2025-05-05 09:04:52 +02:00

1753 lines
68 KiB
Rust

//! Methods for lowering the HIR to types. There are two main cases here:
//!
//! - Lowering a type reference like `&usize` or `Option<foo::bar::Baz>` to a
//! type: The entry point for this is `TyLoweringContext::lower_ty`.
//! - Building the type for an item: This happens through the `ty` query.
//!
//! This usually involves resolving names, collecting generic arguments etc.
pub(crate) mod diagnostics;
pub(crate) mod path;
use std::{
cell::OnceCell,
iter, mem,
ops::{self, Not as _},
};
use base_db::Crate;
use chalk_ir::{
Mutability, Safety, TypeOutlives,
cast::Cast,
fold::{Shift, TypeFoldable},
interner::HasInterner,
};
use either::Either;
use hir_def::{
AdtId, AssocItemId, CallableDefId, ConstId, ConstParamId, DefWithBodyId, EnumId, EnumVariantId,
FunctionId, GenericDefId, GenericParamId, HasModule, ImplId, ItemContainerId, LocalFieldId,
Lookup, StaticId, StructId, TypeAliasId, TypeOrConstParamId, UnionId, VariantId,
builtin_type::BuiltinType,
expr_store::{ExpressionStore, path::Path},
hir::generics::{GenericParamDataRef, TypeOrConstParamData, WherePredicate},
item_tree::FieldsShape,
lang_item::LangItem,
resolver::{HasResolver, LifetimeNs, Resolver, TypeNs},
signatures::{FunctionSignature, TraitFlags, TypeAliasFlags},
type_ref::{
ConstRef, LifetimeRefId, LiteralConstRef, PathId, TraitBoundModifier,
TraitRef as HirTraitRef, TypeBound, TypeRef, TypeRefId,
},
};
use hir_expand::name::Name;
use la_arena::{Arena, ArenaMap};
use rustc_hash::FxHashSet;
use stdx::{impl_from, never};
use triomphe::{Arc, ThinArc};
use crate::{
AliasTy, Binders, BoundVar, CallableSig, Const, DebruijnIndex, DynTy, FnAbi, FnPointer, FnSig,
FnSubst, ImplTrait, ImplTraitId, ImplTraits, Interner, Lifetime, LifetimeData,
LifetimeOutlives, PolyFnSig, ProgramClause, QuantifiedWhereClause, QuantifiedWhereClauses,
Substitution, TraitEnvironment, TraitRef, TraitRefExt, Ty, TyBuilder, TyKind, WhereClause,
all_super_traits,
consteval::{intern_const_ref, path_to_const, unknown_const, unknown_const_as_generic},
db::HirDatabase,
error_lifetime,
generics::{Generics, generics, trait_self_param_idx},
lower::{
diagnostics::*,
path::{PathDiagnosticCallback, PathLoweringContext},
},
make_binders,
mapping::{ToChalk, from_chalk_trait_id, lt_to_placeholder_idx},
static_lifetime, to_chalk_trait_id, to_placeholder_idx,
utils::all_super_trait_refs,
variable_kinds_from_iter,
};
#[derive(Debug, Default)]
struct ImplTraitLoweringState {
/// When turning `impl Trait` into opaque types, we have to collect the
/// bounds at the same time to get the IDs correct (without becoming too
/// complicated).
mode: ImplTraitLoweringMode,
// This is structured as a struct with fields and not as an enum because it helps with the borrow checker.
opaque_type_data: Arena<ImplTrait>,
}
impl ImplTraitLoweringState {
fn new(mode: ImplTraitLoweringMode) -> ImplTraitLoweringState {
Self { mode, opaque_type_data: Arena::new() }
}
}
pub(crate) struct PathDiagnosticCallbackData(TypeRefId);
#[derive(Debug, Clone)]
pub enum LifetimeElisionKind {
/// Create a new anonymous lifetime parameter and reference it.
///
/// If `report_in_path`, report an error when encountering lifetime elision in a path:
/// ```compile_fail
/// struct Foo<'a> { x: &'a () }
/// async fn foo(x: Foo) {}
/// ```
///
/// Note: the error should not trigger when the elided lifetime is in a pattern or
/// expression-position path:
/// ```
/// struct Foo<'a> { x: &'a () }
/// async fn foo(Foo { x: _ }: Foo<'_>) {}
/// ```
AnonymousCreateParameter { report_in_path: bool },
/// Replace all anonymous lifetimes by provided lifetime.
Elided(Lifetime),
/// Give a hard error when either `&` or `'_` is written. Used to
/// rule out things like `where T: Foo<'_>`. Does not imply an
/// error on default object bounds (e.g., `Box<dyn Foo>`).
AnonymousReportError,
/// Resolves elided lifetimes to `'static` if there are no other lifetimes in scope,
/// otherwise give a warning that the previous behavior of introducing a new early-bound
/// lifetime is a bug and will be removed (if `only_lint` is enabled).
StaticIfNoLifetimeInScope { only_lint: bool },
/// Signal we cannot find which should be the anonymous lifetime.
ElisionFailure,
/// Infer all elided lifetimes.
Infer,
}
impl LifetimeElisionKind {
#[inline]
pub(crate) fn for_const(const_parent: ItemContainerId) -> LifetimeElisionKind {
match const_parent {
ItemContainerId::ExternBlockId(_) | ItemContainerId::ModuleId(_) => {
LifetimeElisionKind::Elided(static_lifetime())
}
ItemContainerId::ImplId(_) => {
LifetimeElisionKind::StaticIfNoLifetimeInScope { only_lint: true }
}
ItemContainerId::TraitId(_) => {
LifetimeElisionKind::StaticIfNoLifetimeInScope { only_lint: false }
}
}
}
#[inline]
pub(crate) fn for_fn_params(data: &FunctionSignature) -> LifetimeElisionKind {
LifetimeElisionKind::AnonymousCreateParameter { report_in_path: data.is_async() }
}
#[inline]
pub(crate) fn for_fn_ret() -> LifetimeElisionKind {
// FIXME: We should use the elided lifetime here, or `ElisionFailure`.
LifetimeElisionKind::Elided(error_lifetime())
}
}
#[derive(Debug)]
pub struct TyLoweringContext<'db> {
pub db: &'db dyn HirDatabase,
resolver: &'db Resolver<'db>,
store: &'db ExpressionStore,
def: GenericDefId,
generics: OnceCell<Generics>,
in_binders: DebruijnIndex,
/// Note: Conceptually, it's thinkable that we could be in a location where
/// some type params should be represented as placeholders, and others
/// should be converted to variables. I think in practice, this isn't
/// possible currently, so this should be fine for now.
pub type_param_mode: ParamLoweringMode,
impl_trait_mode: ImplTraitLoweringState,
/// Tracks types with explicit `?Sized` bounds.
