Scott Mabin 248fb356f8
PeripheralRef init: uart (#272)
* Add the peripheral module plus some helper macros in preparation

* peripheral macro

* Add peripheral generation macro

* Fixes after rebase

* Update the signature of Peripherals::take

* syncronise hello world example

* fmt the entire repo

Co-authored-by: Jesse Braham <jesse@beta7.io>
2022-12-12 14:45:33 +00:00

102 lines
3.0 KiB
Rust

//! RGB LED Demo
//!
//! This example drives an SK68XX RGB LED that is connected to GPIO18.
//! A RGB LED is connected to that pin on the official DevKits.
//!
//! The demo will leverage the [`smart_leds`](https://crates.io/crates/smart-leds)
//! crate functionality to circle through the HSV hue color space (with
//! saturation and value both at 255). Additionally, we apply a gamma correction
//! and limit the brightness to 10 (out of 255).
#![no_std]
#![no_main]
use esp32s2_hal::{
clock::ClockControl,
peripherals::Peripherals,
prelude::*,
timer::TimerGroup,
utils::{smartLedAdapter, SmartLedsAdapter},
Delay,
PulseControl,
Rtc,
IO,
};
#[allow(unused_imports)]
use esp_backtrace as _;
use smart_leds::{
brightness,
gamma,
hsv::{hsv2rgb, Hsv},
SmartLedsWrite,
};
use xtensa_atomic_emulation_trap as _;
use xtensa_lx_rt::entry;
#[entry]
fn main() -> ! {
let peripherals = Peripherals::take();
let mut system = peripherals.SYSTEM.split();
let clocks = ClockControl::boot_defaults(system.clock_control).freeze();
let mut rtc = Rtc::new(peripherals.RTC_CNTL);
let timer_group0 = TimerGroup::new(peripherals.TIMG0, &clocks);
let mut wdt = timer_group0.wdt;
let io = IO::new(peripherals.GPIO, peripherals.IO_MUX);
// Disable MWDT and RWDT (Watchdog) flash boot protection
wdt.disable();
rtc.rwdt.disable();
// Configure RMT peripheral globally
let pulse = PulseControl::new(peripherals.RMT, &mut system.peripheral_clock_control).unwrap();
// We use one of the RMT channels to instantiate a `SmartLedsAdapter` which can
// be used directly with all `smart_led` implementations
let mut led = <smartLedAdapter!(1)>::new(pulse.channel0, io.pins.gpio18);
// Initialize the Delay peripheral, and use it to toggle the LED state in a
// loop.
let mut delay = Delay::new(&clocks);
let mut color = Hsv {
hue: 0,
sat: 255,
val: 255,
};
let mut data;
loop {
// Iterate over the rainbow!
for hue in 0..=255 {
color.hue = hue;
// Convert from the HSV color space (where we can easily transition from one
// color to the other) to the RGB color space that we can then send to the LED
data = [hsv2rgb(color)];
// When sending to the LED, we do a gamma correction first (see smart_leds
// documentation for details) and then limit the brightness to 10 out of 255 so
// that the output it's not too bright.
led.write(brightness(gamma(data.iter().cloned()), 10))
.unwrap();
delay.delay_ms(20u8);
}
}
}
#[xtensa_lx_rt::exception]
fn exception(
cause: xtensa_lx_rt::exception::ExceptionCause,
frame: xtensa_lx_rt::exception::Context,
) {
use esp_println::*;
println!("\n\nException occured {:?} {:x?}", cause, frame);
let backtrace = esp_backtrace::arch::backtrace();
for b in backtrace.iter() {
if let Some(addr) = b {
println!("0x{:x}", addr)
}
}
}