use core::{ borrow::Borrow, fmt, iter::FromIterator, mem::{self, MaybeUninit}, num::NonZeroU32, ops, slice, }; use generic_array::{typenum::PowerOfTwo, ArrayLength, GenericArray}; use hash32::{BuildHasher, BuildHasherDefault, FnvHasher, Hash, Hasher}; use crate::Vec; /// A [`heapless::IndexMap`](./struct.IndexMap.html) using the default FNV hasher /// /// A list of all Methods and Traits available for `FnvIndexMap` can be found in /// the [`heapless::IndexMap`](./struct.IndexMap.html) documentation. /// /// # Examples /// ``` /// use heapless::FnvIndexMap; /// use heapless::consts::*; /// /// // A hash map with a capacity of 16 key-value pairs allocated on the stack /// let mut book_reviews = FnvIndexMap::<_, _, U16>::new(); /// /// // review some books. /// book_reviews.insert("Adventures of Huckleberry Finn", "My favorite book.").unwrap(); /// book_reviews.insert("Grimms' Fairy Tales", "Masterpiece.").unwrap(); /// book_reviews.insert("Pride and Prejudice", "Very enjoyable.").unwrap(); /// book_reviews.insert("The Adventures of Sherlock Holmes", "Eye lyked it alot.").unwrap(); /// /// // check for a specific one. /// if !book_reviews.contains_key("Les Misérables") { /// println!("We've got {} reviews, but Les Misérables ain't one.", /// book_reviews.len()); /// } /// /// // oops, this review has a lot of spelling mistakes, let's delete it. /// book_reviews.remove("The Adventures of Sherlock Holmes"); /// /// // look up the values associated with some keys. /// let to_find = ["Pride and Prejudice", "Alice's Adventure in Wonderland"]; /// for book in &to_find { /// match book_reviews.get(book) { /// Some(review) => println!("{}: {}", book, review), /// None => println!("{} is unreviewed.", book) /// } /// } /// /// // iterate over everything. /// for (book, review) in &book_reviews { /// println!("{}: \"{}\"", book, review); /// } /// ``` pub type FnvIndexMap = IndexMap>; #[derive(Clone, Copy, Eq, PartialEq)] struct HashValue(u16); impl HashValue { fn desired_pos(&self, mask: usize) -> usize { usize::from(self.0) & mask } fn probe_distance(&self, mask: usize, current: usize) -> usize { current.wrapping_sub(self.desired_pos(mask) as usize) & mask } } #[doc(hidden)] #[derive(Clone)] pub struct Bucket { hash: HashValue, key: K, value: V, } #[doc(hidden)] #[derive(Clone, Copy, PartialEq)] pub struct Pos { // compact representation of `{ hash_value: u16, index: u16 }` // To get the most from `NonZero` we store the *value minus 1*. This way `None::Option` // is equivalent to the very unlikely value of `{ hash_value: 0xffff, index: 0xffff }` instead // the more likely of `{ hash_value: 0x00, index: 0x00 }` nz: NonZeroU32, } impl Pos { fn new(index: usize, hash: HashValue) -> Self { Pos { nz: unsafe { NonZeroU32::new_unchecked( ((u32::from(hash.0) << 16) + index as u32).wrapping_add(1), ) }, } } fn hash(&self) -> HashValue { HashValue((self.nz.get().wrapping_sub(1) >> 16) as u16) } fn index(&self) -> usize { self.nz.get().wrapping_sub(1) as u16 as usize } } pub enum Inserted { Done, Swapped { prev_value: V }, RobinHood { probe: usize, old_pos: Pos }, } macro_rules! probe_loop { ($probe_var: ident < $len: expr, $body: expr) => { loop { if $probe_var < $len { $body $probe_var += 1; } else { $probe_var = 0; } } } } struct CoreMap where K: Eq + Hash, N: ArrayLength> + ArrayLength>, { entries: Vec, N>, indices: GenericArray, N>, } impl CoreMap where K: Eq + Hash, N: ArrayLength> + ArrayLength>, { // TODO turn into a `const fn`; needs `mem::zeroed` to be a `const fn` fn new() -> Self { CoreMap { entries: Vec::new(), indices: unsafe { MaybeUninit::zeroed().assume_init() }, } } fn capacity() -> usize { N::to_usize() } fn mask() -> usize { Self::capacity() - 1 } fn find(&self, hash: HashValue, query: &Q) -> Option<(usize, usize)> where K: Borrow, Q: ?Sized + Eq, { let mut probe = hash.desired_pos(Self::mask()); let mut dist = 0; probe_loop!(probe < self.indices.len(), { if let Some(pos) = self.indices[probe] { let entry_hash = pos.hash(); // NOTE(i) we use unchecked indexing below let i = pos.index(); debug_assert!(i < self.entries.len()); if dist > entry_hash.probe_distance(Self::mask(), probe) { // give up when probe distance is too long return None; } else if entry_hash == hash && unsafe { self.entries.get_unchecked(i).key.borrow() == query } { return Some((probe, i)); } } else { return None; } dist += 1; }); } // First phase: Look for the preferred location for key. // // We will know if `key` is already in the map, before we need to insert it. // When we insert they key, it might be that we need to continue displacing // entries (robin hood hashing), in which case Inserted::RobinHood is returned fn insert_phase_1(&mut self, hash: HashValue, key: K, value: V) -> Inserted { let mut probe = hash.desired_pos(Self::mask()); let mut dist = 0; let inserted; probe_loop!(probe < self.indices.len(), { let pos = &mut self.indices[probe]; if let Some(pos) = *pos { let entry_hash = pos.hash(); // NOTE(i) we use unchecked indexing below let i = pos.index(); debug_assert!(i < self.entries.len()); let their_dist = entry_hash.probe_distance(Self::mask(), probe); if their_dist < dist { // robin hood: steal the spot if it's better for us let index = self.entries.len(); inserted = Inserted::RobinHood { probe: probe, old_pos: Pos::new(index, hash), }; break; } else if entry_hash == hash && unsafe { self.entries.get_unchecked(i).key == key } { return Inserted::Swapped { prev_value: mem::replace( unsafe { &mut self.entries.get_unchecked_mut(i).value }, value, ), }; } } else { // empty bucket, insert here let index = self.entries.len(); *pos = Some(Pos::new(index, hash)); inserted = Inserted::Done; break; } dist += 1; }); // NOTE(unsafe) we already checked (in `insert`) that we aren't exceeding the capacity unsafe { self.entries.push_unchecked(Bucket { hash, key, value }) } inserted } // phase 2 is post-insert where we forward-shift `Pos` in the indices. fn insert_phase_2(&mut self, mut probe: usize, mut old_pos: Pos) { probe_loop!(probe < self.indices.len(), { let pos = unsafe { self.indices.get_unchecked_mut(probe) }; let mut is_none = true; // work around lack of NLL if let Some(pos) = pos.as_mut() { old_pos = mem::replace(pos, old_pos); is_none = false; } if is_none { *pos = Some(old_pos); break; } }); } fn remove_found(&mut self, probe: usize, found: usize) -> (K, V) { // index `probe` and entry `found` is to be removed // use swap_remove, but then we need to update the index that points // to the other entry that has to move self.indices[probe] = None; let entry = unsafe { self.entries.swap_remove_unchecked(found) }; // correct index that points to the entry that had to swap places if let Some(entry) = self.entries.get(found) { // was not last element // examine new element in `found` and find it in indices let mut probe = entry.hash.desired_pos(Self::mask()); probe_loop!