pub(crate) unsized_types: FxHashSet<Ty>,
pub(crate) diagnostics: Vec<TyLoweringDiagnostic>,
lifetime_elision: LifetimeElisionKind,
}
impl<'db> TyLoweringContext<'db> {
pub fn new(
db: &'db dyn HirDatabase,
resolver: &'db Resolver<'db>,
store: &'db ExpressionStore,
def: GenericDefId,
lifetime_elision: LifetimeElisionKind,
) -> Self {
let impl_trait_mode = ImplTraitLoweringState::new(ImplTraitLoweringMode::Disallowed);
let type_param_mode = ParamLoweringMode::Placeholder;
let in_binders = DebruijnIndex::INNERMOST;
Self {
db,
resolver,
def,
generics: Default::default(),
store,
in_binders,
impl_trait_mode,
type_param_mode,
unsized_types: FxHashSet::default(),
diagnostics: Vec::new(),
lifetime_elision,
}
}
pub fn with_debruijn<T>(
&mut self,
debruijn: DebruijnIndex,
f: impl FnOnce(&mut TyLoweringContext<'_>) -> T,
) -> T {
let old_debruijn = mem::replace(&mut self.in_binders, debruijn);
let result = f(self);
self.in_binders = old_debruijn;
result
}
pub fn with_shifted_in<T>(
&mut self,
debruijn: DebruijnIndex,
f: impl FnOnce(&mut TyLoweringContext<'_>) -> T,
) -> T {
self.with_debruijn(self.in_binders.shifted_in_from(debruijn), f)
}
fn with_lifetime_elision<T>(
&mut self,
lifetime_elision: LifetimeElisionKind,
f: impl FnOnce(&mut TyLoweringContext<'_>) -> T,
) -> T {
let old_lifetime_elision = mem::replace(&mut self.lifetime_elision, lifetime_elision);
let result = f(self);
self.lifetime_elision = old_lifetime_elision;
result
}
pub fn with_impl_trait_mode(self, impl_trait_mode: ImplTraitLoweringMode) -> Self {
Self { impl_trait_mode: ImplTraitLoweringState::new(impl_trait_mode), ..self }
}
pub fn with_type_param_mode(self, type_param_mode: ParamLoweringMode) -> Self {
Self { type_param_mode, ..self }
}
pub fn impl_trait_mode(&mut self, impl_trait_mode: ImplTraitLoweringMode) -> &mut Self {
self.impl_trait_mode = ImplTraitLoweringState::new(impl_trait_mode);
self
}
pub fn type_param_mode(&mut self, type_param_mode: ParamLoweringMode) -> &mut Self {
self.type_param_mode = type_param_mode;
self
}
pub fn push_diagnostic(&mut self, type_ref: TypeRefId, kind: TyLoweringDiagnosticKind) {
self.diagnostics.push(TyLoweringDiagnostic { source: type_ref, kind });
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Default)]
pub enum ImplTraitLoweringMode {
/// `impl Trait` gets lowered into an opaque type that doesn't unify with
/// anything except itself. This is used in places where values flow 'out',
/// i.e. for arguments of the function we're currently checking, and return
/// types of functions we're calling.
Opaque,
/// `impl Trait` is disallowed and will be an error.
#[default]
Disallowed,
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum ParamLoweringMode {
Placeholder,
Variable,
}
impl<'a> TyLoweringContext<'a> {
pub fn lower_ty(&mut self, type_ref: TypeRefId) -> Ty {
self.lower_ty_ext(type_ref).0
}
pub fn lower_const(&mut self, const_ref: &ConstRef, const_type: Ty) -> Const {
let const_ref = &self.store[const_ref.expr];
match const_ref {
hir_def::hir::Expr::Path(path) => path_to_const(
self.db,
self.resolver,
path,
self.type_param_mode,
|| self.generics(),
self.in_binders,
const_type.clone(),
)
.unwrap_or_else(|| unknown_const(const_type)),
hir_def::hir::Expr::Literal(literal) => intern_const_ref(
self.db,
&match *literal {
hir_def::hir::Literal::Float(_, _)
| hir_def::hir::Literal::String(_)
| hir_def::hir::Literal::ByteString(_)
| hir_def::hir::Literal::CString(_) => LiteralConstRef::Unknown,
hir_def::hir::Literal::Char(c) => LiteralConstRef::Char(c),
hir_def::hir::Literal::Bool(b) => LiteralConstRef::Bool(b),
hir_def::hir::Literal::Int(val, _) => LiteralConstRef::Int(val),
hir_def::hir::Literal::Uint(val, _) => LiteralConstRef::UInt(val),
},
const_type,
self.resolver.krate(),
),
_ => unknown_const(const_type),
}
}
pub fn lower_path_as_const(&mut self, path: &Path, const_type: Ty) -> Const {
path_to_const(
self.db,
self.resolver,
path,
self.type_param_mode,
|| self.generics(),
self.in_binders,
const_type.clone(),
)
.unwrap_or_else(|| unknown_const(const_type))
}
fn generics(&self) -> &Generics {
self.generics.get_or_init(|| generics(self.db, self.def))
}
pub fn lower_ty_ext(&mut self, type_ref_id: TypeRefId) -> (Ty, Option<TypeNs>) {
let mut res = None;
let type_ref = &self.store[type_ref_id];
let ty = match type_ref {
TypeRef::Never => TyKind::Never.intern(Interner),
TypeRef::Tuple(inner) => {
let inner_tys = inner.iter().map(|&tr| self.lower_ty(tr));
TyKind::Tuple(inner_tys.len(), Substitution::from_iter(Interner, inner_tys))
.intern(Interner)
}
TypeRef::Path(path) => {
let (ty, res_) =
self.lower_path(path, PathId::from_type_ref_unchecked(type_ref_id));
res = res_;
ty
}
&TypeRef::TypeParam(type_param_id) => {
res = Some(TypeNs::GenericParam(type_param_id));
match self.type_param_mode {
ParamLoweringMode::Placeholder => {
TyKind::Placeholder(to_placeholder_idx(self.db, type_param_id.into()))
}
ParamLoweringMode::Variable => {
let idx =
self.generics().type_or_const_param_idx(type_param_id.into()).unwrap();
TyKind::BoundVar(BoundVar::new(self.in_binders, idx))
}
}
.intern(Interner)
}
&TypeRef::RawPtr(inner, mutability) => {
let inner_ty = self.lower_ty(inner);
TyKind::Raw(lower_to_chalk_mutability(mutability), inner_ty).intern(Interner)
}
TypeRef::Array(array) => {
let inner_ty = self.lower_ty(array.ty);
let const_len = self.lower_const(&array.len, TyBuilder::usize());
TyKind::Array(inner_ty, const_len).intern(Interner)
}
&TypeRef::Slice(inner) => {
let inner_ty = self.lower_ty(inner);
TyKind::Slice(inner_ty).intern(Interner)
}
TypeRef::Reference(ref_) => {
let inner_ty = self.lower_ty(ref_.ty);
// FIXME: It should infer the eldided lifetimes instead of stubbing with static
let lifetime = ref_
.lifetime
.as_ref()
.map_or_else(error_lifetime, |&lr| self.lower_lifetime(lr));
TyKind::Ref(lower_to_chalk_mutability(ref_.mutability), lifetime, inner_ty)
.intern(Interner)
}
TypeRef::Placeholder => TyKind::Error.intern(Interner),
TypeRef::Fn(fn_) => {
let substs = self.with_shifted_in(DebruijnIndex::ONE, |ctx| {
let (params, ret) = fn_.split_params_and_ret();
let mut subst = Vec::with_capacity(fn_.params.len());
ctx.with_lifetime_elision(
LifetimeElisionKind::AnonymousCreateParameter { report_in_path: false },
|ctx| {
subst.extend(params.iter().map(|&(_, tr)| ctx.lower_ty(tr)));
},
);
ctx.with_lifetime_elision(LifetimeElisionKind::for_fn_ret(), |ctx| {
subst.push(ctx.lower_ty(ret));
});
Substitution::from_iter(Interner, subst)
});
TyKind::Function(FnPointer {
num_binders: 0, // FIXME lower `for<'a> fn()` correctly
sig: FnSig {
abi: fn_.abi.as_ref().map_or(FnAbi::Rust, FnAbi::from_symbol),
safety: if fn_.is_unsafe { Safety::Unsafe } else { Safety::Safe },
variadic: fn_.is_varargs,
},
substitution: FnSubst(substs),
})
.intern(Interner)
}
TypeRef::DynTrait(bounds) => self.lower_dyn_trait(bounds),
TypeRef::ImplTrait(bounds) => {
match self.impl_trait_mode.mode {
ImplTraitLoweringMode::Opaque => {
let origin = match self.def {
GenericDefId::FunctionId(it) => Either::Left(it),
GenericDefId::TypeAliasId(it) => Either::Right(it),
_ => panic!(
"opaque impl trait lowering must be in function or type alias"
),
};
// this dance is to make sure the data is in the right
// place even if we encounter more opaque types while
// lowering the bounds
let idx = self.impl_trait_mode.opaque_type_data.alloc(ImplTrait {
bounds: crate::make_single_type_binders(Vec::default()),
});
// We don't want to lower the bounds inside the binders
// we're currently in, because they don't end up inside
// those binders. E.g. when we have `impl Trait<impl
// OtherTrait<T>>`, the `impl OtherTrait<T>` can't refer
// to the self parameter from `impl Trait`, and the
// bounds aren't actually stored nested within each
// other, but separately. So if the `T` refers to a type
// parameter of the outer function, it's just one binder
// away instead of two.
let actual_opaque_type_data = self
.with_debruijn(DebruijnIndex::INNERMOST, |ctx| {
ctx.lower_impl_trait(bounds, self.resolver.krate())
});
self.impl_trait_mode.opaque_type_data[idx] = actual_opaque_type_data;
let impl_trait_id = origin.either(
|f| ImplTraitId::ReturnTypeImplTrait(f, idx),
|a| ImplTraitId::TypeAliasImplTrait(a, idx),
);
let opaque_ty_id = self.db.intern_impl_trait_id(impl_trait_id).into();
let generics = generics(self.db, origin.either(|f| f.into(), |a| a.into()));
let parameters = generics.bound_vars_subst(self.db, self.in_binders);
TyKind::OpaqueType(opaque_ty_id, parameters).intern(Interner)
}
ImplTraitLoweringMode::Disallowed => {
// FIXME: report error
TyKind::Error.intern(Interner)
}
}
}
TypeRef::Error => TyKind::Error.intern(Interner),
};
(ty, res)
}
/// This is only for `generic_predicates_for_param`, where we can't just
/// lower the self types of the predicates since that could lead to cycles.
