esp-hal/esp32h2-hal/examples/spi_eh1_device_loopback.rs
Jesse Braham 33bfe80d95
Prelude improvements/fixes (#860)
* Move SPI-related traits into their own preludes in the `spi` module

* Remove the `embedded-hal-async` trait re-exports and the `eh1` module from the prelude

* Update `CHANGELOG.md`
2023-10-20 06:56:17 -07:00

140 lines
4.2 KiB
Rust

//! SPI loopback test
//!
//! Folowing pins are used:
//! SCLK GPIO1
//! MISO GPIO2
//! MOSI GPIO3
//! CS 1 GPIO11
//! CS 2 GPIO12
//! CS 3 GPIO25
//!
//! Depending on your target and the board you are using you have to change the
//! pins.
//!
//! This example transfers data via SPI.
//! Connect MISO and MOSI pins to see the outgoing data is read as incoming
//! data.
#![no_std]
#![no_main]
use embedded_hal_1::spi::SpiDevice;
use esp32h2_hal::{
clock::ClockControl,
gpio::IO,
peripherals::Peripherals,
prelude::*,
spi::{
master::{prelude::*, Spi, SpiBusController},
SpiMode,
},
Delay,
};
use esp_backtrace as _;
use esp_println::{print, println};
#[entry]
fn main() -> ! {
let peripherals = Peripherals::take();
let system = peripherals.SYSTEM.split();
let clocks = ClockControl::boot_defaults(system.clock_control).freeze();
let io = IO::new(peripherals.GPIO, peripherals.IO_MUX);
let sclk = io.pins.gpio1;
let miso = io.pins.gpio2;
let mosi = io.pins.gpio3;
let spi_controller = SpiBusController::from_spi(Spi::new_no_cs(
peripherals.SPI2,
sclk,
mosi,
miso,
1000u32.kHz(),
SpiMode::Mode0,
&clocks,
));
let mut spi_device_1 = spi_controller.add_device(io.pins.gpio11);
let mut spi_device_2 = spi_controller.add_device(io.pins.gpio12);
let mut spi_device_3 = spi_controller.add_device(io.pins.gpio25);
let mut delay = Delay::new(&clocks);
println!("=== SPI example with embedded-hal-1 traits ===");
loop {
// --- Symmetric transfer (Read as much as we write) ---
print!("Starting symmetric transfer...");
let write = [0xde, 0xad, 0xbe, 0xef];
let mut read: [u8; 4] = [0x00u8; 4];
spi_device_1.transfer(&mut read[..], &write[..]).unwrap();
assert_eq!(write, read);
spi_device_2.transfer(&mut read[..], &write[..]).unwrap();
spi_device_3.transfer(&mut read[..], &write[..]).unwrap();
println!(" SUCCESS");
delay.delay_ms(250u32);
// --- Asymmetric transfer (Read more than we write) ---
print!("Starting asymetric transfer (read > write)...");
let mut read: [u8; 4] = [0x00; 4];
spi_device_1
.transfer(&mut read[0..2], &write[..])
.expect("Asymmetric transfer failed");
assert_eq!(write[0], read[0]);
assert_eq!(read[2], 0x00u8);
spi_device_2
.transfer(&mut read[0..2], &write[..])
.expect("Asymmetric transfer failed");
spi_device_3
.transfer(&mut read[0..2], &write[..])
.expect("Asymmetric transfer failed");
println!(" SUCCESS");
delay.delay_ms(250u32);
// --- Symmetric transfer with huge buffer ---
// Only your RAM is the limit!
print!("Starting huge transfer...");
let mut write = [0x55u8; 4096];
for byte in 0..write.len() {
write[byte] = byte as u8;
}
let mut read = [0x00u8; 4096];
spi_device_1
.transfer(&mut read[..], &write[..])
.expect("Huge transfer failed");
assert_eq!(write, read);
spi_device_2
.transfer(&mut read[..], &write[..])
.expect("Huge transfer failed");
spi_device_3
.transfer(&mut read[..], &write[..])
.expect("Huge transfer failed");
println!(" SUCCESS");
delay.delay_ms(250u32);
// --- Symmetric transfer with huge buffer in-place (No additional allocation
// needed) ---
print!("Starting huge transfer (in-place)...");
let mut write = [0x55u8; 4096];
for byte in 0..write.len() {
write[byte] = byte as u8;
}
spi_device_1
.transfer_in_place(&mut write[..])
.expect("Huge transfer failed");
for byte in 0..write.len() {
assert_eq!(write[byte], byte as u8);
}
spi_device_2
.transfer_in_place(&mut write[..])
.expect("Huge transfer failed");
spi_device_3
.transfer_in_place(&mut write[..])
.expect("Huge transfer failed");
println!(" SUCCESS");
delay.delay_ms(250u32);
}
}