2023-03-17 13:08:36 +03:30

1405 lines
59 KiB
Rust

//! This module provides a MIR interpreter, which is used in const eval.
use std::{borrow::Cow, collections::HashMap, iter, sync::Arc};
use base_db::CrateId;
use chalk_ir::{
fold::{FallibleTypeFolder, TypeFoldable, TypeSuperFoldable},
DebruijnIndex, TyKind,
};
use hir_def::{
builtin_type::BuiltinType,
lang_item::{lang_attr, LangItem},
layout::{Layout, LayoutError, RustcEnumVariantIdx, TagEncoding, Variants},
AdtId, DefWithBodyId, EnumVariantId, FunctionId, HasModule, ItemContainerId, Lookup, VariantId,
};
use intern::Interned;
use la_arena::ArenaMap;
use crate::{
consteval::{intern_const_scalar, ConstEvalError},
db::HirDatabase,
from_placeholder_idx,
infer::{normalize, PointerCast},
layout::layout_of_ty,
mapping::from_chalk,
method_resolution::{is_dyn_method, lookup_impl_method},
traits::FnTrait,
CallableDefId, Const, ConstScalar, FnDefId, Interner, MemoryMap, Substitution,
TraitEnvironment, Ty, TyBuilder, TyExt, GenericArgData,
};
use super::{
const_as_usize, return_slot, AggregateKind, BinOp, CastKind, LocalId, MirBody, MirLowerError,
Operand, Place, ProjectionElem, Rvalue, StatementKind, Terminator, UnOp,
};
macro_rules! from_bytes {
($ty:tt, $value:expr) => {
($ty::from_le_bytes(match ($value).try_into() {
Ok(x) => x,
Err(_) => return Err(MirEvalError::TypeError("mismatched size")),
}))
};
}
#[derive(Debug, Default)]
struct VTableMap {
ty_to_id: HashMap<Ty, usize>,
id_to_ty: Vec<Ty>,
}
impl VTableMap {
fn id(&mut self, ty: Ty) -> usize {
if let Some(x) = self.ty_to_id.get(&ty) {
return *x;
}
let id = self.id_to_ty.len();
self.id_to_ty.push(ty.clone());
self.ty_to_id.insert(ty, id);
id
}
fn ty(&self, id: usize) -> Result<&Ty> {
self.id_to_ty.get(id).ok_or(MirEvalError::InvalidVTableId(id))
}
fn ty_of_bytes(&self, bytes: &[u8]) -> Result<&Ty> {
let id = from_bytes!(usize, bytes);
self.ty(id)
}
}
pub struct Evaluator<'a> {
db: &'a dyn HirDatabase,
trait_env: Arc<TraitEnvironment>,
stack: Vec<u8>,
heap: Vec<u8>,
/// We don't really have function pointers, i.e. pointers to some assembly instructions that we can run. Instead, we
/// store the type as an interned id in place of function and vtable pointers, and we recover back the type at the
/// time of use.
vtable_map: VTableMap,
crate_id: CrateId,
// FIXME: This is a workaround, see the comment on `interpret_mir`
assert_placeholder_ty_is_unused: bool,
/// A general limit on execution, to prevent non terminating programs from breaking r-a main process
execution_limit: usize,
/// An additional limit on stack depth, to prevent stack overflow
stack_depth_limit: usize,
}
#[derive(Debug, Clone, Copy)]
enum Address {
Stack(usize),
Heap(usize),
}
use Address::*;
struct Interval {
addr: Address,
size: usize,
}
impl Interval {
fn new(addr: Address, size: usize) -> Self {
Self { addr, size }
}
fn get<'a>(&self, memory: &'a Evaluator<'a>) -> Result<&'a [u8]> {
memory.read_memory(self.addr, self.size)
}
}
enum IntervalOrOwned {
Owned(Vec<u8>),
Borrowed(Interval),
}
impl IntervalOrOwned {
pub(crate) fn to_vec(self, memory: &Evaluator<'_>) -> Result<Vec<u8>> {
Ok(match self {
IntervalOrOwned::Owned(o) => o,
IntervalOrOwned::Borrowed(b) => b.get(memory)?.to_vec(),
})
}
}
impl Address {
fn from_bytes(x: &[u8]) -> Result<Self> {
Ok(Address::from_usize(from_bytes!(usize, x)))
}
fn from_usize(x: usize) -> Self {
if x > usize::MAX / 2 {
Stack(usize::MAX - x)
} else {
Heap(x)
}
}
fn to_bytes(&self) -> Vec<u8> {
usize::to_le_bytes(self.to_usize()).to_vec()
}
fn to_usize(&self) -> usize {
let as_num = match self {
Stack(x) => usize::MAX - *x,
Heap(x) => *x,
};
as_num
}
fn map(&self, f: impl FnOnce(usize) -> usize) -> Address {
match self {
Stack(x) => Stack(f(*x)),
Heap(x) => Heap(f(*x)),
}
}
fn offset(&self, offset: usize) -> Address {
self.map(|x| x + offset)
}
}
#[derive(Clone, PartialEq, Eq)]
pub enum MirEvalError {
ConstEvalError(Box<ConstEvalError>),
LayoutError(LayoutError, Ty),
/// Means that code had type errors (or mismatched args) and we shouldn't generate mir in first place.
TypeError(&'static str),
/// Means that code had undefined behavior. We don't try to actively detect UB, but if it was detected
/// then use this type of error.