/// So we just check here if the `type_ref` resolves to a generic param, and which.
fn lower_ty_only_param(&mut self, type_ref_id: TypeRefId) -> Option<TypeOrConstParamId> {
let type_ref = &self.store[type_ref_id];
let path = match type_ref {
TypeRef::Path(path) => path,
&TypeRef::TypeParam(idx) => return Some(idx.into()),
_ => return None,
};
if path.type_anchor().is_some() {
return None;
}
if path.segments().len() > 1 {
return None;
}
let mut ctx = self.at_path(PathId::from_type_ref_unchecked(type_ref_id));
let resolution = match ctx.resolve_path_in_type_ns() {
Some((it, None)) => it,
_ => return None,
};
match resolution {
TypeNs::GenericParam(param_id) => Some(param_id.into()),
_ => None,
}
}
#[inline]
fn on_path_diagnostic_callback(type_ref: TypeRefId) -> PathDiagnosticCallback<'static> {
PathDiagnosticCallback {
data: Either::Left(PathDiagnosticCallbackData(type_ref)),
callback: |data, this, diag| {
let type_ref = data.as_ref().left().unwrap().0;
this.push_diagnostic(type_ref, TyLoweringDiagnosticKind::PathDiagnostic(diag))
},
}
}
#[inline]
fn at_path(&mut self, path_id: PathId) -> PathLoweringContext<'_, 'a> {
PathLoweringContext::new(
self,
Self::on_path_diagnostic_callback(path_id.type_ref()),
&self.store[path_id],
)
}
pub(crate) fn lower_path(&mut self, path: &Path, path_id: PathId) -> (Ty, Option<TypeNs>) {
// Resolve the path (in type namespace)
if let Some(type_ref) = path.type_anchor() {
let (ty, res) = self.lower_ty_ext(type_ref);
let mut ctx = self.at_path(path_id);
return ctx.lower_ty_relative_path(ty, res, false);
}
let mut ctx = self.at_path(path_id);
let (resolution, remaining_index) = match ctx.resolve_path_in_type_ns() {
Some(it) => it,
None => return (TyKind::Error.intern(Interner), None),
};
if matches!(resolution, TypeNs::TraitId(_)) && remaining_index.is_none() {
// trait object type without dyn
let bound = TypeBound::Path(path_id, TraitBoundModifier::None);
let ty = self.lower_dyn_trait(&[bound]);
return (ty, None);
}
ctx.lower_partly_resolved_path(resolution, false)
}
fn lower_trait_ref_from_path(
&mut self,
path_id: PathId,
explicit_self_ty: Ty,
) -> Option<(TraitRef, PathLoweringContext<'_, 'a>)> {
let mut ctx = self.at_path(path_id);
let resolved = match ctx.resolve_path_in_type_ns_fully()? {
// FIXME(trait_alias): We need to handle trait alias here.
TypeNs::TraitId(tr) => tr,
_ => return None,
};
Some((ctx.lower_trait_ref_from_resolved_path(resolved, explicit_self_ty, false), ctx))
}
fn lower_trait_ref(
&mut self,
trait_ref: &HirTraitRef,
explicit_self_ty: Ty,
) -> Option<TraitRef> {
self.lower_trait_ref_from_path(trait_ref.path, explicit_self_ty).map(|it| it.0)
}
/// When lowering predicates from parents (impl, traits) for children defs (fns, consts, types), `generics` should
/// contain the `Generics` for the **child**, while `predicate_owner` should contain the `GenericDefId` of the
/// **parent**. This is important so we generate the correct bound var/placeholder.
pub(crate) fn lower_where_predicate<'b>(
&'b mut self,
where_predicate: &'b WherePredicate,
ignore_bindings: bool,
) -> impl Iterator<Item = QuantifiedWhereClause> + use<'a, 'b> {
match where_predicate {
WherePredicate::ForLifetime { target, bound, .. }
| WherePredicate::TypeBound { target, bound } => {
let self_ty = self.lower_ty(*target);
Either::Left(self.lower_type_bound(bound, self_ty, ignore_bindings))
}
&WherePredicate::Lifetime { bound, target } => Either::Right(iter::once(
crate::wrap_empty_binders(WhereClause::LifetimeOutlives(LifetimeOutlives {
a: self.lower_lifetime(bound),
b: self.lower_lifetime(target),
})),
)),
}
.into_iter()
}
pub(crate) fn lower_type_bound<'b>(
&'b mut self,
bound: &'b TypeBound,
self_ty: Ty,
ignore_bindings: bool,
) -> impl Iterator<Item = QuantifiedWhereClause> + use<'b, 'a> {
let mut assoc_bounds = None;
let mut clause = None;
match bound {
&TypeBound::Path(path, TraitBoundModifier::None) | &TypeBound::ForLifetime(_, path) => {
// FIXME Don't silently drop the hrtb lifetimes here
if let Some((trait_ref, ctx)) = self.lower_trait_ref_from_path(path, self_ty) {
if !ignore_bindings {
assoc_bounds = ctx.assoc_type_bindings_from_type_bound(trait_ref.clone());
}
clause = Some(crate::wrap_empty_binders(WhereClause::Implemented(trait_ref)));
}
}
&TypeBound::Path(path, TraitBoundModifier::Maybe) => {
let sized_trait = LangItem::Sized.resolve_trait(self.db, self.resolver.krate());
// Don't lower associated type bindings as the only possible relaxed trait bound
// `?Sized` has no of them.
// If we got another trait here ignore the bound completely.
let trait_id = self
.lower_trait_ref_from_path(path, self_ty.clone())
.map(|(trait_ref, _)| trait_ref.hir_trait_id());
if trait_id == sized_trait {
self.unsized_types.insert(self_ty);
}
}
&TypeBound::Lifetime(l) => {
let lifetime = self.lower_lifetime(l);
clause = Some(crate::wrap_empty_binders(WhereClause::TypeOutlives(TypeOutlives {
ty: self_ty,
lifetime,
})));
}
TypeBound::Use(_) | TypeBound::Error => {}
}
clause.into_iter().chain(assoc_bounds.into_iter().flatten())
}
fn lower_dyn_trait(&mut self, bounds: &[TypeBound]) -> Ty {
let self_ty = TyKind::BoundVar(BoundVar::new(DebruijnIndex::INNERMOST, 0)).intern(Interner);
// INVARIANT: The principal trait bound, if present, must come first. Others may be in any
// order but should be in the same order for the same set but possibly different order of
// bounds in the input.
// INVARIANT: If this function returns `DynTy`, there should be at least one trait bound.
