//! Unification and canonicalization logic. use std::{fmt, iter, mem}; use chalk_ir::{ cast::Cast, fold::TypeFoldable, interner::HasInterner, zip::Zip, CanonicalVarKind, FloatTy, IntTy, TyVariableKind, UniverseIndex, }; use chalk_solve::infer::ParameterEnaVariableExt; use either::Either; use ena::unify::UnifyKey; use hir_def::{lang_item::LangItem, AdtId}; use hir_expand::name::Name; use intern::sym; use rustc_hash::FxHashMap; use smallvec::SmallVec; use triomphe::Arc; use super::{InferOk, InferResult, InferenceContext, TypeError}; use crate::{ consteval::unknown_const, db::HirDatabase, fold_generic_args, fold_tys_and_consts, to_chalk_trait_id, traits::FnTrait, AliasEq, AliasTy, BoundVar, Canonical, Const, ConstValue, DebruijnIndex, DomainGoal, GenericArg, GenericArgData, Goal, GoalData, Guidance, InEnvironment, InferenceVar, Interner, Lifetime, OpaqueTyId, ParamKind, ProjectionTy, ProjectionTyExt, Scalar, Solution, Substitution, TraitEnvironment, TraitRef, Ty, TyBuilder, TyExt, TyKind, VariableKind, WhereClause, }; impl InferenceContext<'_> { pub(super) fn canonicalize(&mut self, t: T) -> Canonical where T: TypeFoldable + HasInterner, { self.table.canonicalize(t) } pub(super) fn clauses_for_self_ty( &mut self, self_ty: InferenceVar, ) -> SmallVec<[WhereClause; 4]> { self.table.resolve_obligations_as_possible(); let root = self.table.var_unification_table.inference_var_root(self_ty); let pending_obligations = mem::take(&mut self.table.pending_obligations); let obligations = pending_obligations .iter() .filter_map(|obligation| match obligation.value.value.goal.data(Interner) { GoalData::DomainGoal(DomainGoal::Holds(clause)) => { let ty = match clause { WhereClause::AliasEq(AliasEq { alias: AliasTy::Projection(projection), .. }) => projection.self_type_parameter(self.db), WhereClause::Implemented(trait_ref) => { trait_ref.self_type_parameter(Interner) } WhereClause::TypeOutlives(to) => to.ty.clone(), _ => return None, }; let uncanonical = chalk_ir::Substitute::apply(&obligation.free_vars, ty, Interner); if matches!( self.resolve_ty_shallow(&uncanonical).kind(Interner), TyKind::InferenceVar(iv, TyVariableKind::General) if *iv == root, ) { Some(chalk_ir::Substitute::apply( &obligation.free_vars, clause.clone(), Interner, )) } else { None } } _ => None, }) .collect(); self.table.pending_obligations = pending_obligations; obligations } } #[derive(Debug, Clone)] pub(crate) struct Canonicalized where T: HasInterner, { pub(crate) value: Canonical, free_vars: Vec, } impl> Canonicalized { pub(crate) fn apply_solution( &self, ctx: &mut InferenceTable<'_>, solution: Canonical, ) { // the solution may contain new variables, which we need to convert to new inference vars let new_vars = Substitution::from_iter( Interner, solution.binders.iter(Interner).map(|k| match &k.kind { VariableKind::Ty(TyVariableKind::General) => ctx.new_type_var().cast(Interner), VariableKind::Ty(TyVariableKind::Integer) => ctx.new_integer_var().cast(Interner), VariableKind::Ty(TyVariableKind::Float) => ctx.new_float_var().cast(Interner), // Chalk can sometimes return new lifetime variables. We just replace them by errors // for now. VariableKind::Lifetime => ctx.new_lifetime_var().cast(Interner), VariableKind::Const(ty) => ctx.new_const_var(ty.clone()).cast(Interner), }), ); for (i, v) in solution.value.iter(Interner).enumerate() { let var = &self.free_vars[i]; if let Some(ty) = v.ty(Interner) { // eagerly replace projections in the type; we may be getting types // e.g. from where clauses where this hasn't happened yet let ty = ctx.normalize_associated_types_in(new_vars.apply(ty.clone(), Interner)); ctx.unify(var.assert_ty_ref(Interner), &ty); } else { let _ = ctx.try_unify(var, &new_vars.apply(v.clone(), Interner)); } } } } /// Check if types unify. /// /// Note that we consider placeholder types to unify with everything. /// This means that there may be some unresolved goals that actually set bounds for the placeholder /// type for the types to unify. For example `Option` and `Option` unify although there is /// unresolved goal `T = U`. pub fn could_unify( db: &dyn HirDatabase, env: Arc, tys: &Canonical<(Ty, Ty)>, ) -> bool { unify(db, env, tys).is_some() } /// Check if types unify eagerly making sure there are no unresolved goals. /// /// This means that placeholder types are not considered to unify if there are any bounds set on /// them. For example `Option` and `Option` do not unify as we cannot show that `T = U` pub fn could_unify_deeply( db: &dyn HirDatabase, env: Arc, tys: &Canonical<(Ty, Ty)>, ) -> bool { let mut table = InferenceTable::new(db, env); let vars = make_substitutions(tys, &mut table); let ty1_with_vars = vars.apply(tys.value.0.clone(), Interner); let ty2_with_vars = vars.apply(tys.value.1.clone(), Interner); let ty1_with_vars = table.normalize_associated_types_in(ty1_with_vars); let ty2_with_vars = table.normalize_associated_types_in(ty2_with_vars); table.resolve_obligations_as_possible(); table.propagate_diverging_flag(); let ty1_with_vars = table.resolve_completely(ty1_with_vars); let ty2_with_vars = table.resolve_completely(ty2_with_vars); table.unify_deeply(&ty1_with_vars, &ty2_with_vars) } pub(crate) fn unify( db: &dyn HirDatabase, env: Arc, tys: &Canonical<(Ty, Ty)>, ) -> Option { let mut table = InferenceTable::new(db, env); let vars = make_substitutions(tys, &mut table); let ty1_with_vars = vars.apply(tys.value.0.clone(), Interner); let ty2_with_vars = vars.apply(tys.value.1.clone(), Interner); if !table.unify(&ty1_with_vars, &ty2_with_vars) { return None; } // default any type vars that weren't unified back to their original bound vars // (kind of hacky) let find_var = |iv| { vars.iter(Interner).position(|v| match v.data(Interner) { GenericArgData::Ty(ty) => ty.inference_var(Interner), GenericArgData::Lifetime(lt) => lt.inference_var(Interner), GenericArgData::Const(c) => c.inference_var(Interner), } == Some(iv)) }; let fallback = |iv, kind, default, binder| match kind { chalk_ir::VariableKind::Ty(_ty_kind) => find_var(iv) .map_or(default, |i| BoundVar::new(binder, i).to_ty(Interner).cast(Interner)), chalk_ir::VariableKind::Lifetime => find_var(iv) .map_or(default, |i| BoundVar::new(binder, i).to_lifetime(Interner).cast(Interner)), chalk_ir::VariableKind::Const(ty) => find_var(iv) .map_or(default, |i| BoundVar::new(binder, i).to_const(Interner, ty).cast(Interner)), }; Some(Substitution::from_iter( Interner, vars.iter(Interner).map(|v| table.resolve_with_fallback(v.clone(), &fallback)), )) } fn make_substitutions( tys: &chalk_ir::Canonical<(chalk_ir::Ty, chalk_ir::Ty)>, table: &mut InferenceTable<'_>, ) -> chalk_ir::Substitution { Substitution::from_iter( Interner, tys.binders.iter(Interner).map(|it| match &it.kind { chalk_ir::VariableKind::Ty(_) => table.new_type_var().cast(Interner), // FIXME: maybe wrong? chalk_ir::VariableKind::Lifetime => table.new_type_var().cast(Interner), chalk_ir::VariableKind::Const(ty) => table.new_const_var(ty.clone()).cast(Interner), }), ) } bitflags::bitflags! { #[derive(Default, Clone, Copy)] pub(crate) struct TypeVariableFlags: u8 { const DIVERGING = 1 << 0; const INTEGER = 1 << 1; const FLOAT = 1 << 2; } } type ChalkInferenceTable = chalk_solve::infer::InferenceTable; #[derive(Clone)] pub(crate) struct InferenceTable<'a> { pub(crate) db: &'a dyn HirDatabase, pub(crate) trait_env: Arc, pub(crate) tait_coercion_table: Option>, var_unification_table: ChalkInferenceTable, type_variable_table: SmallVec<[TypeVariableFlags; 16]>, pending_obligations: Vec>>, /// Double buffer used in [`Self::resolve_obligations_as_possible`] to cut down on /// temporary allocations. resolve_obligations_buffer: Vec>>, } pub(crate) struct InferenceTableSnapshot { var_table_snapshot: chalk_solve::infer::InferenceSnapshot, type_variable_table: SmallVec<[TypeVariableFlags; 16]>, pending_obligations: Vec>>, } impl<'a> InferenceTable<'a> { pub(crate) fn new(db: &'a dyn HirDatabase, trait_env: Arc) -> Self { InferenceTable { db, trait_env, tait_coercion_table: None, var_unification_table: ChalkInferenceTable::new(), type_variable_table: SmallVec::new(), pending_obligations: Vec::new(), resolve_obligations_buffer: Vec::new(), } } /// Chalk doesn't know about the `diverging` flag, so when it unifies two /// type variables of which one is diverging, the chosen root might not be /// diverging and we have no way of marking it as such at that time. This /// function goes through all type variables and make sure their root is /// marked as diverging if necessary, so that resolving them gives the right /// result. pub(super) fn propagate_diverging_flag(&mut self) { for i in 0..self.type_variable_table.len() { if !self.type_variable_table[i].contains(TypeVariableFlags::DIVERGING) { continue; } let v = InferenceVar::from(i as u32); let root = self.var_unification_table.inference_var_root(v); self.modify_type_variable_flag(root, |f| { *f |= TypeVariableFlags::DIVERGING; }); } } pub(super) fn set_diverging(&mut self, iv: InferenceVar, diverging: bool) { self.modify_type_variable_flag(iv, |f| { f.set(TypeVariableFlags::DIVERGING, diverging); }); } fn fallback_value(&self, iv: InferenceVar, kind: TyVariableKind) -> Ty { let is_diverging = self .type_variable_table .get(iv.index() as usize) .map_or(false, |data| data.contains(TypeVariableFlags::DIVERGING)); if is_diverging { return TyKind::Never.intern(Interner); } match kind { TyVariableKind::General => TyKind::Error, TyVariableKind::Integer => TyKind::Scalar(Scalar::Int(IntTy::I32)), TyVariableKind::Float => TyKind::Scalar(Scalar::Float(FloatTy::F64)), } .intern(Interner) } pub(crate) fn canonicalize_with_free_vars(&mut self, t: T) -> Canonicalized where T: TypeFoldable + HasInterner, { // try to resolve obligations before canonicalizing, since this might // result in new knowledge about variables self.resolve_obligations_as_possible(); let result = self.var_unification_table.canonicalize(Interner, t); let free_vars = result .free_vars .into_iter() .map(|free_var| free_var.to_generic_arg(Interner)) .collect(); Canonicalized { value: result.quantified, free_vars } } pub(crate) fn canonicalize(&mut self, t: T) -> Canonical where T: TypeFoldable + HasInterner, { // try to resolve obligations before canonicalizing, since this might // result in new knowledge about variables self.resolve_obligations_as_possible(); self.var_unification_table.canonicalize(Interner, t).quantified } /// Recurses through the given type, normalizing associated types mentioned /// in it by replacing them by type variables and registering obligations to /// resolve later. This should be done once for every type we get from some /// type annotation (e.g. from a let type annotation, field type or function /// call). `make_ty` handles this already, but e.g. for field types we need /// to do it as well. pub(crate) fn normalize_associated_types_in(&mut self, ty: T) -> T where T: HasInterner + TypeFoldable, { fold_tys_and_consts( ty, |e, _| match e { Either::Left(ty) => Either::Left(match ty.kind(Interner) { TyKind::Alias(AliasTy::Projection(proj_ty)) => { self.normalize_projection_ty(proj_ty.clone()) } _ => ty, }), Either::Right(c) => Either::Right(match &c.data(Interner).value { chalk_ir::ConstValue::Concrete(cc) => match &cc.interned { crate::ConstScalar::UnevaluatedConst(c_id, subst) => { // FIXME: Ideally here we should do everything that we do with type alias, i.e. adding a variable // and registering an obligation. But it needs chalk support, so we handle the most basic // case (a non associated const without generic parameters) manually. if subst.len(Interner) == 0 { if let Ok(eval) = self.db.const_eval(*c_id, subst.clone(), None) { eval } else { unknown_const(c.data(Interner).ty.clone()) } } else { unknown_const(c.data(Interner).ty.clone()) } } _ => c, }, _ => c, }), }, DebruijnIndex::INNERMOST, ) } pub(crate) fn normalize_projection_ty(&mut self, proj_ty: ProjectionTy) -> Ty { let var = self.new_type_var(); let alias_eq = AliasEq { alias: AliasTy::Projection(proj_ty), ty: var.clone() }; let obligation = alias_eq.cast(Interner); self.register_obligation(obligation); var } fn modify_type_variable_flag(&mut self, var: InferenceVar, cb: F) where F: FnOnce(&mut