UndefinedBehavior(&'static str),
Panic,
MirLowerError(FunctionId, MirLowerError),
TypeIsUnsized(Ty, &'static str),
NotSupported(String),
InvalidConst(Const),
InFunction(FunctionId, Box<MirEvalError>),
ExecutionLimitExceeded,
StackOverflow,
TargetDataLayoutNotAvailable,
InvalidVTableId(usize),
}
impl std::fmt::Debug for MirEvalError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Self::ConstEvalError(arg0) => f.debug_tuple("ConstEvalError").field(arg0).finish(),
Self::LayoutError(arg0, arg1) => {
f.debug_tuple("LayoutError").field(arg0).field(arg1).finish()
}
Self::TypeError(arg0) => f.debug_tuple("TypeError").field(arg0).finish(),
Self::UndefinedBehavior(arg0) => {
f.debug_tuple("UndefinedBehavior").field(arg0).finish()
}
Self::Panic => write!(f, "Panic"),
Self::TargetDataLayoutNotAvailable => write!(f, "TargetDataLayoutNotAvailable"),
Self::TypeIsUnsized(ty, it) => write!(f, "{ty:?} is unsized. {it} should be sized."),
Self::ExecutionLimitExceeded => write!(f, "execution limit exceeded"),
Self::StackOverflow => write!(f, "stack overflow"),
Self::MirLowerError(arg0, arg1) => {
f.debug_tuple("MirLowerError").field(arg0).field(arg1).finish()
}
Self::InvalidVTableId(arg0) => f.debug_tuple("InvalidVTableId").field(arg0).finish(),
Self::NotSupported(arg0) => f.debug_tuple("NotSupported").field(arg0).finish(),
Self::InvalidConst(arg0) => {
let data = &arg0.data(Interner);
f.debug_struct("InvalidConst").field("ty", &data.ty).field("value", &arg0).finish()
}
Self::InFunction(func, e) => {
let mut e = &**e;
let mut stack = vec![*func];
while let Self::InFunction(f, next_e) = e {
e = &next_e;
stack.push(*f);
}
f.debug_struct("WithStack").field("error", e).field("stack", &stack).finish()
}
}
}
}
macro_rules! not_supported {
($x: expr) => {
return Err(MirEvalError::NotSupported(format!($x)))
};
}
impl From<ConstEvalError> for MirEvalError {
fn from(value: ConstEvalError) -> Self {
match value {
_ => MirEvalError::ConstEvalError(Box::new(value)),
}
}
}
type Result<T> = std::result::Result<T, MirEvalError>;
struct Locals<'a> {
ptr: &'a ArenaMap<LocalId, Address>,
body: &'a MirBody,
subst: &'a Substitution,
}
pub fn interpret_mir(
db: &dyn HirDatabase,
body: &MirBody,
// FIXME: This is workaround. Ideally, const generics should have a separate body (issue #7434), but now
// they share their body with their parent, so in MIR lowering we have locals of the parent body, which
// might have placeholders. With this argument, we (wrongly) assume that every placeholder type has
// a zero size, hoping that they are all outside of our current body. Even without a fix for #7434, we can
// (and probably should) do better here, for example by excluding bindings outside of the target expression.
assert_placeholder_ty_is_unused: bool,
) -> Result<Const> {
let ty = body.locals[return_slot()].ty.clone();
let mut evaluator = Evaluator::new(db, body, assert_placeholder_ty_is_unused);
let bytes = evaluator.interpret_mir_with_no_arg(&body)?;
let memory_map = evaluator.create_memory_map(
&bytes,
&ty,
&Locals { ptr: &ArenaMap::new(), body: &body, subst: &Substitution::empty(Interner) },
)?;
return Ok(intern_const_scalar(ConstScalar::Bytes(bytes, memory_map), ty));
}
impl Evaluator<'_> {
pub fn new<'a>(
db: &'a dyn HirDatabase,
body: &MirBody,
assert_placeholder_ty_is_unused: bool,
) -> Evaluator<'a> {
let crate_id = body.owner.module(db.upcast()).krate();
let trait_env = db.trait_environment_for_body(body.owner);
Evaluator {
stack: vec![0],
heap: vec![0],
vtable_map: VTableMap::default(),
db,
trait_env,
crate_id,
assert_placeholder_ty_is_unused,
stack_depth_limit: 100,
execution_limit: 100_000,
}
}
fn place_addr(&self, p: &Place, locals: &Locals<'_>) -> Result<Address> {
Ok(self.place_addr_and_ty(p, locals)?.0)
}
fn ptr_size(&self) -> usize {
match self.db.target_data_layout(self.crate_id) {
Some(x) => x.pointer_size.bytes_usize(),
None => 8,
}
}
fn place_addr_and_ty<'a>(&'a self, p: &Place, locals: &'a Locals<'a>) -> Result<(Address, Ty)> {
let mut addr = locals.ptr[p.local];
let mut ty: Ty =
self.ty_filler(&locals.body.locals[p.local].ty, locals.subst, locals.body.owner)?;
for proj in &p.projection {
match proj {
ProjectionElem::Deref => {
ty = match &ty.data(Interner).kind {
TyKind::Raw(_, inner) | TyKind::Ref(_, _, inner) => inner.clone(),
_ => {
return Err(MirEvalError::TypeError(
"Overloaded deref in MIR is disallowed",
))
}
};
let x = from_bytes!(usize, self.read_memory(addr, self.ptr_size())?);
addr = Address::from_usize(x);
}
ProjectionElem::Index(op) => {
let offset =
from_bytes!(usize, self.read_memory(locals.ptr[*op], self.ptr_size())?);
match &ty.data(Interner).kind {
TyKind::Ref(_, _, inner) => match &inner.data(Interner).kind {
TyKind::Slice(inner) => {
ty = inner.clone();
let ty_size = self.size_of_sized(
&ty,
locals,
"slice inner type should be sized",
)?;
let value = self.read_memory(addr, self.ptr_size() * 2)?;
addr = Address::from_bytes(&value[0..8])?.offset(ty_size * offset);
}
x => not_supported!("MIR index for ref type {x:?}"),
},
TyKind::Array(inner, _) | TyKind::Slice(inner) => {
ty = inner.clone();
let ty_size = self.size_of_sized(
&ty,
locals,
"array inner type should be sized",
)?;
addr = addr.offset(ty_size * offset);
}
x => not_supported!("MIR index for type {x:?}"),
}
}
&ProjectionElem::TupleField(f) => match &ty.data(Interner).kind {
TyKind::Tuple(_, subst) => {
let layout = self.layout(&ty)?;
ty = subst
.as_slice(Interner)
.get(f)
.ok_or(MirEvalError::TypeError("not enough tuple fields"))?
