rust-analyzer/crates/mbe/src/expander.rs
Lukas Wirth 78f33c0e96 Expand unmatched mbe fragments to reasonable default token trees
Currently we expand unmatched fragments by not replacing them at all,
leaving us with `$ident`. This trips up the parser or subsequent macro
calls. Instead it makes more sense to replace these with some reasonable
default depending on the fragment kind which should make more recursive
macro calls work better for completions.
2022-10-10 14:27:05 +02:00

123 lines
4.5 KiB
Rust

//! This module takes a (parsed) definition of `macro_rules` invocation, a
//! `tt::TokenTree` representing an argument of macro invocation, and produces a
//! `tt::TokenTree` for the result of the expansion.
mod matcher;
mod transcriber;
use rustc_hash::FxHashMap;
use syntax::SmolStr;
use crate::{parser::MetaVarKind, ExpandError, ExpandResult};
pub(crate) fn expand_rules(
rules: &[crate::Rule],
input: &tt::Subtree,
) -> ExpandResult<tt::Subtree> {
let mut match_: Option<(matcher::Match, &crate::Rule)> = None;
for rule in rules {
let new_match = matcher::match_(&rule.lhs, input);
if new_match.err.is_none() {
// If we find a rule that applies without errors, we're done.
// Unconditionally returning the transcription here makes the
// `test_repeat_bad_var` test fail.
let ExpandResult { value, err: transcribe_err } =
transcriber::transcribe(&rule.rhs, &new_match.bindings);
if transcribe_err.is_none() {
return ExpandResult::ok(value);
}
}
// Use the rule if we matched more tokens, or bound variables count
if let Some((prev_match, _)) = &match_ {
if (new_match.unmatched_tts, -(new_match.bound_count as i32))
< (prev_match.unmatched_tts, -(prev_match.bound_count as i32))
{
match_ = Some((new_match, rule));
}
} else {
match_ = Some((new_match, rule));
}
}
if let Some((match_, rule)) = match_ {
// if we got here, there was no match without errors
let ExpandResult { value, err: transcribe_err } =
transcriber::transcribe(&rule.rhs, &match_.bindings);
ExpandResult { value, err: match_.err.or(transcribe_err) }
} else {
ExpandResult::only_err(ExpandError::NoMatchingRule)
}
}
/// The actual algorithm for expansion is not too hard, but is pretty tricky.
/// `Bindings` structure is the key to understanding what we are doing here.
///
/// On the high level, it stores mapping from meta variables to the bits of
/// syntax it should be substituted with. For example, if `$e:expr` is matched
/// with `1 + 1` by macro_rules, the `Binding` will store `$e -> 1 + 1`.
///
/// The tricky bit is dealing with repetitions (`$()*`). Consider this example:
///
/// ```not_rust
/// macro_rules! foo {
/// ($($ i:ident $($ e:expr),*);*) => {
/// $(fn $ i() { $($ e);*; })*
/// }
/// }
/// foo! { foo 1,2,3; bar 4,5,6 }
/// ```
///
/// Here, the `$i` meta variable is matched first with `foo` and then with
/// `bar`, and `$e` is matched in turn with `1`, `2`, `3`, `4`, `5`, `6`.
///
/// To represent such "multi-mappings", we use a recursive structures: we map
/// variables not to values, but to *lists* of values or other lists (that is,
/// to the trees).
///
/// For the above example, the bindings would store
///
/// ```not_rust
/// i -> [foo, bar]
/// e -> [[1, 2, 3], [4, 5, 6]]
/// ```
///
/// We construct `Bindings` in the `match_lhs`. The interesting case is
/// `TokenTree::Repeat`, where we use `push_nested` to create the desired
/// nesting structure.
///
/// The other side of the puzzle is `expand_subtree`, where we use the bindings
/// to substitute meta variables in the output template. When expanding, we
/// maintain a `nesting` stack of indices which tells us which occurrence from
/// the `Bindings` we should take. We push to the stack when we enter a
/// repetition.
///
/// In other words, `Bindings` is a *multi* mapping from `SmolStr` to
/// `tt::TokenTree`, where the index to select a particular `TokenTree` among
/// many is not a plain `usize`, but a `&[usize]`.
#[derive(Debug, Default, Clone, PartialEq, Eq)]
struct Bindings {
inner: FxHashMap<SmolStr, Binding>,
}
#[derive(Debug, Clone, PartialEq, Eq)]
enum Binding {
Fragment(Fragment),
Nested(Vec<Binding>),
Empty,
Missing(MetaVarKind),
}
#[derive(Debug, Clone, PartialEq, Eq)]
enum Fragment {
/// token fragments are just copy-pasted into the output
Tokens(tt::TokenTree),
/// Expr ast fragments are surrounded with `()` on insertion to preserve
/// precedence. Note that this impl is different from the one currently in
/// `rustc` -- `rustc` doesn't translate fragments into token trees at all.
///
/// At one point in time, we tried to to use "fake" delimiters here a-la
/// proc-macro delimiter=none. As we later discovered, "none" delimiters are
/// tricky to handle in the parser, and rustc doesn't handle those either.
Expr(tt::TokenTree),
}