// These invariants are utilized by `TyExt::dyn_trait()` and chalk.
let mut lifetime = None;
let bounds = self.with_shifted_in(DebruijnIndex::ONE, |ctx| {
let mut lowered_bounds = Vec::new();
for b in bounds {
ctx.lower_type_bound(b, self_ty.clone(), false).for_each(|b| {
let filter = match b.skip_binders() {
WhereClause::Implemented(_) | WhereClause::AliasEq(_) => true,
WhereClause::LifetimeOutlives(_) => false,
WhereClause::TypeOutlives(t) => {
lifetime = Some(t.lifetime.clone());
false
}
};
if filter {
lowered_bounds.push(b);
}
});
}
let mut multiple_regular_traits = false;
let mut multiple_same_projection = false;
lowered_bounds.sort_unstable_by(|lhs, rhs| {
use std::cmp::Ordering;
match (lhs.skip_binders(), rhs.skip_binders()) {
(WhereClause::Implemented(lhs), WhereClause::Implemented(rhs)) => {
let lhs_id = lhs.trait_id;
let lhs_is_auto = ctx
.db
.trait_signature(from_chalk_trait_id(lhs_id))
.flags
.contains(TraitFlags::AUTO);
let rhs_id = rhs.trait_id;
let rhs_is_auto = ctx
.db
.trait_signature(from_chalk_trait_id(rhs_id))
.flags
.contains(TraitFlags::AUTO);
if !lhs_is_auto && !rhs_is_auto {
multiple_regular_traits = true;
}
// Note that the ordering here is important; this ensures the invariant
// mentioned above.
(lhs_is_auto, lhs_id).cmp(&(rhs_is_auto, rhs_id))
}
(WhereClause::Implemented(_), _) => Ordering::Less,
(_, WhereClause::Implemented(_)) => Ordering::Greater,
(WhereClause::AliasEq(lhs), WhereClause::AliasEq(rhs)) => {
match (&lhs.alias, &rhs.alias) {
(AliasTy::Projection(lhs_proj), AliasTy::Projection(rhs_proj)) => {
// We only compare the `associated_ty_id`s. We shouldn't have
// multiple bounds for an associated type in the correct Rust code,
// and if we do, we error out.
if lhs_proj.associated_ty_id == rhs_proj.associated_ty_id {
multiple_same_projection = true;
}
lhs_proj.associated_ty_id.cmp(&rhs_proj.associated_ty_id)
}
// We don't produce `AliasTy::Opaque`s yet.
_ => unreachable!(),
}
}
// `WhereClause::{TypeOutlives, LifetimeOutlives}` have been filtered out
_ => unreachable!(),
}
});
if multiple_regular_traits || multiple_same_projection {
return None;
}
lowered_bounds.first().and_then(|b| b.trait_id())?;
// As multiple occurrences of the same auto traits *are* permitted, we deduplicate the
// bounds. We shouldn't have repeated elements besides auto traits at this point.
lowered_bounds.dedup();
Some(QuantifiedWhereClauses::from_iter(Interner, lowered_bounds))
});
if let Some(bounds) = bounds {
let bounds = crate::make_single_type_binders(bounds);
TyKind::Dyn(DynTy {
bounds,
lifetime: match lifetime {
Some(it) => match it.bound_var(Interner) {
Some(bound_var) => bound_var
.shifted_out_to(DebruijnIndex::new(2))
.map(|bound_var| LifetimeData::BoundVar(bound_var).intern(Interner))
.unwrap_or(it),
None => it,
},
None => static_lifetime(),
},
})
.intern(Interner)
} else {
// FIXME: report error
// (additional non-auto traits, associated type rebound, or no resolved trait)
TyKind::Error.intern(Interner)
}
}
fn lower_impl_trait(&mut self, bounds: &[TypeBound], krate: Crate) -> ImplTrait {
cov_mark::hit!(lower_rpit);
let self_ty = TyKind::BoundVar(BoundVar::new(DebruijnIndex::INNERMOST, 0)).intern(Interner);
let predicates = self.with_shifted_in(DebruijnIndex::ONE, |ctx| {
let mut predicates = Vec::new();
for b in bounds {
predicates.extend(ctx.lower_type_bound(b, self_ty.clone(), false));
}
if !ctx.unsized_types.contains(&self_ty) {
let sized_trait =
LangItem::Sized.resolve_trait(ctx.db, krate).map(to_chalk_trait_id);
let sized_clause = sized_trait.map(|trait_id| {
let clause = WhereClause::Implemented(TraitRef {
trait_id,
substitution: Substitution::from1(Interner, self_ty.clone()),
});
crate::wrap_empty_binders(clause)
});
predicates.extend(sized_clause);
}
predicates.shrink_to_fit();
predicates
});
ImplTrait { bounds: crate::make_single_type_binders(predicates) }
}
pub fn lower_lifetime(&self, lifetime: LifetimeRefId) -> Lifetime {
match self.resolver.resolve_lifetime(&self.store[lifetime]) {
Some(resolution) => match resolution {
LifetimeNs::Static => static_lifetime(),
LifetimeNs::LifetimeParam(id) => match self.type_param_mode {
ParamLoweringMode::Placeholder => {
LifetimeData::Placeholder(lt_to_placeholder_idx(self.db, id))
}
ParamLoweringMode::Variable => {
let idx = match self.generics().lifetime_idx(id) {
None => return error_lifetime(),
Some(idx) => idx,
};
LifetimeData::BoundVar(BoundVar::new(self.in_binders, idx))
}
}
.intern(Interner),
},
None => error_lifetime(),
}
}
}
/// Build the signature of a callable item (function, struct or enum variant).
pub(crate) fn callable_item_signature_query(db: &dyn HirDatabase, def: CallableDefId) -> PolyFnSig {
match def {
CallableDefId::FunctionId(f) => fn_sig_for_fn(db, f),
CallableDefId::StructId(s) => fn_sig_for_struct_constructor(db, s),
CallableDefId::EnumVariantId(e) => fn_sig_for_enum_variant_constructor(db, e),
}
}
pub fn associated_type_shorthand_candidates<R>(
db: &dyn HirDatabase,
def: GenericDefId,
res: TypeNs,
mut cb: impl FnMut(&Name, TypeAliasId) -> Option<R>,
) -> Option<R> {
named_associated_type_shorthand_candidates(db, def, res, None, |name, _, id| cb(name, id))
}
fn named_associated_type_shorthand_candidates<R>(
db: &dyn HirDatabase,
// If the type parameter is defined in an impl and we're in a method, there
// might be additional where clauses to consider
def: GenericDefId,
res: TypeNs,
assoc_name: Option<Name>,
// Do NOT let `cb` touch `TraitRef` outside of `TyLoweringContext`. Its substitution contains
// free `BoundVar`s that need to be shifted and only `TyLoweringContext` knows how to do that
// properly (see `TyLoweringContext::select_associated_type()`).
mut cb: impl FnMut(&Name, &TraitRef, TypeAliasId) -> Option<R>,
) -> Option<R> {
let mut search = |t| {
all_super_trait_refs(db, t, |t| {
let data = db.trait_items(t.hir_trait_id());
for (name, assoc_id) in &data.items {
if let AssocItemId::TypeAliasId(alias) = assoc_id {
if let Some(result) = cb(name, &t, *alias) {
return Some(result);
}
}
}
None
})
};
match res {
TypeNs::SelfType(impl_id) => {
// we're _in_ the impl -- the binders get added back later. Correct,
// but it would be nice to make this more explicit
let trait_ref = db.impl_trait(impl_id)?.into_value_and_skipped_binders().0;
let impl_id_as_generic_def: GenericDefId = impl_id.into();
if impl_id_as_generic_def != def {
let subst = TyBuilder::subst_for_def(db, impl_id, None)
.fill_with_bound_vars(DebruijnIndex::INNERMOST, 0)
.build();
let trait_ref = subst.apply(trait_ref, Interner);
search(trait_ref)
} else {
search(trait_ref)
}
}
TypeNs::GenericParam(param_id) => {
let predicates = db.generic_predicates_for_param(def, param_id.into(), assoc_name);
let res = predicates.iter().find_map(|pred| match pred.skip_binders().skip_binders() {
// FIXME: how to correctly handle higher-ranked bounds here?