.assert_ty_ref(Interner)
.clone();
let offset = layout.fields.offset(f).bytes_usize();
addr = addr.offset(offset);
}
_ => return Err(MirEvalError::TypeError("Only tuple has tuple fields")),
},
ProjectionElem::Field(f) => match &ty.data(Interner).kind {
TyKind::Adt(adt, subst) => {
let layout = self.layout_adt(adt.0, subst.clone())?;
let variant_layout = match &layout.variants {
Variants::Single { .. } => &layout,
Variants::Multiple { variants, .. } => {
&variants[match f.parent {
hir_def::VariantId::EnumVariantId(x) => {
RustcEnumVariantIdx(x.local_id)
}
_ => {
return Err(MirEvalError::TypeError(
"Multivariant layout only happens for enums",
))
}
}]
}
};
ty = self.db.field_types(f.parent)[f.local_id]
.clone()
.substitute(Interner, subst);
let offset = variant_layout
.fields
.offset(u32::from(f.local_id.into_raw()) as usize)
.bytes_usize();
addr = addr.offset(offset);
}
_ => return Err(MirEvalError::TypeError("Only adt has fields")),
},
ProjectionElem::ConstantIndex { .. } => {
not_supported!("constant index")
}
ProjectionElem::Subslice { .. } => not_supported!("subslice"),
ProjectionElem::OpaqueCast(_) => not_supported!("opaque cast"),
}
}
Ok((addr, ty))
}
fn layout(&self, ty: &Ty) -> Result<Layout> {
layout_of_ty(self.db, ty, self.crate_id)
.map_err(|e| MirEvalError::LayoutError(e, ty.clone()))
}
fn layout_adt(&self, adt: AdtId, subst: Substitution) -> Result<Layout> {
self.db.layout_of_adt(adt, subst.clone()).map_err(|e| {
MirEvalError::LayoutError(e, TyKind::Adt(chalk_ir::AdtId(adt), subst).intern(Interner))
})
}
fn place_ty<'a>(&'a self, p: &Place, locals: &'a Locals<'a>) -> Result<Ty> {
Ok(self.place_addr_and_ty(p, locals)?.1)
}
fn operand_ty<'a>(&'a self, o: &'a Operand, locals: &'a Locals<'a>) -> Result<Ty> {
Ok(match o {
Operand::Copy(p) | Operand::Move(p) => self.place_ty(p, locals)?,
Operand::Constant(c) => c.data(Interner).ty.clone(),
})
}
fn interpret_mir(
&mut self,
body: &MirBody,
args: impl Iterator<Item = Vec<u8>>,
subst: Substitution,
) -> Result<Vec<u8>> {
if let Some(x) = self.stack_depth_limit.checked_sub(1) {
self.stack_depth_limit = x;
} else {
return Err(MirEvalError::StackOverflow);
}
let mut current_block_idx = body.start_block;
let mut locals = Locals { ptr: &ArenaMap::new(), body: &body, subst: &subst };
let (locals_ptr, stack_size) = {
let mut stack_ptr = self.stack.len();
let addr = body
.locals
.iter()
.map(|(id, x)| {
let size =
self.size_of_sized(&x.ty, &locals, "no unsized local in extending stack")?;
let my_ptr = stack_ptr;
stack_ptr += size;
Ok((id, Stack(my_ptr)))
})
.collect::<Result<ArenaMap<LocalId, _>>>()?;
let stack_size = stack_ptr - self.stack.len();
(addr, stack_size)
};
locals.ptr = &locals_ptr;
self.stack.extend(iter::repeat(0).take(stack_size));
let mut remain_args = body.arg_count;
for ((_, addr), value) in locals_ptr.iter().skip(1).zip(args) {
self.write_memory(*addr, &value)?;
if remain_args == 0 {
return Err(MirEvalError::TypeError("more arguments provided"));
}
remain_args -= 1;
}
if remain_args > 0 {
return Err(MirEvalError::TypeError("not enough arguments provided"));
}
loop {
let current_block = &body.basic_blocks[current_block_idx];
if let Some(x) = self.execution_limit.checked_sub(1) {
self.execution_limit = x;
} else {
return Err(MirEvalError::ExecutionLimitExceeded);
}
for statement in &current_block.statements {
match &statement.kind {
StatementKind::Assign(l, r) => {
let addr = self.place_addr(l, &locals)?;
let result = self.eval_rvalue(r, &locals)?.to_vec(&self)?;
self.write_memory(addr, &result)?;
}
StatementKind::Deinit(_) => not_supported!("de-init statement"),
StatementKind::StorageLive(_)
| StatementKind::StorageDead(_)
| StatementKind::Nop => (),
}
}
let Some(terminator) = current_block.terminator.as_ref() else {
not_supported!("block without terminator");
};
match terminator {
Terminator::Goto { target } => {
current_block_idx = *target;
}
Terminator::Call {
func,
args,
destination,
target,
cleanup: _,
from_hir_call: _,
} => {
let fn_ty = self.operand_ty(func, &locals)?;
match &fn_ty.data(Interner).kind {
TyKind::Function(_) => {
let bytes = self.eval_operand(func, &locals)?;
self.exec_fn_pointer(bytes, destination, args, &locals)?;
}
TyKind::FnDef(def, generic_args) => {
self.exec_fn_def(*def, generic_args, destination, args, &locals)?;
}
x => not_supported!("unknown function type {x:?}"),
}
current_block_idx = target.expect("broken mir, function without target");
}
Terminator::SwitchInt { discr, targets } => {
let val = u128::from_le_bytes(pad16(
self.eval_operand(discr, &locals)?.get(&self)?,
false,
));
current_block_idx = targets.target_for_value(val);
}
Terminator::Return => {
let ty = body.locals[return_slot()].ty.clone();
self.stack_depth_limit += 1;
return Ok(self
.read_memory(
locals.ptr[return_slot()],
self.size_of_sized(&ty, &locals, "return type")?,
)?
