Now that they're const it's no longer needed.
Nothing manual was performed: only a regexp search of `sym::([\w][\w\d]*)\.clone\(\)` and replace by `sym::$1`.
And make more queries non-interned.
Also flip the default for queries, now the default is to not intern and to intern a query you need to say `invoke_interned`.
This refactors how we deal with items in hir-def lowering.
- It now lowers all of them through an "ExpressionStore" (kind of a misnomer as this point) as their so called *Signatures.
- We now uniformly lower type AST into TypeRefs before type inference.
- Likewise, this moves macro expansion out of type inference, resulting in a single place where we do non-defmap macro expansion.
- Finally, this PR removes a lot of information from ItemTree, making the DefMap a lot less likely to be recomputed and have it only depend on actual early name resolution related information (not 100% true, we still have ADT fields in there but thats a follow up removal).
More correctly, *also* per-token. Because as it turns out, while the top-level edition affects parsing (I think), the per-token edition affects escaping of identifiers/keywords.
I expected this to be faster (due to less allocations and better cache locality), but benchmarked it is not (neither it is slower). Memory usage, however, drops by ~50mb (of `analysis-stats .`). I guess tt construction is just not hot.
This also simplifies using even less memory for token trees by compressing equal span, which I plan to do right after.
Some workflows are more easily expressed with a flat tt, while some are better expressed with a tree. With the right helpers, though (which was mostly a matter of trial and error), even the worst workflows become very easy indeed.
Because it was a mess.
Previously, pretty much you had to handle all path diagnostics manually: remember to check for them and handle them. Now, we wrap the resolver in `TyLoweringContext` and ensure proper error reporting.
This means that you don't have to worry about them: most of the things are handled automatically, and things that cannot will create a compile-time error (forcing you top `drop(ty_lowering_context);`) if forgotten, instead of silently dropping the diagnostics.
The real place for error reporting is in the hir-def resolver, because there are other things resolving, both in hir-ty and in hir-def, and they all need to ensure proper diagnostics. But this is a good start, and future compatible.
This commit also ensures proper path diagnostics for value/pattern paths, which is why it's marked "feat".
The reason I did this is because I plan to add another field to this struct (indicating whether the item was cfg'ed out), but it seems worthy even separately and removes a bunch of one-letter variable names and tuple-indexing. It is also easy to separate from future changes, so it will be easier to review this way.
When a glob import overriding the visibility of a previous glob import was not properly resolved when the items are only available in the next fixpoint iteration.
The bug was hidden until #18390.
This will mean users opting to not activate `cfg(test)` will lose IDE experience on them, which is quite unfortunate, but this is unavoidable if we want to avoid false positives on e.g. diagnostics. The real fix is to provide IDE experience even for cfg'ed out code, but this is out of scope for this PR.
The import is flagged as "indeterminate", and previously it was re-resolved, but only at the end of name resolution, when it's already too late for anything that depends on it.
This issue was tried to fix in https://github.com/rust-lang/rust-analyzer/pull/2466, but it was not fixed fully.
This PR touches a lot of parts. But the main changes are changing
`hir_expand::Name` to be raw edition-dependently and only when necessary
(unrelated to how the user originally wrote the identifier),
and changing `is_keyword()` and `is_raw_identifier()` to be edition-aware
(this was done in #17896, but the FIXMEs were fixed here).
It is possible that I missed some cases, but most IDE parts should properly
escape (or not escape) identifiers now.
The rules of thumb are:
- If we show the identifier to the user, its rawness should be determined
by the edition of the edited crate. This is nice for IDE features,
but really important for changes we insert to the source code.
- For tests, I chose `Edition::CURRENT` (so we only have to (maybe) update
tests when an edition becomes stable, to avoid churn).
- For debugging tools (helper methods and logs), I used `Edition::LATEST`.
A configurable recursion limit was introduced by looking at the
recursion_limit crate attribute. Instead of relying on a global constant
we will reuse this value for expansion limit as well.
feat: Use spans for builtin and declarative macro expansion errors
This should generally improve some error reporting for macro expansion errors. Especially for `compile_error!` within proc-macros