WhereClause::Implemented(tr) => search(
tr.clone()
.shifted_out_to(Interner, DebruijnIndex::ONE)
.expect("FIXME unexpected higher-ranked trait bound"),
),
_ => None,
});
if res.is_some() {
return res;
}
// Handle `Self::Type` referring to own associated type in trait definitions
if let GenericDefId::TraitId(trait_id) = param_id.parent() {
let trait_generics = generics(db, trait_id.into());
if trait_generics[param_id.local_id()].is_trait_self() {
let trait_ref = TyBuilder::trait_ref(db, trait_id)
.fill_with_bound_vars(DebruijnIndex::INNERMOST, 0)
.build();
return search(trait_ref);
}
}
None
}
_ => None,
}
}
pub(crate) type Diagnostics = Option<ThinArc<(), TyLoweringDiagnostic>>;
fn create_diagnostics(diagnostics: Vec<TyLoweringDiagnostic>) -> Diagnostics {
(!diagnostics.is_empty()).then(|| ThinArc::from_header_and_iter((), diagnostics.into_iter()))
}
pub(crate) fn field_types_query(
db: &dyn HirDatabase,
variant_id: VariantId,
) -> Arc<ArenaMap<LocalFieldId, Binders<Ty>>> {
db.field_types_with_diagnostics(variant_id).0
}
/// Build the type of all specific fields of a struct or enum variant.
pub(crate) fn field_types_with_diagnostics_query(
db: &dyn HirDatabase,
variant_id: VariantId,
) -> (Arc<ArenaMap<LocalFieldId, Binders<Ty>>>, Diagnostics) {
let var_data = db.variant_fields(variant_id);
let (resolver, def): (_, GenericDefId) = match variant_id {
VariantId::StructId(it) => (it.resolver(db), it.into()),
VariantId::UnionId(it) => (it.resolver(db), it.into()),
VariantId::EnumVariantId(it) => (it.resolver(db), it.lookup(db).parent.into()),
};
let generics = generics(db, def);
let mut res = ArenaMap::default();
let mut ctx = TyLoweringContext::new(
db,
&resolver,
&var_data.store,
def,
LifetimeElisionKind::AnonymousReportError,
)
.with_type_param_mode(ParamLoweringMode::Variable);
for (field_id, field_data) in var_data.fields().iter() {
res.insert(field_id, make_binders(db, &generics, ctx.lower_ty(field_data.type_ref)));
}
(Arc::new(res), create_diagnostics(ctx.diagnostics))
}
/// This query exists only to be used when resolving short-hand associated types
/// like `T::Item`.
///
/// See the analogous query in rustc and its comment:
/// <https://github.com/rust-lang/rust/blob/9150f844e2624eb013ec78ca08c1d416e6644026/src/librustc_typeck/astconv.rs#L46>
/// This is a query mostly to handle cycles somewhat gracefully; e.g. the
/// following bounds are disallowed: `T: Foo<U::Item>, U: Foo<T::Item>`, but
/// these are fine: `T: Foo<U::Item>, U: Foo<()>`.
pub(crate) fn generic_predicates_for_param_query(
db: &dyn HirDatabase,
def: GenericDefId,
param_id: TypeOrConstParamId,
assoc_name: Option<Name>,
) -> GenericPredicates {
let generics = generics(db, def);
let resolver = def.resolver(db);
let mut ctx = TyLoweringContext::new(
db,
&resolver,
generics.store(),
def,
LifetimeElisionKind::AnonymousReportError,
)
.with_type_param_mode(ParamLoweringMode::Variable);
// we have to filter out all other predicates *first*, before attempting to lower them
let predicate = |pred: &_, ctx: &mut TyLoweringContext<'_>| match pred {
WherePredicate::ForLifetime { target, bound, .. }
| WherePredicate::TypeBound { target, bound, .. } => {
let invalid_target = { ctx.lower_ty_only_param(*target) != Some(param_id) };
if invalid_target {
// If this is filtered out without lowering, `?Sized` is not gathered into `ctx.unsized_types`
if let TypeBound::Path(_, TraitBoundModifier::Maybe) = bound {
ctx.lower_where_predicate(pred, true).for_each(drop);
}
return false;
}
match bound {
&TypeBound::ForLifetime(_, path) | &TypeBound::Path(path, _) => {
// Only lower the bound if the trait could possibly define the associated
// type we're looking for.
let path = &ctx.store[path];
let Some(assoc_name) = &assoc_name else { return true };
let Some(TypeNs::TraitId(tr)) =
resolver.resolve_path_in_type_ns_fully(db, path)
else {
return false;
};
all_super_traits(db, tr).iter().any(|tr| {
db.trait_items(*tr).items.iter().any(|(name, item)| {
matches!(item, AssocItemId::TypeAliasId(_)) && name == assoc_name
})
})
}
TypeBound::Use(_) | TypeBound::Lifetime(_) | TypeBound::Error => false,
}
}
WherePredicate::Lifetime { .. } => false,
};
let mut predicates = Vec::new();
for maybe_parent_generics in
std::iter::successors(Some(&generics), |generics| generics.parent_generics())
{
ctx.store = maybe_parent_generics.store();
for pred in maybe_parent_generics.where_predicates() {
if predicate(pred, &mut ctx) {
predicates.extend(
ctx.lower_where_predicate(pred, true).map(|p| make_binders(db, &generics, p)),
);
}
}
}
let subst = generics.bound_vars_subst(db, DebruijnIndex::INNERMOST);
if !subst.is_empty(Interner) {
let explicitly_unsized_tys = ctx.unsized_types;
if let Some(implicitly_sized_predicates) = implicitly_sized_clauses(
db,
param_id.parent,
&explicitly_unsized_tys,
&subst,
&resolver,
) {
predicates.extend(
implicitly_sized_predicates
.map(|p| make_binders(db, &generics, crate::wrap_empty_binders(p))),
);
};
}
GenericPredicates(predicates.is_empty().not().then(|| predicates.into()))
}
pub(crate) fn generic_predicates_for_param_cycle_result(
_db: &dyn HirDatabase,
_def: GenericDefId,
_param_id: TypeOrConstParamId,
_assoc_name: Option<Name>,
) -> GenericPredicates {
GenericPredicates(None)
}
pub(crate) fn trait_environment_for_body_query(
db: &dyn HirDatabase,
def: DefWithBodyId,
) -> Arc<TraitEnvironment> {
let Some(def) = def.as_generic_def_id(db) else {
let krate = def.module(db).krate();
return TraitEnvironment::empty(krate);
};
db.trait_environment(def)
}
pub(crate) fn trait_environment_query(
db: &dyn HirDatabase,
def: GenericDefId,
) -> Arc<TraitEnvironment> {
let generics = generics(db, def);
let resolver = def.resolver(db);
let mut ctx = TyLoweringContext::new(
db,
&resolver,
generics.store(),
def,
LifetimeElisionKind::AnonymousReportError,
)
.with_type_param_mode(ParamLoweringMode::Placeholder);
let mut traits_in_scope = Vec::new();
let mut clauses = Vec::new();
for maybe_parent_generics in
std::iter::successors(Some(&generics), |generics| generics.parent_generics())
{
ctx.store = maybe_parent_generics.store();
for pred in maybe_parent_generics.where_predicates() {
for pred in ctx.lower_where_predicate(pred, false) {
if let WhereClause::Implemented(tr) = pred.skip_binders() {
traits_in_scope
.push((tr.self_type_parameter(Interner).clone(), tr.hir_trait_id()));
}
let program_clause: chalk_ir::ProgramClause<Interner> = pred.cast(Interner);
clauses.push(program_clause.into_from_env_clause(Interner));
}
}
}
if let Some(trait_id) = def.assoc_trait_container(db) {
// add `Self: Trait<T1, T2, ...>` to the environment in trait
// function default implementations (and speculative code
// inside consts or type aliases)
cov_mark::hit!(trait_self_implements_self);
let substs = TyBuilder::placeholder_subst(db, trait_id);
let trait_ref = TraitRef { trait_id: to_chalk_trait_id(trait_id), substitution: substs };
let pred = WhereClause::Implemented(trait_ref);
clauses.push(pred.cast::<ProgramClause>(Interner).into_from_env_clause(Interner));
}
let subst = generics.placeholder_subst(db);
if !subst.is_empty(Interner) {
let explicitly_unsized_tys = ctx.unsized_types;
if let Some(implicitly_sized_clauses) =
implicitly_sized_clauses(db, def, &explicitly_unsized_tys, &subst, &resolver)
{
clauses.extend(
implicitly_sized_clauses.map(|pred| {
pred.cast::<ProgramClause>(Interner).into_from_env_clause(Interner)
}),
);
};
}
let env = chalk_ir::Environment::new(Interner).add_clauses(Interner, clauses);
TraitEnvironment::new(resolver.krate(), None, traits_in_scope.into_boxed_slice(), env)
}
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct GenericPredicates(Option<Arc<[Binders<QuantifiedWhereClause>]>>);
impl ops::Deref for GenericPredicates {
type Target = [Binders<crate::QuantifiedWhereClause>];
fn deref(&self) -> &Self::Target {
self.0.as_deref().unwrap_or(&[])
}
}
/// Resolve the where clause(s) of an item with generics.