.to_owned());
}
Terminator::Unreachable => {
return Err(MirEvalError::UndefinedBehavior("unreachable executed"));
}
_ => not_supported!("unknown terminator"),
}
}
}
fn eval_rvalue<'a>(
&'a mut self,
r: &'a Rvalue,
locals: &'a Locals<'a>,
) -> Result<IntervalOrOwned> {
use IntervalOrOwned::*;
Ok(match r {
Rvalue::Use(x) => Borrowed(self.eval_operand(x, locals)?),
Rvalue::Ref(_, p) => {
let addr = self.place_addr(p, locals)?;
Owned(addr.to_bytes())
}
Rvalue::Len(_) => not_supported!("rvalue len"),
Rvalue::UnaryOp(op, val) => {
let mut c = self.eval_operand(val, locals)?.get(&self)?;
let mut ty = self.operand_ty(val, locals)?;
while let TyKind::Ref(_, _, z) = ty.kind(Interner) {
ty = z.clone();
let size = self.size_of_sized(&ty, locals, "operand of unary op")?;
c = self.read_memory(Address::from_bytes(c)?, size)?;
}
let mut c = c.to_vec();
if ty.as_builtin() == Some(BuiltinType::Bool) {
c[0] = 1 - c[0];
} else {
match op {
UnOp::Not => c.iter_mut().for_each(|x| *x = !*x),
UnOp::Neg => {
c.iter_mut().for_each(|x| *x = !*x);
for k in c.iter_mut() {
let o;
(*k, o) = k.overflowing_add(1);
if !o {
break;
}
}
}
}
}
Owned(c)
}
Rvalue::CheckedBinaryOp(op, lhs, rhs) => {
let lc = self.eval_operand(lhs, locals)?;
let rc = self.eval_operand(rhs, locals)?;
let mut lc = lc.get(&self)?;
let mut rc = rc.get(&self)?;
let mut ty = self.operand_ty(lhs, locals)?;
while let TyKind::Ref(_, _, z) = ty.kind(Interner) {
ty = z.clone();
let size = self.size_of_sized(&ty, locals, "operand of binary op")?;
lc = self.read_memory(Address::from_bytes(lc)?, size)?;
rc = self.read_memory(Address::from_bytes(rc)?, size)?;
}
let is_signed = matches!(ty.as_builtin(), Some(BuiltinType::Int(_)));
let l128 = i128::from_le_bytes(pad16(lc, is_signed));
let r128 = i128::from_le_bytes(pad16(rc, is_signed));
match op {
BinOp::Ge | BinOp::Gt | BinOp::Le | BinOp::Lt | BinOp::Eq | BinOp::Ne => {
let r = match op {
BinOp::Ge => l128 >= r128,
BinOp::Gt => l128 > r128,
BinOp::Le => l128 <= r128,
BinOp::Lt => l128 < r128,
BinOp::Eq => l128 == r128,
BinOp::Ne => l128 != r128,
_ => unreachable!(),
};
let r = r as u8;
Owned(vec![r])
}
BinOp::BitAnd
| BinOp::BitOr
| BinOp::BitXor
| BinOp::Add
| BinOp::Mul
| BinOp::Div
| BinOp::Rem
| BinOp::Sub => {
let r = match op {
BinOp::Add => l128.overflowing_add(r128).0,
BinOp::Mul => l128.overflowing_mul(r128).0,
BinOp::Div => l128.checked_div(r128).ok_or(MirEvalError::Panic)?,
BinOp::Rem => l128.checked_rem(r128).ok_or(MirEvalError::Panic)?,
BinOp::Sub => l128.overflowing_sub(r128).0,
BinOp::BitAnd => l128 & r128,
BinOp::BitOr => l128 | r128,
BinOp::BitXor => l128 ^ r128,
_ => unreachable!(),
};
let r = r.to_le_bytes();
for &k in &r[lc.len()..] {
if k != 0 && (k != 255 || !is_signed) {
return Err(MirEvalError::Panic);
}
}
Owned(r[0..lc.len()].into())
}
BinOp::Shl | BinOp::Shr => {
let shift_amout = if r128 < 0 {
return Err(MirEvalError::Panic);
} else if r128 > 128 {
return Err(MirEvalError::Panic);
} else {
r128 as u8
};
let r = match op {
BinOp::Shl => l128 << shift_amout,
BinOp::Shr => l128 >> shift_amout,
_ => unreachable!(),
};
Owned(r.to_le_bytes()[0..lc.len()].into())
}
BinOp::Offset => not_supported!("offset binop"),
}
}
Rvalue::Discriminant(p) => {
let ty = self.place_ty(p, locals)?;
let bytes = self.eval_place(p, locals)?.get(&self)?;
let layout = self.layout(&ty)?;
let enum_id = 'b: {
match ty.kind(Interner) {
TyKind::Adt(e, _) => match e.0 {
AdtId::EnumId(e) => break 'b e,
_ => (),
},
_ => (),
}
return Ok(Owned(0u128.to_le_bytes().to_vec()));
};
match layout.variants {
Variants::Single { index } => {
let r = self.db.const_eval_discriminant(EnumVariantId {
parent: enum_id,
local_id: index.0,
})?;
Owned(r.to_le_bytes().to_vec())
}
Variants::Multiple { tag, tag_encoding, .. } => {
let Some(target_data_layout) = self.db.target_data_layout(self.crate_id) else {
not_supported!("missing target data layout");
};
let size = tag.size(&*target_data_layout).bytes_usize();
let offset = layout.fields.offset(0).bytes_usize(); // The only field on enum variants is the tag field
match tag_encoding {
TagEncoding::Direct => {
let tag = &bytes[offset..offset + size];
Owned(pad16(tag, false).to_vec())
}
TagEncoding::Niche { untagged_variant, niche_start, .. } => {
let tag = &bytes[offset..offset + size];
let candidate_discriminant = i128::from_le_bytes(pad16(tag, false))
.wrapping_sub(niche_start as i128);
let enum_data = self.db.enum_data(enum_id);
let result = 'b: {
for (local_id, _) in enum_data.variants.iter() {
if candidate_discriminant
== self.db.const_eval_discriminant(EnumVariantId {
parent: enum_id,
local_id,
})?
{
break 'b candidate_discriminant;
}
}
self.db.const_eval_discriminant(EnumVariantId {
parent: enum_id,
local_id: untagged_variant.0,
})?
};
Owned(result.to_le_bytes().to_vec())
}
}
}
}
}
Rvalue::ShallowInitBox(_, _) => not_supported!("shallow init box"),
Rvalue::CopyForDeref(_) => not_supported!("copy for deref"),
Rvalue::Aggregate(kind, values) => match kind {
AggregateKind::Array(_) => {
let mut r = vec![];
for x in values {
let value = self.eval_operand(x, locals)?.get(&self)?;
r.extend(value);
}
Owned(r)
}
AggregateKind::Tuple(ty) => {
let layout = self.layout(&ty)?;
Owned(self.make_by_layout(
layout.size.bytes_usize(),
&layout,
None,
values,
locals,
)?)