TypeVariableFlags), { let idx = var.index() as usize; if self.type_variable_table.len() <= idx { self.extend_type_variable_table(idx); } if let Some(f) = self.type_variable_table.get_mut(idx) { cb(f); } } fn extend_type_variable_table(&mut self, to_index: usize) { let count = to_index - self.type_variable_table.len() + 1; self.type_variable_table.extend(iter::repeat(TypeVariableFlags::default()).take(count)); } fn new_var(&mut self, kind: TyVariableKind, diverging: bool) -> Ty { let var = self.var_unification_table.new_variable(UniverseIndex::ROOT); // Chalk might have created some type variables for its own purposes that we don't know about... self.extend_type_variable_table(var.index() as usize); assert_eq!(var.index() as usize, self.type_variable_table.len() - 1); let flags = self.type_variable_table.get_mut(var.index() as usize).unwrap(); if diverging { *flags |= TypeVariableFlags::DIVERGING; } if matches!(kind, TyVariableKind::Integer) { *flags |= TypeVariableFlags::INTEGER; } else if matches!(kind, TyVariableKind::Float) { *flags |= TypeVariableFlags::FLOAT; } var.to_ty_with_kind(Interner, kind) } pub(crate) fn new_type_var(&mut self) -> Ty { self.new_var(TyVariableKind::General, false) } pub(crate) fn new_integer_var(&mut self) -> Ty { self.new_var(TyVariableKind::Integer, false) } pub(crate) fn new_float_var(&mut self) -> Ty { self.new_var(TyVariableKind::Float, false) } pub(crate) fn new_maybe_never_var(&mut self) -> Ty { self.new_var(TyVariableKind::General, true) } pub(crate) fn new_const_var(&mut self, ty: Ty) -> Const { let var = self.var_unification_table.new_variable(UniverseIndex::ROOT); var.to_const(Interner, ty) } pub(crate) fn new_lifetime_var(&mut self) -> Lifetime { let var = self.var_unification_table.new_variable(UniverseIndex::ROOT); var.to_lifetime(Interner) } pub(crate) fn resolve_with_fallback( &mut self, t: T, fallback: &dyn Fn(InferenceVar, VariableKind, GenericArg, DebruijnIndex) -> GenericArg, ) -> T where T: HasInterner + TypeFoldable, { self.resolve_with_fallback_inner(&mut Vec::new(), t, &fallback) } pub(crate) fn fresh_subst(&mut self, binders: &[CanonicalVarKind]) -> Substitution { Substitution::from_iter( Interner, binders.iter().map(|kind| { let param_infer_var = kind.map_ref(|&ui| self.var_unification_table.new_variable(ui)); param_infer_var.to_generic_arg(Interner) }), ) } pub(crate) fn instantiate_canonical(&mut self, canonical: Canonical) -> T where T: HasInterner + TypeFoldable + std::fmt::Debug, { let subst = self.fresh_subst(canonical.binders.as_slice(Interner)); subst.apply(canonical.value, Interner) } fn resolve_with_fallback_inner( &mut self, var_stack: &mut Vec, t: T, fallback: &dyn Fn(InferenceVar, VariableKind, GenericArg, DebruijnIndex) -> GenericArg, ) -> T where T: HasInterner + TypeFoldable, { t.fold_with( &mut resolve::Resolver { table: self, var_stack, fallback }, DebruijnIndex::INNERMOST, ) } pub(crate) fn resolve_completely(&mut self, t: T) -> T where T: HasInterner + TypeFoldable, { self.resolve_with_fallback(t, &|_, _, d, _| d) } /// Apply a fallback to unresolved scalar types. Integer type variables and float type /// variables are replaced with i32 and f64, respectively. /// /// This method is only intended to be called just before returning inference results (i.e. in /// `InferenceContext::resolve_all()`). /// /// FIXME: This method currently doesn't apply fallback to unconstrained general type variables /// whereas rustc replaces them with `()` or `!`. pub(super) fn fallback_if_possible(&mut self) { let int_fallback = TyKind::Scalar(Scalar::Int(IntTy::I32)).intern(Interner); let float_fallback = TyKind::Scalar(Scalar::Float(FloatTy::F64)).intern(Interner); let scalar_vars: Vec<_> = self .type_variable_table .iter() .enumerate() .filter_map(|(index, flags)| { let kind = if flags.contains(TypeVariableFlags::INTEGER) { TyVariableKind::Integer } else if flags.contains(TypeVariableFlags::FLOAT) { TyVariableKind::Float } else { return None; }; // FIXME: This is not really the nicest way to get `InferenceVar`s. Can we get them // without directly constructing them from `index`? let var = InferenceVar::from(index as u32).to_ty(Interner, kind); Some(var) }) .collect(); for var in scalar_vars { let maybe_resolved = self.resolve_ty_shallow(&var); if let TyKind::InferenceVar(_, kind) = maybe_resolved.kind(Interner) { let fallback = match kind { TyVariableKind::Integer => &int_fallback, TyVariableKind::Float => &float_fallback, TyVariableKind::General => unreachable!