(probe < self.indices.len(), { if let Some(pos) = self.indices[probe] { if pos.index() >= self.entries.len() { // found it self.indices[probe] = Some(Pos::new(found, entry.hash)); break; } } }); } self.backward_shift_after_removal(probe); (entry.key, entry.value) } fn backward_shift_after_removal(&mut self, probe_at_remove: usize) { // backward shift deletion in self.indices // after probe, shift all non-ideally placed indices backward let mut last_probe = probe_at_remove; let mut probe = probe_at_remove + 1; probe_loop!(probe < self.indices.len(), { if let Some(pos) = self.indices[probe] { let entry_hash = pos.hash(); if entry_hash.probe_distance(Self::mask(), probe) > 0 { unsafe { *self.indices.get_unchecked_mut(last_probe) = self.indices[probe] } self.indices[probe] = None; } else { break; } } else { break; } last_probe = probe; }); } } impl Clone for CoreMap where K: Eq + Hash + Clone, V: Clone, N: ArrayLength> + ArrayLength>, { fn clone(&self) -> Self { Self { entries: self.entries.clone(), indices: self.indices.clone(), } } } /// Fixed capacity [`IndexMap`](https://docs.rs/indexmap/1/indexmap/map/struct.IndexMap.html) /// /// Note that you cannot use `IndexMap` directly, since it is generic around the hashing algorithm /// in use. Pick a concrete instantiation like [`FnvIndexMap`](./type.FnvIndexMap.html) instead /// or create your own. /// /// Note that the capacity of the `IndexMap` must be a power of 2. /// /// # Examples /// Since `IndexMap` cannot be used directly, we're using its `FnvIndexMap` instantiation /// for this example. /// /// ``` /// use heapless::FnvIndexMap; /// use heapless::consts::*; /// /// // A hash map with a capacity of 16 key-value pairs allocated on the stack /// let mut book_reviews = FnvIndexMap::<_, _, U16>::new(); /// /// // review some books. /// book_reviews.insert("Adventures of Huckleberry Finn", "My favorite book.").unwrap(); /// book_reviews.insert("Grimms' Fairy Tales", "Masterpiece.").unwrap(); /// book_reviews.insert("Pride and Prejudice", "Very enjoyable.").unwrap(); /// book_reviews.insert("The Adventures of Sherlock Holmes", "Eye lyked it alot.").unwrap(); /// /// // check for a specific one. /// if !book_reviews.contains_key("Les Misérables") { /// println!("We've got {} reviews, but Les Misérables ain't one.", /// book_reviews.len()); /// } /// /// // oops, this review has a lot of spelling mistakes, let's delete it. /// book_reviews.remove("The Adventures of Sherlock Holmes"); /// /// // look up the values associated with some keys. /// let to_find = ["Pride and Prejudice", "Alice's Adventure in Wonderland"]; /// for book in &to_find { /// match book_reviews.get(book) { /// Some(review) => println!("{}: {}", book, review), /// None => println!("{} is unreviewed.", book) /// } /// } /// /// // iterate over everything. /// for (book, review) in &book_reviews { /// println!