}
AggregateKind::Union(x, f) => {
let layout = self.layout_adt((*x).into(), Substitution::empty(Interner))?;
let offset = layout
.fields
.offset(u32::from(f.local_id.into_raw()) as usize)
.bytes_usize();
let op = self.eval_operand(&values[0], locals)?.get(&self)?;
let mut result = vec![0; layout.size.bytes_usize()];
result[offset..offset + op.len()].copy_from_slice(op);
Owned(result)
}
AggregateKind::Adt(x, subst) => {
let subst = self.subst_filler(subst, locals);
let (size, variant_layout, tag) = self.layout_of_variant(*x, subst, locals)?;
Owned(self.make_by_layout(size, &variant_layout, tag, values, locals)?)
}
},
Rvalue::Cast(kind, operand, target_ty) => match kind {
CastKind::PointerExposeAddress => not_supported!("exposing pointer address"),
CastKind::PointerFromExposedAddress => {
not_supported!("creating pointer from exposed address")
}
CastKind::Pointer(cast) => match cast {
PointerCast::ReifyFnPointer => {
let current_ty = self.operand_ty(operand, locals)?;
if let TyKind::FnDef(_, _) = &current_ty.data(Interner).kind {
let id = self.vtable_map.id(current_ty);
let ptr_size = self.ptr_size();
Owned(id.to_le_bytes()[0..ptr_size].to_vec())
} else {
not_supported!("ReifyFnPointer cast of a non FnDef type");
}
}
PointerCast::Unsize => {
let current_ty = self.operand_ty(operand, locals)?;
match &target_ty.data(Interner).kind {
TyKind::Raw(_, ty) | TyKind::Ref(_, _, ty) => {
match &ty.data(Interner).kind {
TyKind::Slice(_) => match &current_ty.data(Interner).kind {
TyKind::Raw(_, ty) | TyKind::Ref(_, _, ty) => {
match &ty.data(Interner).kind {
TyKind::Array(_, size) => {
let addr = self
.eval_operand(operand, locals)?
.get(&self)?;
let len = const_as_usize(size);
let mut r = Vec::with_capacity(16);
r.extend(addr.iter().copied());
r.extend(len.to_le_bytes().into_iter());
Owned(r)
}
_ => {
not_supported!("slice unsizing from non arrays")
}
}
}
_ => not_supported!("slice unsizing from non pointers"),
},
TyKind::Dyn(_) => match &current_ty.data(Interner).kind {
TyKind::Raw(_, ty) | TyKind::Ref(_, _, ty) => {
let vtable = self.vtable_map.id(ty.clone());
let addr =
self.eval_operand(operand, locals)?.get(&self)?;
let mut r = Vec::with_capacity(16);
r.extend(addr.iter().copied());
r.extend(vtable.to_le_bytes().into_iter());
Owned(r)
}
_ => not_supported!("dyn unsizing from non pointers"),
},
_ => not_supported!("unknown unsized cast"),
}
}
_ => not_supported!("unsized cast on unknown pointer type"),
}
}
x => not_supported!("pointer cast {x:?}"),
},
CastKind::DynStar => not_supported!("dyn star cast"),
CastKind::IntToInt => {
// FIXME: handle signed cast
let current = pad16(self.eval_operand(operand, locals)?.get(&self)?, false);
let dest_size =
self.size_of_sized(target_ty, locals, "destination of int to int cast")?;
Owned(current[0..dest_size].to_vec())
}
CastKind::FloatToInt => not_supported!("float to int cast"),
CastKind::FloatToFloat => not_supported!("float to float cast"),
CastKind::IntToFloat => not_supported!("float to int cast"),
CastKind::PtrToPtr => not_supported!("ptr to ptr cast"),
CastKind::FnPtrToPtr => not_supported!("fn ptr to ptr cast"),
},
})
}
fn layout_of_variant(
&mut self,
x: VariantId,
subst: Substitution,
locals: &Locals<'_>,
) -> Result<(usize, Layout, Option<(usize, usize, i128)>)> {
let adt = x.adt_id();
if let DefWithBodyId::VariantId(f) = locals.body.owner {
if let VariantId::EnumVariantId(x) = x {
if AdtId::from(f.parent) == adt {
// Computing the exact size of enums require resolving the enum discriminants. In order to prevent loops (and
// infinite sized type errors) we use a dummy layout
let i = self.db.const_eval_discriminant(x)?;
return Ok((16, self.layout(&TyBuilder::unit())?, Some((0, 16, i))));
}
}
}
let layout = self.layout_adt(adt, subst)?;
Ok(match layout.variants {
Variants::Single { .. } => (layout.size.bytes_usize(), layout, None),
Variants::Multiple { variants, tag, tag_encoding, .. } => {
let cx = self
.db
.target_data_layout(self.crate_id)
.ok_or(MirEvalError::TargetDataLayoutNotAvailable)?;
let enum_variant_id = match x {
VariantId::EnumVariantId(x) => x,
_ => not_supported!("multi variant layout for non-enums"),
};
let rustc_enum_variant_idx = RustcEnumVariantIdx(enum_variant_id.local_id);
let mut discriminant = self.db.const_eval_discriminant(enum_variant_id)?;
let variant_layout = variants[rustc_enum_variant_idx].clone();
let have_tag = match tag_encoding {
TagEncoding::Direct => true,
TagEncoding::Niche { untagged_variant, niche_variants: _, niche_start } => {
discriminant = discriminant.wrapping_add(niche_start as i128);
untagged_variant != rustc_enum_variant_idx
}
};
(
layout.size.bytes_usize(),
variant_layout,
if have_tag {
Some((
layout.fields.offset(0).bytes_usize(),
tag.size(&*cx).bytes_usize(),
discriminant,
))
} else {
None
},
)
}
})
}
fn make_by_layout(
&mut self,
size: usize, // Not neccessarily equal to variant_layout.size
variant_layout: &Layout,
tag: Option<(usize, usize, i128)>,
values: &[Operand],
locals: &Locals<'_>,
) -> Result<Vec<u8>> {
let mut result = vec![0; size];
if let Some((offset, size, value)) = tag {
result[offset..offset + size].copy_from_slice(&value.to_le_bytes()[0..size]);
}
for (i, op) in values.iter().enumerate() {
let offset = variant_layout.fields.offset(i).bytes_usize();
let op = self.eval_operand(op, locals)?.get(&self)?;
result[offset..offset + op.len()].copy_from_slice(op);
}
Ok(result)
}
fn eval_operand(&mut self, x: &Operand, locals: &Locals<'_>) -> Result<Interval> {
Ok(match x {
Operand::Copy(p) | Operand::Move(p) => self.eval_place(p, locals)?,
Operand::Constant(konst) => {
let data = &konst.data(Interner);
match &data.value {
chalk_ir::ConstValue::BoundVar(b) => {
let c = locals
.subst
.as_slice(Interner)
.get(b.index)
.ok_or(MirEvalError::TypeError("missing generic arg"))?