(), }; self.unify(&var, fallback); } } } /// Unify two relatable values (e.g. `Ty`) and register new trait goals that arise from that. #[tracing::instrument(skip_all)] pub(crate) fn unify>(&mut self, ty1: &T, ty2: &T) -> bool { let result = match self.try_unify(ty1, ty2) { Ok(r) => r, Err(_) => return false, }; self.register_infer_ok(result); true } /// Unify two relatable values (e.g. `Ty`) and check whether trait goals which arise from that could be fulfilled pub(crate) fn unify_deeply>(&mut self, ty1: &T, ty2: &T) -> bool { let result = match self.try_unify(ty1, ty2) { Ok(r) => r, Err(_) => return false, }; result.goals.iter().all(|goal| { let canonicalized = self.canonicalize_with_free_vars(goal.clone()); self.try_resolve_obligation(&canonicalized).is_some() }) } /// Unify two relatable values (e.g. `Ty`) and return new trait goals arising from it, so the /// caller needs to deal with them. pub(crate) fn try_unify>( &mut self, t1: &T, t2: &T, ) -> InferResult<()> { match self.var_unification_table.relate( Interner, &self.db, &self.trait_env.env, chalk_ir::Variance::Invariant, t1, t2, ) { Ok(result) => Ok(InferOk { goals: result.goals, value: () }), Err(chalk_ir::NoSolution) => Err(TypeError), } } /// If `ty` is a type variable with known type, returns that type; /// otherwise, return ty. pub(crate) fn resolve_ty_shallow(&mut self, ty: &Ty) -> Ty { self.resolve_obligations_as_possible(); self.var_unification_table.normalize_ty_shallow(Interner, ty).unwrap_or_else(|| ty.clone()) } pub(crate) fn snapshot(&mut self) -> InferenceTableSnapshot { let var_table_snapshot = self.var_unification_table.snapshot(); let type_variable_table = self.type_variable_table.clone(); let pending_obligations = self.pending_obligations.clone(); InferenceTableSnapshot { var_table_snapshot, pending_obligations, type_variable_table } } #[tracing::instrument(skip_all)] pub(crate) fn rollback_to(&mut self, snapshot: InferenceTableSnapshot) { self.var_unification_table.rollback_to(snapshot.var_table_snapshot); self.type_variable_table = snapshot.type_variable_table; self.pending_obligations = snapshot.pending_obligations; } #[tracing::instrument(skip_all)] pub(crate) fn run_in_snapshot(&mut self, f: impl FnOnce(&mut InferenceTable<'_>) -> T) -> T { let snapshot = self.snapshot(); let result = f(self); self.rollback_to(snapshot); result } /// Checks an obligation without registering it. Useful mostly to check /// whether a trait *might* be implemented before deciding to 'lock in' the /// choice (during e.g. method resolution or deref). pub(crate) fn try_obligation(&mut self, goal: Goal) -> Option { let in_env = InEnvironment::new(&self.trait_env.env, goal); let canonicalized = self.canonicalize(in_env); self.db.trait_solve(self.trait_env.krate, self.trait_env.block, canonicalized) } pub(crate) fn register_obligation(&mut self, goal: Goal) { let in_env = InEnvironment::new(&self.trait_env.env, goal); self.register_obligation_in_env(in_env) } fn register_obligation_in_env(&mut self, goal: InEnvironment) { let canonicalized = self.canonicalize_with_free_vars(goal); let solution = self.try_resolve_obligation(&canonicalized); if matches!(solution, Some(Solution::Ambig(_))) { self.pending_obligations.push(canonicalized); } } pub(crate) fn register_infer_ok(&mut self, infer_ok: InferOk) { infer_ok.goals.into_iter().for_each(|goal| self.register_obligation_in_env(goal)); } pub(crate) fn resolve_obligations_as_possible(&mut self) { let _span = tracing::info_span!