pub(crate) fn generic_predicates_query(
db: &dyn HirDatabase,
def: GenericDefId,
) -> GenericPredicates {
generic_predicates_filtered_by(db, def, |_, _| true).0
}
pub(crate) fn generic_predicates_without_parent_query(
db: &dyn HirDatabase,
def: GenericDefId,
) -> GenericPredicates {
db.generic_predicates_without_parent_with_diagnostics(def).0
}
/// Resolve the where clause(s) of an item with generics,
/// except the ones inherited from the parent
pub(crate) fn generic_predicates_without_parent_with_diagnostics_query(
db: &dyn HirDatabase,
def: GenericDefId,
) -> (GenericPredicates, Diagnostics) {
generic_predicates_filtered_by(db, def, |_, d| d == def)
}
/// Resolve the where clause(s) of an item with generics,
/// except the ones inherited from the parent
fn generic_predicates_filtered_by<F>(
db: &dyn HirDatabase,
def: GenericDefId,
filter: F,
) -> (GenericPredicates, Diagnostics)
where
F: Fn(&WherePredicate, GenericDefId) -> bool,
{
let generics = generics(db, def);
let resolver = def.resolver(db);
let mut ctx = TyLoweringContext::new(
db,
&resolver,
generics.store(),
def,
LifetimeElisionKind::AnonymousReportError,
)
.with_type_param_mode(ParamLoweringMode::Variable);
let mut predicates = Vec::new();
for maybe_parent_generics in
std::iter::successors(Some(&generics), |generics| generics.parent_generics())
{
ctx.store = maybe_parent_generics.store();
for pred in maybe_parent_generics.where_predicates() {
if filter(pred, maybe_parent_generics.def()) {
// We deliberately use `generics` and not `maybe_parent_generics` here. This is not a mistake!
// If we use the parent generics
predicates.extend(
ctx.lower_where_predicate(pred, false).map(|p| make_binders(db, &generics, p)),
);
}
}
}
if generics.len() > 0 {
let subst = generics.bound_vars_subst(db, DebruijnIndex::INNERMOST);
let explicitly_unsized_tys = ctx.unsized_types;
if let Some(implicitly_sized_predicates) =
implicitly_sized_clauses(db, def, &explicitly_unsized_tys, &subst, &resolver)
{
predicates.extend(
implicitly_sized_predicates
.map(|p| make_binders(db, &generics, crate::wrap_empty_binders(p))),
);
};
}
(
GenericPredicates(predicates.is_empty().not().then(|| predicates.into())),
create_diagnostics(ctx.diagnostics),
)
}
/// Generate implicit `: Sized` predicates for all generics that has no `?Sized` bound.
/// Exception is Self of a trait def.
fn implicitly_sized_clauses<'db, 'a, 'subst: 'a>(
db: &'db dyn HirDatabase,
def: GenericDefId,
explicitly_unsized_tys: &'a FxHashSet<Ty>,
substitution: &'subst Substitution,
resolver: &Resolver<'db>,
) -> Option<impl Iterator<Item = WhereClause>> {
let sized_trait = LangItem::Sized.resolve_trait(db, resolver.krate()).map(to_chalk_trait_id)?;
let trait_self_idx = trait_self_param_idx(db, def);
Some(
substitution
.iter(Interner)
.enumerate()
.filter_map(
move |(idx, generic_arg)| {
if Some(idx) == trait_self_idx { None } else { Some(generic_arg) }
},
)
.filter_map(|generic_arg| generic_arg.ty(Interner))
.filter(move |&self_ty| !explicitly_unsized_tys.contains(self_ty))
.map(move |self_ty| {
WhereClause::Implemented(TraitRef {
trait_id: sized_trait,
substitution: Substitution::from1(Interner, self_ty.clone()),
})
}),
)
}
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct GenericDefaults(Option<Arc<[Binders<crate::GenericArg>]>>);
impl ops::Deref for GenericDefaults {
type Target = [Binders<crate::GenericArg>];
fn deref(&self) -> &Self::Target {
self.0.as_deref().unwrap_or(&[])
}
}
pub(crate) fn generic_defaults_query(db: &dyn HirDatabase, def: GenericDefId) -> GenericDefaults {
db.generic_defaults_with_diagnostics(def).0
}
/// Resolve the default type params from generics.
///
/// Diagnostics are only returned for this `GenericDefId` (returned defaults include parents).
pub(crate) fn generic_defaults_with_diagnostics_query(
db: &dyn HirDatabase,
def: GenericDefId,
) -> (GenericDefaults, Diagnostics) {
let generic_params = generics(db, def);
if generic_params.len() == 0 {
return (GenericDefaults(None), None);
}
let resolver = def.resolver(db);
let mut ctx = TyLoweringContext::new(
db,
&resolver,
generic_params.store(),
def,
LifetimeElisionKind::AnonymousReportError,
)
.with_impl_trait_mode(ImplTraitLoweringMode::Disallowed)
.with_type_param_mode(ParamLoweringMode::Variable);
let mut idx = 0;
let mut has_any_default = false;
let mut defaults = generic_params
.iter_parents_with_store()
.map(|((id, p), store)| {
ctx.store = store;
let (result, has_default) = handle_generic_param(&mut ctx, idx, id, p, &generic_params);
has_any_default |= has_default;
idx += 1;
result
})
.collect::<Vec<_>>();
ctx.diagnostics.clear(); // Don't include diagnostics from the parent.
defaults.extend(generic_params.iter_self().map(|(id, p)| {
let (result, has_default) = handle_generic_param(&mut ctx, idx, id, p, &generic_params);
has_any_default |= has_default;
idx += 1;
result
}));
let diagnostics = create_diagnostics(mem::take(&mut ctx.diagnostics));
let defaults = if has_any_default {
GenericDefaults(Some(Arc::from_iter(defaults)))
} else {
GenericDefaults(None)
};
return (defaults, diagnostics);
fn handle_generic_param(
ctx: &mut TyLoweringContext<'_>,
idx: usize,
id: GenericParamId,
p: GenericParamDataRef<'_>,
generic_params: &Generics,
) -> (Binders<crate::GenericArg>, bool) {
let binders = variable_kinds_from_iter(ctx.db, generic_params.iter_id().take(idx));
match p {
GenericParamDataRef::TypeParamData(p) => {
let ty = p.default.as_ref().map_or_else(
|| TyKind::Error.intern(Interner),
|ty| {
// Each default can only refer to previous parameters.