("{}: \"{}\"", book, review); /// } /// ``` pub struct IndexMap where K: Eq + Hash, N: ArrayLength> + ArrayLength>, { core: CoreMap, build_hasher: S, } impl IndexMap> where K: Eq + Hash, S: Default + Hasher, N: ArrayLength> + ArrayLength> + PowerOfTwo, { // TODO turn into a `const fn`; needs `mem::zeroed` to be a `const fn` /// Creates an empty `IndexMap`. /// /// **NOTE** This constructor will become a `const fn` in the future pub fn new() -> Self { IndexMap { build_hasher: BuildHasherDefault::default(), core: CoreMap::new(), } } } impl IndexMap where K: Eq + Hash, S: BuildHasher, N: ArrayLength> + ArrayLength>, { /* Public API */ /// Returns the number of elements the map can hold pub fn capacity(&self) -> usize { N::to_usize() } /// Return an iterator over the keys of the map, in their order /// /// ``` /// use heapless::FnvIndexMap; /// use heapless::consts::*; /// /// let mut map = FnvIndexMap::<_, _, U16>::new(); /// map.insert("a", 1).unwrap(); /// map.insert("b", 2).unwrap(); /// map.insert("c", 3).unwrap(); /// /// for key in map.keys() { /// println!("{}", key); /// } /// ``` pub fn keys(&self) -> impl Iterator { self.core.entries.iter().map(|bucket| &bucket.key) } /// Return an iterator over the values of the map, in their order /// /// ``` /// use heapless::FnvIndexMap; /// use heapless::consts::*; /// /// let mut map = FnvIndexMap::<_, _, U16>::new(); /// map.insert("a", 1).unwrap(); /// map.insert("b", 2).unwrap(); /// map.insert("c", 3).unwrap(); /// /// for val in map.values() { /// println!("{}", val); /// } /// ``` pub fn values(&self) -> impl Iterator { self.core.entries.iter().map(|bucket| &bucket.value) } /// Return an iterator over mutable references to the the values of the map, in their order /// /// ``` /// use heapless::FnvIndexMap; /// use heapless::consts::*; /// /// let mut map = FnvIndexMap::<_, _, U16>::new(); /// map.insert("a", 1).unwrap(); /// map.insert("b", 2).unwrap(); /// map.insert("c", 3).unwrap(); /// /// for val in map.values_mut() { /// *val += 10; /// } /// /// for val in map.values() { /// println!("{}", val); /// } /// ``` pub fn values_mut(&mut self) -> impl Iterator { self.core.entries.iter_mut().map(|bucket| &mut bucket.value) } /// Return an iterator over the key-value pairs of the map, in their order /// /// ``` /// use heapless::FnvIndexMap; /// use heapless::consts::*; /// /// let mut map = FnvIndexMap::<_, _, U16>::new(); /// map.insert("a", 1).unwrap(); /// map.insert("b", 2).unwrap(); /// map.insert("c", 3).unwrap(); /// /// for (key, val) in map.iter() { /// println!("key: {} val: {}", key, val); /// } /// ``` pub fn iter(&self) -> Iter<'_, K, V> { Iter { iter: self.core.entries.iter(), } } /// Return an iterator over the key-value pairs of the map, in their order /// /// ``` /// use heapless::FnvIndexMap; /// use heapless::consts::*; /// /// let mut map = FnvIndexMap::<_, _, U16>::new(); /// map.insert("a", 1).unwrap(); /// map.insert("b", 2).unwrap(); /// map.insert("c", 3).unwrap(); /// /// for (_, val) in map.iter_mut() { /// *val = 2; /// } /// /// for (key, val) in &map { /// println!("key: {} val: {}", key, val); /// } /// ``` pub fn iter_mut(&mut self) -> IterMut<'_, K, V> { IterMut { iter: self.core.entries.iter_mut(), } } // TODO // pub fn entry(&mut self, key: K) -> Entry { .. } /// Return the number of key-value pairs in the map. /// /// Computes in **O(1)** time. /// /// ``` /// use heapless::FnvIndexMap; /// use heapless::consts::*; /// /// let mut a = FnvIndexMap::<_, _, U16>::new(); /// assert_eq!(a.len(), 0); /// a.insert(1, "a").unwrap(); /// assert_eq!