("resolve_obligations_as_possible").entered(); let mut changed = true; let mut obligations = mem::take(&mut self.resolve_obligations_buffer); while mem::take(&mut changed) { mem::swap(&mut self.pending_obligations, &mut obligations); for canonicalized in obligations.drain(..) { if !self.check_changed(&canonicalized) { self.pending_obligations.push(canonicalized); continue; } changed = true; let uncanonical = chalk_ir::Substitute::apply( &canonicalized.free_vars, canonicalized.value.value, Interner, ); self.register_obligation_in_env(uncanonical); } } self.resolve_obligations_buffer = obligations; self.resolve_obligations_buffer.clear(); } pub(crate) fn fudge_inference>( &mut self, f: impl FnOnce(&mut Self) -> T, ) -> T { use chalk_ir::fold::TypeFolder; #[derive(chalk_derive::FallibleTypeFolder)] #[has_interner(Interner)] struct VarFudger<'a, 'b> { table: &'a mut InferenceTable<'b>, highest_known_var: InferenceVar, } impl TypeFolder for VarFudger<'_, '_> { fn as_dyn(&mut self) -> &mut dyn TypeFolder { self } fn interner(&self) -> Interner { Interner } fn fold_inference_ty( &mut self, var: chalk_ir::InferenceVar, kind: TyVariableKind, _outer_binder: chalk_ir::DebruijnIndex, ) -> chalk_ir::Ty { if var < self.highest_known_var { var.to_ty(Interner, kind) } else { self.table.new_type_var() } } fn fold_inference_lifetime( &mut self, var: chalk_ir::InferenceVar, _outer_binder: chalk_ir::DebruijnIndex, ) -> chalk_ir::Lifetime { if var < self.highest_known_var { var.to_lifetime(Interner) } else { self.table.new_lifetime_var() } } fn fold_inference_const( &mut self, ty: chalk_ir::Ty, var: chalk_ir::InferenceVar, _outer_binder: chalk_ir::DebruijnIndex, ) -> chalk_ir::Const { if var < self.highest_known_var { var.to_const(Interner, ty) } else { self.table.new_const_var(ty) } } } let snapshot = self.snapshot(); let highest_known_var = self.new_type_var().inference_var(Interner).expect("inference_var"); let result = f(self); self.rollback_to(snapshot); result .fold_with(&mut VarFudger { table: self, highest_known_var }, DebruijnIndex::INNERMOST) } /// This checks whether any of the free variables in the `canonicalized` /// have changed (either been unified with another variable, or with a /// value). If this is not the case, we don't need to try to solve the goal /// again -- it'll give the same result as last time. fn check_changed(&mut self, canonicalized: &Canonicalized>) -> bool { canonicalized.free_vars.iter().any(|var| { let iv = match var.data(Interner) { GenericArgData::Ty(ty) => ty.inference_var(Interner), GenericArgData::Lifetime(lt) => lt.inference_var(Interner), GenericArgData::Const(c) => c.inference_var(Interner), } .expect("free var is not inference var"); if self.var_unification_table.probe_var(iv).is_some() { return true; } let root = self.var_unification_table.inference_var_root(iv); iv != root }) } fn try_resolve_obligation( &mut self, canonicalized: &Canonicalized>, ) -> Option> { let solution = self.db.trait_solve( self.trait_env.krate, self.trait_env.block, canonicalized.value.clone(), ); match &solution { Some(Solution::Unique(canonical_subst)) => { canonicalized.apply_solution( self, Canonical { binders: canonical_subst.binders.clone(), // FIXME: handle constraints value: canonical_subst.value.subst.clone(), }, ); } Some(Solution::Ambig(Guidance::Definite(substs))) => { canonicalized.apply_solution(self, substs.clone()); } Some(_) => { // FIXME use this when trying to resolve everything at the end } None => { // FIXME obligation cannot be fulfilled => diagnostic } } solution } pub(crate) fn callable_sig( &mut self, ty: &Ty, num_args: usize, ) -> Option<(Option, Vec, Ty)> { match ty.callable_sig(self.db) { Some(sig) => Some((None, sig.params().to_vec(), sig.ret().clone())), None => { let (f, args_ty, return_ty) = self.callable_sig_from_fn_trait(ty, num_args)?; Some((Some(f), args_ty, return_ty)) } } } fn callable_sig_from_fn_trait( &mut self, ty: &Ty, num_args: usize, ) -> Option<(FnTrait, Vec, Ty)> { for (fn_trait_name, output_assoc_name, subtraits) in [ (FnTrait::FnOnce, sym::Output.clone(), &[FnTrait::Fn, FnTrait::FnMut][..]), (FnTrait::AsyncFnMut, sym::CallRefFuture.clone(), &[FnTrait::AsyncFn]), (FnTrait::AsyncFnOnce, sym::CallOnceFuture.clone(), &[]), ] { let krate = self.trait_env.krate; let fn_trait = fn_trait_name.get_id(self.db, krate)?; let trait_data = self.db.trait_data(fn_trait); let output_assoc_type = trait_data.associated_type_by_name(&Name::new_symbol_root(output_assoc_name))?; let mut arg_tys = Vec::with_capacity(num_args); let arg_ty = TyBuilder::tuple(num_args) .fill(|it| { let arg = match it { ParamKind::Type => self.new_type_var(), ParamKind::Lifetime => unreachable!