.assert_const_ref(Interner);
self.eval_operand(&Operand::Constant(c.clone()), locals)?
}
chalk_ir::ConstValue::InferenceVar(_) => {
not_supported!("inference var constant")
}
chalk_ir::ConstValue::Placeholder(_) => not_supported!("placeholder constant"),
chalk_ir::ConstValue::Concrete(c) => match &c.interned {
ConstScalar::Bytes(v, memory_map) => {
let mut v: Cow<'_, [u8]> = Cow::Borrowed(v);
let patch_map = memory_map.transform_addresses(|b| {
let addr = self.heap_allocate(b.len());
self.write_memory(addr, b)?;
Ok(addr.to_usize())
})?;
let size = self.size_of(&data.ty, locals)?.unwrap_or(v.len());
if size != v.len() {
// Handle self enum
if size == 16 && v.len() < 16 {
v = Cow::Owned(pad16(&v, false).to_vec());
} else if size < 16 && v.len() == 16 {
v = Cow::Owned(v[0..size].to_vec());
} else {
return Err(MirEvalError::InvalidConst(konst.clone()));
}
}
let addr = self.heap_allocate(size);
self.write_memory(addr, &v)?;
self.patch_addresses(&patch_map, addr, &data.ty, locals)?;
Interval::new(addr, size)
}
ConstScalar::Unknown => not_supported!("evaluating unknown const"),
},
}
}
})
}
fn eval_place(&mut self, p: &Place, locals: &Locals<'_>) -> Result<Interval> {
let addr = self.place_addr(p, locals)?;
Ok(Interval::new(
addr,
self.size_of_sized(&self.place_ty(p, locals)?, locals, "type of this place")?,
))
}
fn read_memory(&self, addr: Address, size: usize) -> Result<&[u8]> {
let (mem, pos) = match addr {
Stack(x) => (&self.stack, x),
Heap(x) => (&self.heap, x),
};
mem.get(pos..pos + size).ok_or(MirEvalError::UndefinedBehavior("out of bound memory read"))
}
fn write_memory(&mut self, addr: Address, r: &[u8]) -> Result<()> {
let (mem, pos) = match addr {
Stack(x) => (&mut self.stack, x),
Heap(x) => (&mut self.heap, x),
};
mem.get_mut(pos..pos + r.len())
.ok_or(MirEvalError::UndefinedBehavior("out of bound memory write"))?
.copy_from_slice(r);
Ok(())
}
fn size_of(&self, ty: &Ty, locals: &Locals<'_>) -> Result<Option<usize>> {
if let DefWithBodyId::VariantId(f) = locals.body.owner {
if let Some((adt, _)) = ty.as_adt() {
if AdtId::from(f.parent) == adt {
// Computing the exact size of enums require resolving the enum discriminants. In order to prevent loops (and
// infinite sized type errors) we use a dummy size
return Ok(Some(16));
}
}
}
let ty = &self.ty_filler(ty, locals.subst, locals.body.owner)?;
let layout = self.layout(ty);
if self.assert_placeholder_ty_is_unused {
if matches!(layout, Err(MirEvalError::LayoutError(LayoutError::HasPlaceholder, _))) {
return Ok(Some(0));
}
}
let layout = layout?;
Ok(layout.is_sized().then(|| layout.size.bytes_usize()))
}
/// A version of `self.size_of` which returns error if the type is unsized. `what` argument should
/// be something that complete this: `error: type {ty} was unsized. {what} should be sized`
fn size_of_sized(&self, ty: &Ty, locals: &Locals<'_>, what: &'static str) -> Result<usize> {
match self.size_of(ty, locals)? {
Some(x) => Ok(x),
None => Err(MirEvalError::TypeIsUnsized(ty.clone(), what)),
}
}
/// Uses `ty_filler` to fill an entire subst
fn subst_filler(&self, subst: &Substitution, locals: &Locals<'_>) -> Substitution {
Substitution::from_iter(
Interner,
subst.iter(Interner).map(|x| match x.data(Interner) {
chalk_ir::GenericArgData::Ty(ty) => {
let Ok(ty) = self.ty_filler(ty, locals.subst, locals.body.owner) else {
return x.clone();
};
chalk_ir::GenericArgData::Ty(ty).intern(Interner)
}
_ => x.clone(),
}),
)
}
/// This function substitutes placeholders of the body with the provided subst, effectively plays
/// the rule of monomorphization. In addition to placeholders, it substitutes opaque types (return
/// position impl traits) with their underlying type.