(a.len(), 1); /// ``` pub fn len(&self) -> usize { self.core.entries.len() } /// Returns true if the map contains no elements. /// /// Computes in **O(1)** time. /// /// ``` /// use heapless::FnvIndexMap; /// use heapless::consts::*; /// /// let mut a = FnvIndexMap::<_, _, U16>::new(); /// assert!(a.is_empty()); /// a.insert(1, "a"); /// assert!(!a.is_empty()); /// ``` pub fn is_empty(&self) -> bool { self.len() == 0 } /// Remove all key-value pairs in the map, while preserving its capacity. /// /// Computes in **O(n)** time. /// /// ``` /// use heapless::FnvIndexMap; /// use heapless::consts::*; /// /// let mut a = FnvIndexMap::<_, _, U16>::new(); /// a.insert(1, "a"); /// a.clear(); /// assert!(a.is_empty()); /// ``` pub fn clear(&mut self) { self.core.entries.clear(); for pos in self.core.indices.iter_mut() { *pos = None; } } /// Returns a reference to the value corresponding to the key. /// /// The key may be any borrowed form of the map's key type, but `Hash` and `Eq` on the borrowed /// form *must* match those for the key type. /// /// Computes in **O(1)** time (average). /// /// ``` /// use heapless::FnvIndexMap; /// use heapless::consts::*; /// /// let mut map = FnvIndexMap::<_, _, U16>::new(); /// map.insert(1, "a").unwrap(); /// assert_eq!(map.get(&1), Some(&"a")); /// assert_eq!(map.get(&2), None); /// ``` pub fn get(&self, key: &Q) -> Option<&V> where K: Borrow, Q: ?Sized + Hash + Eq, { self.find(key) .map(|(_, found)| unsafe { &self.core.entries.get_unchecked(found).value }) } /// Returns true if the map contains a value for the specified key. /// /// The key may be any borrowed form of the map's key type, but `Hash` and `Eq` on the borrowed /// form *must* match those for the key type. /// /// Computes in **O(1)** time (average). /// /// # Examples /// /// ``` /// use heapless::FnvIndexMap; /// use heapless::consts::*; /// /// let mut map = FnvIndexMap::<_, _, U8>::new(); /// map.insert(1, "a").unwrap(); /// assert_eq!(map.contains_key(&1), true); /// assert_eq!(map.contains_key(&2), false); /// ``` pub fn contains_key(&self, key: &Q) -> bool where K: Borrow, Q: ?Sized + Eq + Hash, { self.find(key).is_some() } /// Returns a mutable reference to the value corresponding to the key. /// /// The key may be any borrowed form of the map's key type, but `Hash` and `Eq` on the borrowed /// form *must* match those for the key type. /// /// Computes in **O(1)** time (average). /// /// # Examples /// /// ``` /// use heapless::FnvIndexMap; /// use heapless::consts::*; /// /// let mut map = FnvIndexMap::<_, _, U8>::new(); /// map.insert(1, "a").unwrap(); /// if let Some(x) = map.get_mut(&1) { /// *x = "b"; /// } /// assert_eq!(map[&1], "b"); /// ``` pub fn get_mut<'v, Q>(&'v mut self, key: &Q) -> Option<&'v mut V> where K: Borrow, Q: ?Sized + Hash + Eq, { if let Some((_, found)) = self.find(key) { Some(unsafe { &mut self.core.entries.get_unchecked_mut(found).value }) } else { None } } /// Inserts a key-value pair into the map. /// /// If an equivalent key already exists in the map: the key remains and retains in its place in /// the order, its corresponding value is updated with `value` and the older value is returned /// inside `Some(_)`. /// /// If no equivalent key existed in the map: the new key-value pair is inserted, last in order, /// and `None` is returned. /// /// Computes in **O(1)** time (average). /// /// See also entry if you you want to insert or modify or if you need to get the index of the /// corresponding key-value pair. /// /// # Examples /// /// ``` /// use heapless::FnvIndexMap; /// use heapless::consts::*; /// /// let mut map = FnvIndexMap::<_, _, U8>::new(); /// assert_eq!