("Tuple with lifetime parameter"), ParamKind::Const(_) => unreachable!("Tuple with const parameter"), }; arg_tys.push(arg.clone()); arg.cast(Interner) }) .build(); let b = TyBuilder::trait_ref(self.db, fn_trait); if b.remaining() != 2 { return None; } let mut trait_ref = b.push(ty.clone()).push(arg_ty).build(); let projection = TyBuilder::assoc_type_projection( self.db, output_assoc_type, Some(trait_ref.substitution.clone()), ) .fill_with_unknown() .build(); let trait_env = self.trait_env.env.clone(); let obligation = InEnvironment { goal: trait_ref.clone().cast(Interner), environment: trait_env.clone(), }; let canonical = self.canonicalize(obligation.clone()); if self.db.trait_solve(krate, self.trait_env.block, canonical.cast(Interner)).is_some() { self.register_obligation(obligation.goal); let return_ty = self.normalize_projection_ty(projection); for &fn_x in subtraits { let fn_x_trait = fn_x.get_id(self.db, krate)?; trait_ref.trait_id = to_chalk_trait_id(fn_x_trait); let obligation: chalk_ir::InEnvironment> = InEnvironment { goal: trait_ref.clone().cast(Interner), environment: trait_env.clone(), }; let canonical = self.canonicalize(obligation.clone()); if self .db .trait_solve(krate, self.trait_env.block, canonical.cast(Interner)) .is_some() { return Some((fn_x, arg_tys, return_ty)); } } return Some((fn_trait_name, arg_tys, return_ty)); } } None } pub(super) fn insert_type_vars(&mut self, ty: T) -> T where T: HasInterner + TypeFoldable, { fold_generic_args( ty, |arg, _| match arg { GenericArgData::Ty(ty) => GenericArgData::Ty(self.insert_type_vars_shallow(ty)), // FIXME: insert lifetime vars once LifetimeData::InferenceVar // and specific error variant for lifetimes start being constructed GenericArgData::Lifetime(lt) => GenericArgData::Lifetime(lt), GenericArgData::Const(c) => { GenericArgData::Const(self.insert_const_vars_shallow(c)) } }, DebruijnIndex::INNERMOST, ) } /// Replaces `Ty::Error` by a new type var, so we can maybe still infer it. pub(super) fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty { match ty.kind(Interner) { TyKind::Error => self.new_type_var(), TyKind::InferenceVar(..) => { let ty_resolved = self.resolve_ty_shallow(&ty); if ty_resolved.is_unknown() { self.new_type_var() } else { ty } } _ => ty, } } /// Replaces ConstScalar::Unknown by a new type var, so we can maybe still infer it. pub(super) fn insert_const_vars_shallow(&mut self, c: Const) -> Const { let data = c.data(Interner); match &data.value { ConstValue::Concrete(cc) => match &cc.interned { crate::ConstScalar::Unknown => self.new_const_var(data.ty.clone()), // try to evaluate unevaluated const. Replace with new var if const eval failed. crate::ConstScalar::UnevaluatedConst(id, subst) => { if let Ok(eval) = self.db.const_eval(*id, subst.clone(), None) { eval } else { self.new_const_var(data.ty.clone()) } } _ => c, }, _ => c, } } /// Check if given type is `Sized` or not pub(crate) fn is_sized(&mut self, ty: &Ty) -> bool { let mut ty = ty.clone(); { let mut structs = SmallVec::<[_; 8]>::new(); // Must use a loop here and not recursion because otherwise users will conduct completely // artificial examples of structs that have themselves as the tail field and complain r-a crashes. while let Some((AdtId::StructId(id), subst)) = ty.as_adt() { let struct_data = self.db.struct_data(id); if let Some((last_field, _)) = struct_data.variant_data.fields().iter().next_back() { let last_field_ty = self.db.field_types(id.into())[last_field] .clone() .substitute(Interner, subst); if structs.contains(&ty) { // A struct recursively contains itself as a tail field somewhere. return true; // Don't overload the users with too many errors. } structs.push(ty); // Structs can have DST as its last field and such cases are not handled // as unsized by the chalk, so we do this manually. ty = last_field_ty; } else { break; }; } } // Early return for some obvious types if matches!