fn ty_filler(&self, ty: &Ty, subst: &Substitution, owner: DefWithBodyId) -> Result<Ty> {
struct Filler<'a> {
db: &'a dyn HirDatabase,
subst: &'a Substitution,
skip_params: usize,
}
impl FallibleTypeFolder<Interner> for Filler<'_> {
type Error = MirEvalError;
fn as_dyn(&mut self) -> &mut dyn FallibleTypeFolder<Interner, Error = Self::Error> {
self
}
fn interner(&self) -> Interner {
Interner
}
fn try_fold_ty(
&mut self,
ty: Ty,
outer_binder: DebruijnIndex,
) -> std::result::Result<Ty, Self::Error> {
match ty.kind(Interner) {
TyKind::OpaqueType(id, subst) => {
let impl_trait_id = self.db.lookup_intern_impl_trait_id((*id).into());
match impl_trait_id {
crate::ImplTraitId::ReturnTypeImplTrait(func, idx) => {
let infer = self.db.infer(func.into());
let filler = &mut Filler { db: self.db, subst, skip_params: 0 };
filler.try_fold_ty(infer.type_of_rpit[idx].clone(), outer_binder)
}
crate::ImplTraitId::AsyncBlockTypeImplTrait(_, _) => {
not_supported!("async block impl trait");
}
}
}
_ => ty.try_super_fold_with(self.as_dyn(), outer_binder),
}
}
fn try_fold_free_placeholder_ty(
&mut self,
idx: chalk_ir::PlaceholderIndex,
_outer_binder: DebruijnIndex,
) -> std::result::Result<Ty, Self::Error> {
let x = from_placeholder_idx(self.db, idx);
Ok(self
.subst
.as_slice(Interner)
.get((u32::from(x.local_id.into_raw()) as usize) + self.skip_params)
.and_then(|x| x.ty(Interner))
.ok_or(MirEvalError::TypeError("Generic arg not provided"))?
.clone())
}
}
let filler = &mut Filler { db: self.db, subst, skip_params: 0 };
Ok(normalize(self.db, owner, ty.clone().try_fold_with(filler, DebruijnIndex::INNERMOST)?))
}
fn heap_allocate(&mut self, s: usize) -> Address {
let pos = self.heap.len();
self.heap.extend(iter::repeat(0).take(s));
Address::Heap(pos)
}
pub fn interpret_mir_with_no_arg(&mut self, body: &MirBody) -> Result<Vec<u8>> {
self.interpret_mir(&body, vec![].into_iter(), Substitution::empty(Interner))
}
fn detect_lang_function(&self, def: FunctionId) -> Option<LangItem> {
use LangItem::*;
let candidate = lang_attr(self.db.upcast(), def)?;
// We want to execute these functions with special logic
if [PanicFmt, BeginPanic, SliceLen].contains(&candidate) {
return Some(candidate);
}
None
}
fn detect_fn_trait(&self, def: FunctionId) -> Option<FnTrait> {
use LangItem::*;
let ItemContainerId::TraitId(parent) = self.db.lookup_intern_function(def).container else {
return None;
};
let l = lang_attr(self.db.upcast(), parent)?;
match l {
FnOnce => Some(FnTrait::FnOnce),
FnMut => Some(FnTrait::FnMut),
Fn => Some(FnTrait::Fn),
_ => None,
}
}
fn create_memory_map(&self, bytes: &[u8], ty: &Ty, locals: &Locals<'_>) -> Result<MemoryMap> {
// FIXME: support indirect references
let mut mm = MemoryMap::default();
match ty.kind(Interner) {
TyKind::Ref(_, _, t) => {
let size = self.size_of(t, locals)?;
match size {
Some(size) => {
let addr_usize = from_bytes!(usize, bytes);
mm.insert(
addr_usize,
self.read_memory(Address::from_usize(addr_usize), size)?.to_vec(),
)
}
None => {
let element_size = match t.kind(Interner) {
TyKind::Str => 1,
TyKind::Slice(t) => {
self.size_of_sized(t, locals, "slice inner type")?
}
_ => return Ok(mm), // FIXME: support other kind of unsized types
};
let (addr, meta) = bytes.split_at(bytes.len() / 2);
let size = element_size * from_bytes!(usize, meta);
let addr = Address::from_bytes(addr)?;
mm.insert(addr.to_usize(), self.read_memory(addr, size)?.to_vec());
}
}
}
_ => (),
}
Ok(mm)
}
fn patch_addresses(
&mut self,
patch_map: &HashMap<usize, usize>,
addr: Address,
ty: &Ty,
locals: &Locals<'_>,
) -> Result<()> {
// FIXME: support indirect references
let my_size = self.size_of_sized(ty, locals, "value to patch address")?;
match ty.kind(Interner) {
TyKind::Ref(_, _, t) => {
let size = self.size_of(t, locals)?;
match size {
Some(_) => {
let current = from_bytes!(usize, self.read_memory(addr, my_size)?);
if let Some(x) = patch_map.get(&current) {
self.write_memory(addr, &x.to_le_bytes())?;
}
}
None => {
let current = from_bytes!(usize, self.read_memory(addr, my_size / 2)?);
if let Some(x) = patch_map.get(&current) {
self.write_memory(addr, &x.to_le_bytes())?;
}
}
}
}
_ => (),
}
Ok(())
}
fn exec_intrinsic(
&self,
as_str: &str,
mut arg_bytes: impl Iterator<Item = Vec<u8>>,
generic_args: Substitution,
locals: &Locals<'_>,
) -> Result<Vec<u8>> {
match as_str {
"size_of" => {
let Some(ty) = generic_args.as_slice(Interner).get(0).and_then(|x| x.ty(Interner)) else {
return Err(MirEvalError::TypeError("size_of generic arg is not provided"));
};
let size = self.size_of(ty, locals)?;
match size {
Some(x) => Ok(x.to_le_bytes().to_vec()),
None => return Err(MirEvalError::TypeError("size_of arg is unsized")),
}
}
"transmute" => {
let Some(arg) = arg_bytes.next() else {
return Err(MirEvalError::TypeError("trasmute arg is not provided"));
};
Ok(arg)
}
_ => not_supported!("unknown intrinsic {as_str}"),
}
}
fn exec_fn_pointer(
&mut self,
bytes: Interval,
destination: &Place,
args: &[Operand],
locals: &Locals<'_>,
) -> Result<()> {
let id = from_bytes!(usize, bytes.get(self)?);
let next_ty = self.vtable_map.ty(id)?.clone();
if let TyKind::FnDef(def, generic_args) = &next_ty.data(Interner).kind {
self.exec_fn_def(*def, generic_args, destination, args, &locals)?;
} else {
return Err(MirEvalError::TypeError("function pointer to non function"));