(map.insert(37, "a"), Ok(None)); /// assert_eq!(map.is_empty(), false); /// /// map.insert(37, "b"); /// assert_eq!(map.insert(37, "c"), Ok(Some("b"))); /// assert_eq!(map[&37], "c"); /// ``` pub fn insert(&mut self, key: K, value: V) -> Result, (K, V)> { if self.core.entries.is_full() { Err((key, value)) } else { Ok(match self.insert_phase_1(key, value) { Inserted::Swapped { prev_value } => Some(prev_value), Inserted::Done => None, Inserted::RobinHood { probe, old_pos } => { self.core.insert_phase_2(probe, old_pos); None } }) } } /// Same as [`swap_remove`](struct.IndexMap.html#method.swap_remove) /// /// Computes in **O(1)** time (average). /// /// # Examples /// /// ``` /// use heapless::FnvIndexMap; /// use heapless::consts::*; /// /// let mut map = FnvIndexMap::<_, _, U8>::new(); /// map.insert(1, "a").unwrap(); /// assert_eq!(map.remove(&1), Some("a")); /// assert_eq!(map.remove(&1), None); /// ``` pub fn remove(&mut self, key: &Q) -> Option where K: Borrow, Q: ?Sized + Hash + Eq, { self.swap_remove(key) } /// Remove the key-value pair equivalent to `key` and return its value. /// /// Like `Vec::swap_remove`, the pair is removed by swapping it with the last element of the map /// and popping it off. **This perturbs the postion of what used to be the last element!** /// /// Return `None` if `key` is not in map. /// /// Computes in **O(1)** time (average). pub fn swap_remove(&mut self, key: &Q) -> Option where K: Borrow, Q: ?Sized + Hash + Eq, { self.find(key) .map(|(probe, found)| self.core.remove_found(probe, found).1) } /* Private API */ /// Return probe (indices) and position (entries) fn find(&self, key: &Q) -> Option<(usize, usize)> where K: Borrow, Q: ?Sized + Hash + Eq, { if self.len() == 0 { return None; } let h = hash_with(key, &self.build_hasher); self.core.find(h, key) } fn insert_phase_1(&mut self, key: K, value: V) -> Inserted { let hash = hash_with(&key, &self.build_hasher); self.core.insert_phase_1(hash, key, value) } } impl<'a, K, Q, V, N, S> ops::Index<&'a Q> for IndexMap where K: Eq + Hash + Borrow, Q: ?Sized + Eq + Hash, S: BuildHasher, N: ArrayLength> + ArrayLength>, { type Output = V; fn index(&self, key: &Q) -> &V { self.get(key).expect("key not found") } } impl<'a, K, Q, V, N, S> ops::IndexMut<&'a Q> for IndexMap where K: Eq + Hash + Borrow, Q: ?Sized + Eq + Hash, S: BuildHasher, N: ArrayLength> + ArrayLength>, { fn index_mut(&mut self, key: &Q) -> &mut V { self.get_mut(key).expect("key not found") } } impl Clone for IndexMap where K: Eq + Hash + Clone, V: Clone, S: Clone, N: ArrayLength> + ArrayLength>, { fn clone(&self) -> Self { Self { core: self.core.clone(), build_hasher: self.build_hasher.clone(), } } } impl fmt::Debug for IndexMap where K: Eq + Hash + fmt::Debug, V: fmt::Debug, S: BuildHasher, N: ArrayLength> + ArrayLength>, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_map().entries(self.iter()).finish() } } impl Default for IndexMap where K: Eq + Hash, S: BuildHasher + Default, N: ArrayLength> + ArrayLength>, { fn default() -> Self { IndexMap { build_hasher: <_>::default(), core: CoreMap::new(), } } } impl PartialEq> for IndexMap where K: Eq + Hash, V: Eq, S: BuildHasher, N: ArrayLength> + ArrayLength>, S2: BuildHasher, N2: ArrayLength> + ArrayLength>, { fn eq(&self, other: &IndexMap) -> bool { self.len() == other.len() && self .iter() .all(|(key, value)| other.get(key).map_or(false, |v| *value == *v)) } } impl Eq for IndexMap where K: Eq + Hash, V: Eq, S: BuildHasher, N: ArrayLength> + ArrayLength>, { } impl Extend<(K, V)> for IndexMap where K: Eq + Hash, S: BuildHasher, N: ArrayLength> + ArrayLength>, { fn extend(&mut self, iterable: I) where I: IntoIterator, { for (k, v) in iterable { self.insert(k, v).ok().unwrap(); } } } impl<'a, K, V, N, S> Extend<(&'a K, &'a V)> for IndexMap where K: Eq + Hash + Copy, V: Copy, S: BuildHasher, N: ArrayLength> + ArrayLength>, { fn extend(&mut self, iterable: I) where I: IntoIterator, { self.extend(iterable.into_iter().map(|(&key, &value)| (key, value))) } } impl FromIterator<(K, V)> for IndexMap where K: Eq + Hash, S: BuildHasher + Default, N: ArrayLength> + ArrayLength>, { fn from_iter(iterable: I) -> Self where I: IntoIterator, { let mut map = IndexMap::default(); map.extend(iterable); map } } impl<'a, K, V, N, S> IntoIterator for &'a IndexMap where K: Eq + Hash, S: BuildHasher, N: ArrayLength> + ArrayLength>, { type Item = (&'a K, &'a V); type IntoIter = Iter<'a, K, V>; fn into_iter(self) -> Self::IntoIter { self.iter() } } impl<'a, K, V, N, S> IntoIterator for &'a mut IndexMap where K: Eq + Hash, S: BuildHasher, N: ArrayLength> + ArrayLength>, { type Item = (&'a K, &'a mut V); type IntoIter = IterMut<'a, K, V>; fn into_iter(self) -> Self::IntoIter { self.iter_mut() } } pub struct Iter<'a, K, V> { iter: slice::Iter<'a, Bucket>, } impl<'a, K, V> Iterator for Iter<'a, K, V> { type Item = (&'a K, &'a V); fn next(&mut self) -> Option { self.iter.next().map(|bucket| (&bucket.key, &bucket.value)) } } impl<'a, K, V> Clone for Iter<'a, K, V> { fn clone(&self) -> Self { Self { iter: self.iter.clone(), } } } pub struct IterMut<'a, K, V> { iter: slice::IterMut<'a, Bucket>, } impl<'a, K, V> Iterator for IterMut<'a, K, V> { type Item = (&'a K, &'a mut V); fn next(&mut self) -> Option { self.iter .next() .map(|bucket| (&bucket.key, &mut bucket.value)) } } fn hash_with(key: &K, build_hasher: &S) -> HashValue where K: ?Sized + Hash, S: BuildHasher, { let mut h = build_hasher.build_hasher(); key.hash(&mut h); HashValue(h.finish() as u16) } #[cfg(test)] mod tests { use core::mem; use generic_array::typenum::Unsigned; use crate::{consts::*, FnvIndexMap}; #[test] fn size() { type Cap = U4; let cap = Cap::to_usize(); assert_eq!( mem::size_of::>(), cap * mem::size_of::() + // indices cap * (mem::size_of::() + // key mem::size_of::() + // value mem::size_of::() // hash ) + // buckets mem::size_of::() // entries.length ) } #[test] fn partial_eq() { { let mut a: FnvIndexMap<_, _, U4> = FnvIndexMap::new(); a.insert("k1", "v1").unwrap(); let mut b: FnvIndexMap<_, _, U4> = FnvIndexMap::new(); b.insert("k1", "v1").unwrap(); assert!(a == b); b.insert("k2", "v2").unwrap(); assert!(a != b); } { let mut a: FnvIndexMap<_, _, U4> = FnvIndexMap::new(); a.insert("k1", "v1").unwrap(); a.insert("k2", "v2").unwrap(); let mut b: FnvIndexMap<_, _, U4> = FnvIndexMap::new(); b.insert("k2", "v2").unwrap(); b.insert("k1", "v1").unwrap(); assert!(a == b); } } }