( ty.kind(Interner), TyKind::Scalar(..) | TyKind::Ref(..) | TyKind::Raw(..) | TyKind::Never | TyKind::FnDef(..) | TyKind::Array(..) | TyKind::Function(_) ) { return true; } let Some(sized) = self .db .lang_item(self.trait_env.krate, LangItem::Sized) .and_then(|sized| sized.as_trait()) else { return false; }; let sized_pred = WhereClause::Implemented(TraitRef { trait_id: to_chalk_trait_id(sized), substitution: Substitution::from1(Interner, ty.clone()), }); let goal = GoalData::DomainGoal(chalk_ir::DomainGoal::Holds(sized_pred)).intern(Interner); matches!(self.try_obligation(goal), Some(Solution::Unique(_))) } } impl fmt::Debug for InferenceTable<'_> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("InferenceTable").field("num_vars", &self.type_variable_table.len()).finish() } } mod resolve { use super::InferenceTable; use crate::{ ConcreteConst, Const, ConstData, ConstScalar, ConstValue, DebruijnIndex, GenericArg, InferenceVar, Interner, Lifetime, Ty, TyVariableKind, VariableKind, }; use chalk_ir::{ cast::Cast, fold::{TypeFoldable, TypeFolder}, }; #[derive(chalk_derive::FallibleTypeFolder)] #[has_interner(Interner)] pub(super) struct Resolver< 'a, 'b, F: Fn(InferenceVar, VariableKind, GenericArg, DebruijnIndex) -> GenericArg, > { pub(super) table: &'a mut InferenceTable<'b>, pub(super) var_stack: &'a mut Vec, pub(super) fallback: F, } impl TypeFolder for Resolver<'_, '_, F> where F: Fn(InferenceVar, VariableKind, GenericArg, DebruijnIndex) -> GenericArg, { fn as_dyn(&mut self) -> &mut dyn TypeFolder { self } fn interner(&self) -> Interner { Interner } fn fold_inference_ty( &mut self, var: InferenceVar, kind: TyVariableKind, outer_binder: DebruijnIndex, ) -> Ty { let var = self.table.var_unification_table.inference_var_root(var); if self.var_stack.contains(&var) { // recursive type let default = self.table.fallback_value(var, kind).cast(Interner); return (self.fallback)(var, VariableKind::Ty(kind), default, outer_binder) .assert_ty_ref(Interner) .clone(); } let result = if let Some(known_ty) = self.table.var_unification_table.probe_var(var) { // known_ty may contain other variables that are known by now self.var_stack.push(var); let result = known_ty.fold_with(self, outer_binder); self.var_stack.pop(); result.assert_ty_ref(Interner).clone() } else { let default = self.table.fallback_value(var, kind).cast(Interner); (self.fallback)(var, VariableKind::Ty(kind), default, outer_binder) .assert_ty_ref(Interner) .clone() }; result } fn fold_inference_const( &mut self, ty: Ty, var: InferenceVar, outer_binder: DebruijnIndex, ) -> Const { let var = self.table.var_unification_table.inference_var_root(var); let default = ConstData { ty: ty.clone(), value: ConstValue::Concrete(ConcreteConst { interned: ConstScalar::Unknown }), } .intern(Interner) .cast(Interner); if self.var_stack.contains(&var) { // recursive return (self.fallback)(var, VariableKind::Const(ty), default, outer_binder) .assert_const_ref(Interner) .clone(); } if let Some(known_ty) = self.table.var_unification_table.probe_var(var) { // known_ty may contain other variables that are known by now self.var_stack.push(var); let result = known_ty.fold_with(self, outer_binder); self.var_stack.pop(); result.assert_const_ref(Interner).clone() } else { (self.fallback)(var, VariableKind::Const(ty), default, outer_binder) .assert_const_ref(Interner) .clone() } } fn fold_inference_lifetime( &mut self, _var: InferenceVar, _outer_binder: DebruijnIndex, ) -> Lifetime { // fall back all lifetimes to 'error -- currently we don't deal // with any lifetimes, but we can sometimes get some lifetime // variables through Chalk's unification, and this at least makes // sure we don't leak them outside of inference crate::error_lifetime() } } }