// Type variable default referring to parameter coming
// after it is forbidden (FIXME: report diagnostic)
fallback_bound_vars(ctx.lower_ty(*ty), idx)
},
);
(Binders::new(binders, ty.cast(Interner)), p.default.is_some())
}
GenericParamDataRef::ConstParamData(p) => {
let GenericParamId::ConstParamId(id) = id else {
unreachable!("Unexpected lifetime or type argument")
};
let mut val = p.default.as_ref().map_or_else(
|| unknown_const_as_generic(ctx.db.const_param_ty(id)),
|c| {
let param_ty = ctx.lower_ty(p.ty);
let c = ctx.lower_const(c, param_ty);
c.cast(Interner)
},
);
// Each default can only refer to previous parameters, see above.
val = fallback_bound_vars(val, idx);
(Binders::new(binders, val), p.default.is_some())
}
GenericParamDataRef::LifetimeParamData(_) => {
(Binders::new(binders, error_lifetime().cast(Interner)), false)
}
}
}
}
pub(crate) fn generic_defaults_with_diagnostics_cycle_result(
_db: &dyn HirDatabase,
_def: GenericDefId,
) -> (GenericDefaults, Diagnostics) {
(GenericDefaults(None), None)
}
fn fn_sig_for_fn(db: &dyn HirDatabase, def: FunctionId) -> PolyFnSig {
let data = db.function_signature(def);
let resolver = def.resolver(db);
let mut ctx_params = TyLoweringContext::new(
db,
&resolver,
&data.store,
def.into(),
LifetimeElisionKind::for_fn_params(&data),
)
.with_type_param_mode(ParamLoweringMode::Variable);
let params = data.params.iter().map(|&tr| ctx_params.lower_ty(tr));
let ret = match data.ret_type {
Some(ret_type) => {
let mut ctx_ret = TyLoweringContext::new(
db,
&resolver,
&data.store,
def.into(),
LifetimeElisionKind::for_fn_ret(),
)
.with_impl_trait_mode(ImplTraitLoweringMode::Opaque)
.with_type_param_mode(ParamLoweringMode::Variable);
ctx_ret.lower_ty(ret_type)
}
None => TyKind::Tuple(0, Substitution::empty(Interner)).intern(Interner),
};
let generics = generics(db, def.into());
let sig = CallableSig::from_params_and_return(
params,
ret,
data.is_varargs(),
if data.is_unsafe() { Safety::Unsafe } else { Safety::Safe },
data.abi.as_ref().map_or(FnAbi::Rust, FnAbi::from_symbol),
);
make_binders(db, &generics, sig)
}
/// Build the declared type of a function. This should not need to look at the
/// function body.
fn type_for_fn(db: &dyn HirDatabase, def: FunctionId) -> Binders<Ty> {
let generics = generics(db, def.into());
let substs = generics.bound_vars_subst(db, DebruijnIndex::INNERMOST);
make_binders(
db,
&generics,
TyKind::FnDef(CallableDefId::FunctionId(def).to_chalk(db), substs).intern(Interner),
)
}
/// Build the declared type of a const.
fn type_for_const(db: &dyn HirDatabase, def: ConstId) -> Binders<Ty> {
let data = db.const_signature(def);
let generics = generics(db, def.into());
let resolver = def.resolver(db);
let parent = def.loc(db).container;
let mut ctx = TyLoweringContext::new(
db,
&resolver,
&data.store,
def.into(),
LifetimeElisionKind::for_const(parent),
)
.with_type_param_mode(ParamLoweringMode::Variable);
make_binders(db, &generics, ctx.lower_ty(data.type_ref))
}
/// Build the declared type of a static.
fn type_for_static(db: &dyn HirDatabase, def: StaticId) -> Binders<Ty> {
let data = db.static_signature(def);
let resolver = def.resolver(db);
let mut ctx = TyLoweringContext::new(
db,
&resolver,
&data.store,
def.into(),
LifetimeElisionKind::Elided(static_lifetime()),
);
Binders::empty(Interner, ctx.lower_ty(data.type_ref))
}
fn fn_sig_for_struct_constructor(db: &dyn HirDatabase, def: StructId) -> PolyFnSig {
let field_tys = db.field_types(def.into());
let params = field_tys.iter().map(|(_, ty)| ty.skip_binders().clone());
let (ret, binders) = type_for_adt(db, def.into()).into_value_and_skipped_binders();
Binders::new(
binders,
CallableSig::from_params_and_return(params, ret, false, Safety::Safe, FnAbi::RustCall),
)
}
/// Build the type of a tuple struct constructor.
fn type_for_struct_constructor(db: &dyn HirDatabase, def: StructId) -> Option<Binders<Ty>> {
let struct_data = db.variant_fields(def.into());
match struct_data.shape {
FieldsShape::Record => None,
FieldsShape::Unit => Some(type_for_adt(db, def.into())),
FieldsShape::Tuple => {
let generics = generics(db, AdtId::from(def).into());
let substs = generics.bound_vars_subst(db, DebruijnIndex::INNERMOST);
Some(make_binders(
db,
&generics,
TyKind::FnDef(CallableDefId::StructId(def).to_chalk(db), substs).intern(Interner),
))
}
}
}
fn fn_sig_for_enum_variant_constructor(db: &dyn HirDatabase, def: EnumVariantId) -> PolyFnSig {
let field_tys = db.field_types(def.into());
let params = field_tys.iter().map(|(_, ty)| ty.skip_binders().clone());
let parent = def.lookup(db).parent;
let (ret, binders) = type_for_adt(db, parent.into()).into_value_and_skipped_binders();
Binders::new(
binders,
CallableSig::from_params_and_return(params, ret, false, Safety::Safe, FnAbi::RustCall),
)
}
/// Build the type of a tuple enum variant constructor.
fn type_for_enum_variant_constructor(
db: &dyn HirDatabase,
def: EnumVariantId,
) -> Option<Binders<Ty>> {
let e = def.lookup(db).parent;
match db.variant_fields(def.into()).shape {
FieldsShape::Record => None,
FieldsShape::Unit => Some(type_for_adt(db, e.into())),
FieldsShape::Tuple => {
let generics = generics(db, e.into());
let substs = generics.bound_vars_subst(db, DebruijnIndex::INNERMOST);
Some(make_binders(
db,
&generics,
TyKind::FnDef(CallableDefId::EnumVariantId(def).to_chalk(db), substs)
.intern(Interner),
))
}
}
}
#[salsa_macros::tracked(cycle_result = type_for_adt_cycle_result)]
fn type_for_adt_tracked(db: &dyn HirDatabase, adt: AdtId) -> Binders<Ty> {
type_for_adt(db, adt)
}
fn type_for_adt_cycle_result(db: &dyn HirDatabase, adt: AdtId) -> Binders<Ty> {
let generics = generics(db, adt.into());
make_binders(db, &generics, TyKind::Error.intern(Interner))
}
fn type_for_adt(db: &dyn HirDatabase, adt: AdtId) -> Binders<Ty> {
let generics = generics(db, adt.into());
let subst = generics.bound_vars_subst(db, DebruijnIndex::INNERMOST);
let ty = TyKind::Adt(crate::AdtId(adt), subst).intern(Interner);
make_binders(db, &generics, ty)
}
pub(crate) fn type_for_type_alias_with_diagnostics_query(
db: &dyn HirDatabase,
t: TypeAliasId,
) -> (Binders<Ty>, Diagnostics) {
let generics = generics(db, t.into());
let type_alias_data = db.type_alias_signature(t);
let mut diags = None;
let inner = if type_alias_data.flags.contains(TypeAliasFlags::IS_EXTERN) {
TyKind::Foreign(crate::to_foreign_def_id(t)).intern(Interner)
} else {
let resolver = t.resolver(db);
let alias = db.type_alias_signature(t);
let mut ctx = TyLoweringContext::new(
db,
&resolver,
&alias.store,
t.into(),
LifetimeElisionKind::AnonymousReportError,
)
.with_impl_trait_mode(ImplTraitLoweringMode::Opaque)
.with_type_param_mode(ParamLoweringMode::Variable);
let res = alias
.ty
.map(|type_ref| ctx.lower_ty(type_ref))
.unwrap_or_else(|| TyKind::Error.intern(Interner));
diags = create_diagnostics(ctx.diagnostics);
res
};
(make_binders(db, &generics, inner), diags)
}
pub(crate) fn type_for_type_alias_with_diagnostics_cycle_result(
db: &dyn HirDatabase,
adt: TypeAliasId,
) -> (Binders<Ty>, Diagnostics) {
let generics = generics(db, adt.into());
(make_binders(db, &generics, TyKind::Error.intern(Interner)), None)
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum TyDefId {
BuiltinType(BuiltinType),
AdtId(AdtId),
TypeAliasId(TypeAliasId),
}
impl_from!(BuiltinType, AdtId(StructId, EnumId, UnionId), TypeAliasId for TyDefId);
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, salsa_macros::Supertype)]
pub enum ValueTyDefId {
FunctionId(FunctionId),
StructId(StructId),
UnionId(UnionId),
EnumVariantId(EnumVariantId),
ConstId(ConstId),
StaticId(StaticId),
}
impl_from!(FunctionId, StructId, UnionId, EnumVariantId, ConstId, StaticId for ValueTyDefId);
impl ValueTyDefId {
pub(crate) fn to_generic_def_id(self, db: &dyn HirDatabase) -> GenericDefId {
match self {
Self::FunctionId(id) => id.into(),
Self::StructId(id) => id.into(),
Self::UnionId(id) => id.into(),
Self::EnumVariantId(var) => var.lookup(db).parent.into(),
Self::ConstId(id) => id.into(),
Self::StaticId(id) => id.into(),
}
}
}
/// Build the declared type of an item. This depends on the namespace; e.g. for
/// `struct Foo(usize)`, we have two types: The type of the struct itself, and
/// the constructor function `(usize) -> Foo` which lives in the values
/// namespace.
