
let mut prio_2_interrupt = sw_ints.software_interrupt1;
prio_1_interrupt
.set_interrupt_handler(InterruptHandler::new(increment::<0>, Priority::Priority1));
prio_2_interrupt
.set_interrupt_handler(InterruptHandler::new(increment::<1>, Priority::Priority2));
let lock = RawPriorityLimitedMutex::new(Priority::Priority1);
let delay = Delay::new();
// Lock does nothing unless taken
prio_1_interrupt.raise();
// Software interrupts may not trigger immediately and there may be some
// instructions executed after `raise`. We need to wait a short while
// to ensure that the interrupt has been serviced before reading the counter.
delay.delay_millis(1);
assert_eq!(COUNTER.load(Ordering::Acquire), 1);
// Taking the lock masks the lower priority interrupt
lock.lock(|| {
prio_1_interrupt.raise();
delay.delay_millis(1);
assert_eq!(COUNTER.load(Ordering::Acquire), 1); // not incremented
// Taken lock does not mask higher priority interrupts
prio_2_interrupt.raise();
delay.delay_millis(1);
assert_eq!(COUNTER.load(Ordering::Acquire), 2);
});
// Releasing the lock unmasks the lower priority interrupt
delay.delay_millis(1);
assert_eq!(COUNTER.load(Ordering::Acquire), 3);
}
#[test]
fn priority_lock_allows_access_from_equal_priority(peripherals: Peripherals) {
test_access_at_priority(peripherals, Priority::Priority1);
}
#[test]
#[should_panic]
fn priority_lock_panics_on_higher_priority_access(peripherals: Peripherals) {
test_access_at_priority(peripherals, Priority::Priority2);
}
#[test]
fn max_priority_lock_is_masking_interrupt(peripherals: Peripherals) {
static COUNTER: AtomicU32 = AtomicU32::new(0);
extern "C" fn increment<const INT: u8>() {
unsafe { SoftwareInterrupt::<INT>::steal().reset() };
COUNTER.fetch_add(1, Ordering::AcqRel);
}
let sw_ints = SoftwareInterruptControl::new(peripherals.SW_INTERRUPT);
let mut interrupt = sw_ints.software_interrupt0;
interrupt.set_interrupt_handler(InterruptHandler::new(increment::<0>, Priority::Priority1));
let lock = RawPriorityLimitedMutex::new(Priority::max());
let delay = Delay::new();
// Taking the lock masks the lower priority interrupt
lock.lock(|| {
interrupt.raise();
delay.delay_millis(1);
assert_eq!(COUNTER.load(Ordering::Acquire), 0); // not incremented
});
// Releasing the lock unmasks the lower priority interrupt
delay.delay_millis(1);
assert_eq!(COUNTER.load(Ordering::Acquire), 1);
}
#[test]
#[cfg(multi_core)]
fn critical_section_on_multi_core(p: Peripherals) {
// TODO: test other locks, too
use core::{cell::Cell, sync::atomic::AtomicBool};
use critical_section::Mutex;
use esp_hal::system::{CpuControl, Stack};
use hil_test::mk_static;
static COUNTER: Mutex<Cell<u32>> = Mutex::new(Cell::new(0));
static START_COUNTING: AtomicBool = AtomicBool::new(false);
static DONE_COUNTING: AtomicBool = AtomicBool::new(false);
let mut cpu_control = CpuControl::new(p.CPU_CTRL);
let app_core_stack = mk_static!(Stack<8192>, Stack::new());
let cpu1_fnctn = || {
while !START_COUNTING.load(Ordering::Relaxed) {}
for _ in 0..1000 {
critical_section::with(|cs| {
let data_ref = COUNTER.borrow(cs);
data_ref.set(data_ref.get() + 1);
});
}
DONE_COUNTING.store(true, Ordering::Relaxed);
loop {}
};
let _guard = cpu_control
.start_app_core(app_core_stack, cpu1_fnctn)
.unwrap();
START_COUNTING.store(true, Ordering::Relaxed);
for _ in 0..1000 {
critical_section::with(|cs| {
let data_ref = COUNTER.borrow(cs);
data_ref.set(data_ref.get() + 2);
});
}
while !DONE_COUNTING.load(Ordering::Relaxed) {}
critical_section::with(|cs| {
let data_ref = COUNTER.borrow(cs);
assert_eq!(data_ref.get(), 3000);
});
}
}