}
Ok(())
}
fn exec_fn_def(
&mut self,
def: FnDefId,
generic_args: &Substitution,
destination: &Place,
args: &[Operand],
locals: &Locals<'_>,
) -> Result<()> {
let def: CallableDefId = from_chalk(self.db, def);
let generic_args = self.subst_filler(generic_args, &locals);
match def {
CallableDefId::FunctionId(def) => {
let dest_addr = self.place_addr(destination, &locals)?;
if let Some(x) = self.detect_fn_trait(def) {
self.exec_fn_trait(x, &args, destination, locals)?;
return Ok(());
}
let arg_bytes = args
.iter()
.map(|x| Ok(self.eval_operand(x, &locals)?.get(&self)?.to_owned()))
.collect::<Result<Vec<_>>>()?;
self.exec_fn_with_args(def, arg_bytes, generic_args, locals, dest_addr)?;
}
CallableDefId::StructId(id) => {
let (size, variant_layout, tag) =
self.layout_of_variant(id.into(), generic_args.clone(), &locals)?;
let result = self.make_by_layout(size, &variant_layout, tag, args, &locals)?;
let dest_addr = self.place_addr(destination, &locals)?;
self.write_memory(dest_addr, &result)?;
}
CallableDefId::EnumVariantId(id) => {
let (size, variant_layout, tag) =
self.layout_of_variant(id.into(), generic_args.clone(), &locals)?;
let result = self.make_by_layout(size, &variant_layout, tag, args, &locals)?;
let dest_addr = self.place_addr(destination, &locals)?;
self.write_memory(dest_addr, &result)?;
}
}
Ok(())
}
fn exec_fn_with_args(
&mut self,
def: FunctionId,
arg_bytes: Vec<Vec<u8>>,
generic_args: Substitution,
locals: &Locals<'_>,
dest_addr: Address,
) -> Result<()> {
let function_data = self.db.function_data(def);
let is_intrinsic = match &function_data.abi {
Some(abi) => *abi == Interned::new_str("rust-intrinsic"),
None => match def.lookup(self.db.upcast()).container {
hir_def::ItemContainerId::ExternBlockId(block) => {
let id = block.lookup(self.db.upcast()).id;
id.item_tree(self.db.upcast())[id.value].abi.as_deref()
== Some("rust-intrinsic")
}
_ => false,
},
};
let result = if is_intrinsic {
self.exec_intrinsic(
function_data.name.as_text().unwrap_or_default().as_str(),
arg_bytes.iter().cloned(),
generic_args,
&locals,
)?
} else if let Some(x) = self.detect_lang_function(def) {
self.exec_lang_item(x, &arg_bytes)?
} else {
if let Some(self_ty_idx) =
is_dyn_method(self.db, self.trait_env.clone(), def, generic_args.clone())
{
// In the layout of current possible receiver, which at the moment of writing this code is one of
// `&T`, `&mut T`, `Box<T>`, `Rc<T>`, `Arc<T>`, and `Pin<P>` where `P` is one of possible recievers,
// the vtable is exactly in the `[ptr_size..2*ptr_size]` bytes. So we can use it without branching on
// the type.
let ty = self
.vtable_map
.ty_of_bytes(&arg_bytes[0][self.ptr_size()..self.ptr_size() * 2])?;
let ty = GenericArgData::Ty(ty.clone()).intern(Interner);
let mut args_for_target = arg_bytes;
args_for_target[0] = args_for_target[0][0..self.ptr_size()].to_vec();
let generics_for_target = Substitution::from_iter(
Interner,
generic_args
.iter(Interner)
.enumerate()
.map(|(i, x)| if i == self_ty_idx { &ty } else { x })
);
return self.exec_fn_with_args(
def,
args_for_target,
generics_for_target,
locals,
dest_addr,
);
}
let (imp, generic_args) =
lookup_impl_method(self.db, self.trait_env.clone(), def, generic_args.clone());
let generic_args = self.subst_filler(&generic_args, &locals);
let def = imp.into();
let mir_body =
self.db.mir_body(def).map_err(|e| MirEvalError::MirLowerError(imp, e))?;
self.interpret_mir(&mir_body, arg_bytes.iter().cloned(), generic_args)
.map_err(|e| MirEvalError::InFunction(imp, Box::new(e)))?
};
self.write_memory(dest_addr, &result)?;
Ok(())
}
fn exec_fn_trait(
&mut self,
ft: FnTrait,
args: &[Operand],
destination: &Place,
locals: &Locals<'_>,
) -> Result<()> {
let func = args.get(0).ok_or(MirEvalError::TypeError("fn trait with no arg"))?;
let ref_func_ty = self.operand_ty(func, locals)?;
let func_ty = match ft {
FnTrait::FnOnce => ref_func_ty,
FnTrait::FnMut | FnTrait::Fn => match ref_func_ty.as_reference() {
Some(x) => x.0.clone(),
None => return Err(MirEvalError::TypeError("fn trait with non-reference arg")),
},
};
match &func_ty.data(Interner).kind {
TyKind::FnDef(def, subst) => {
self.exec_fn_def(*def, subst, destination, &args[1..], locals)?;
}
TyKind::Function(_) => {
let mut func_data = self.eval_operand(func, locals)?;
if let FnTrait::FnMut | FnTrait::Fn = ft {
let addr = Address::from_bytes(func_data.get(self)?)?;
func_data = Interval { addr, size: self.ptr_size() };
}
self.exec_fn_pointer(func_data, destination, &args[1..], locals)?;
}
x => not_supported!("Call {ft:?} trait methods with type {x:?}"),
}
Ok(())
}
fn exec_lang_item(&self, x: LangItem, args: &[Vec<u8>]) -> Result<Vec<u8>> {
use LangItem::*;
let mut args = args.iter();
match x {
PanicFmt | BeginPanic => Err(MirEvalError::Panic),
SliceLen => {
let arg = args
.next()
.ok_or(MirEvalError::TypeError("argument of <[T]>::len() is not provided"))?;
let ptr_size = arg.len() / 2;
Ok(arg[ptr_size..].into())
}
x => not_supported!("Executing lang item {x:?}"),
}
}
}
pub fn pad16(x: &[u8], is_signed: bool) -> [u8; 16] {
let is_negative = is_signed && x.last().unwrap_or(&0) > &128;
let fill_with = if is_negative { 255 } else { 0 };
x.iter()
.copied()
.chain(iter::repeat(fill_with))
.take(16)
.collect::<Vec<u8>>()
.try_into()
.expect("iterator take is not working")
}