pub(crate) fn ty_query(db: &dyn HirDatabase, def: TyDefId) -> Binders<Ty> {
match def {
TyDefId::BuiltinType(it) => Binders::empty(Interner, TyBuilder::builtin(it)),
TyDefId::AdtId(it) => type_for_adt_tracked(db, it),
TyDefId::TypeAliasId(it) => db.type_for_type_alias_with_diagnostics(it).0,
}
}
pub(crate) fn value_ty_query(db: &dyn HirDatabase, def: ValueTyDefId) -> Option<Binders<Ty>> {
match def {
ValueTyDefId::FunctionId(it) => Some(type_for_fn(db, it)),
ValueTyDefId::StructId(it) => type_for_struct_constructor(db, it),
ValueTyDefId::UnionId(it) => Some(type_for_adt(db, it.into())),
ValueTyDefId::EnumVariantId(it) => type_for_enum_variant_constructor(db, it),
ValueTyDefId::ConstId(it) => Some(type_for_const(db, it)),
ValueTyDefId::StaticId(it) => Some(type_for_static(db, it)),
}
}
pub(crate) fn impl_self_ty_query(db: &dyn HirDatabase, impl_id: ImplId) -> Binders<Ty> {
db.impl_self_ty_with_diagnostics(impl_id).0
}
pub(crate) fn impl_self_ty_with_diagnostics_query(
db: &dyn HirDatabase,
impl_id: ImplId,
) -> (Binders<Ty>, Diagnostics) {
let impl_data = db.impl_signature(impl_id);
let resolver = impl_id.resolver(db);
let generics = generics(db, impl_id.into());
let mut ctx = TyLoweringContext::new(
db,
&resolver,
&impl_data.store,
impl_id.into(),
LifetimeElisionKind::AnonymousCreateParameter { report_in_path: true },
)
.with_type_param_mode(ParamLoweringMode::Variable);
(
make_binders(db, &generics, ctx.lower_ty(impl_data.self_ty)),
create_diagnostics(ctx.diagnostics),
)
}
pub(crate) fn const_param_ty_query(db: &dyn HirDatabase, def: ConstParamId) -> Ty {
db.const_param_ty_with_diagnostics(def).0
}
// returns None if def is a type arg
pub(crate) fn const_param_ty_with_diagnostics_query(
db: &dyn HirDatabase,
def: ConstParamId,
) -> (Ty, Diagnostics) {
let (parent_data, store) = db.generic_params_and_store(def.parent());
let data = &parent_data[def.local_id()];
let resolver = def.parent().resolver(db);
let mut ctx = TyLoweringContext::new(
db,
&resolver,
&store,
def.parent(),
LifetimeElisionKind::AnonymousReportError,
);
let ty = match data {
TypeOrConstParamData::TypeParamData(_) => {
never!();
Ty::new(Interner, TyKind::Error)
}
TypeOrConstParamData::ConstParamData(d) => ctx.lower_ty(d.ty),
};
(ty, create_diagnostics(ctx.diagnostics))
}
pub(crate) fn impl_self_ty_with_diagnostics_cycle_result(
db: &dyn HirDatabase,
impl_id: ImplId,
) -> (Binders<Ty>, Diagnostics) {
let generics = generics(db, impl_id.into());
(make_binders(db, &generics, TyKind::Error.intern(Interner)), None)
}
pub(crate) fn impl_trait_query(db: &dyn HirDatabase, impl_id: ImplId) -> Option<Binders<TraitRef>> {
db.impl_trait_with_diagnostics(impl_id).map(|it| it.0)
}
pub(crate) fn impl_trait_with_diagnostics_query(
db: &dyn HirDatabase,
impl_id: ImplId,
) -> Option<(Binders<TraitRef>, Diagnostics)> {
let impl_data = db.impl_signature(impl_id);
let resolver = impl_id.resolver(db);
let mut ctx = TyLoweringContext::new(
db,
&resolver,
&impl_data.store,
impl_id.into(),
LifetimeElisionKind::AnonymousCreateParameter { report_in_path: true },
)
.with_type_param_mode(ParamLoweringMode::Variable);
let (self_ty, binders) = db.impl_self_ty(impl_id).into_value_and_skipped_binders();
let target_trait = impl_data.target_trait.as_ref()?;
let trait_ref = Binders::new(binders, ctx.lower_trait_ref(target_trait, self_ty)?);
Some((trait_ref, create_diagnostics(ctx.diagnostics)))
}
pub(crate) fn return_type_impl_traits(
db: &dyn HirDatabase,
def: hir_def::FunctionId,
) -> Option<Arc<Binders<ImplTraits>>> {
// FIXME unify with fn_sig_for_fn instead of doing lowering twice, maybe
let data = db.function_signature(def);
let resolver = def.resolver(db);
let mut ctx_ret =
TyLoweringContext::new(db, &resolver, &data.store, def.into(), LifetimeElisionKind::Infer)
.with_impl_trait_mode(ImplTraitLoweringMode::Opaque)
.with_type_param_mode(ParamLoweringMode::Variable);
if let Some(ret_type) = data.ret_type {
let _ret = ctx_ret.lower_ty(ret_type);
}
let generics = generics(db, def.into());
let return_type_impl_traits =
ImplTraits { impl_traits: ctx_ret.impl_trait_mode.opaque_type_data };
if return_type_impl_traits.impl_traits.is_empty() {
None
} else {
Some(Arc::new(make_binders(db, &generics, return_type_impl_traits)))
}
}
pub(crate) fn type_alias_impl_traits(
db: &dyn HirDatabase,
def: hir_def::TypeAliasId,
) -> Option<Arc<Binders<ImplTraits>>> {
let data = db.type_alias_signature(def);
let resolver = def.resolver(db);
let mut ctx = TyLoweringContext::new(
db,
&resolver,
&data.store,
def.into(),
LifetimeElisionKind::AnonymousReportError,
)
.with_impl_trait_mode(ImplTraitLoweringMode::Opaque)
.with_type_param_mode(ParamLoweringMode::Variable);
if let Some(type_ref) = data.ty {
let _ty = ctx.lower_ty(type_ref);
}
let type_alias_impl_traits = ImplTraits { impl_traits: ctx.impl_trait_mode.opaque_type_data };
if type_alias_impl_traits.impl_traits.is_empty() {
None
} else {
let generics = generics(db, def.into());
Some(Arc::new(make_binders(db, &generics, type_alias_impl_traits)))
}
}
pub(crate) fn lower_to_chalk_mutability(m: hir_def::type_ref::Mutability) -> Mutability {
match m {
hir_def::type_ref::Mutability::Shared => Mutability::Not,
hir_def::type_ref::Mutability::Mut => Mutability::Mut,
}
}
/// Replaces any 'free' `BoundVar`s in `s` by `TyKind::Error` from the perspective of generic
/// parameter whose index is `param_index`. A `BoundVar` is free when it appears after the
/// generic parameter of `param_index`.
fn fallback_bound_vars<T: TypeFoldable<Interner> + HasInterner<Interner = Interner>>(
s: T,
param_index: usize,
) -> T {
let is_allowed = |index| (0..param_index).contains(&index);
crate::fold_free_vars(
s,
|bound, binders| {
if bound.index_if_innermost().is_none_or(is_allowed) {
bound.shifted_in_from(binders).to_ty(Interner)
} else {
TyKind::Error.intern(Interner)
}
},
|ty, bound, binders| {
if bound.index_if_innermost().is_none_or(is_allowed) {
bound.shifted_in_from(binders).to_const(Interner, ty)
} else {
unknown_const(ty)
}
},
)
}