845 lines
33 KiB
Rust

//! Tactics for term search
//!
//! All the tactics take following arguments
//! * `ctx` - Context for the term search
//! * `defs` - Set of items in scope at term search target location
//! * `lookup` - Lookup table for types
//! And they return iterator that yields type trees that unify with the `goal` type.
use std::iter;
use hir_ty::db::HirDatabase;
use hir_ty::mir::BorrowKind;
use hir_ty::TyBuilder;
use itertools::Itertools;
use rustc_hash::FxHashSet;
use crate::{
Adt, AssocItem, Enum, GenericDef, GenericParam, HasVisibility, Impl, ModuleDef, ScopeDef, Type,
Variant,
};
use crate::term_search::{TermSearchConfig, TypeTree};
use super::{LookupTable, NewTypesKey, TermSearchCtx, MAX_VARIATIONS};
/// # Trivial tactic
///
/// Attempts to fulfill the goal by trying items in scope
/// Also works as a starting point to move all items in scope to lookup table.
///
/// # Arguments
/// * `ctx` - Context for the term search
/// * `defs` - Set of items in scope at term search target location
/// * `lookup` - Lookup table for types
///
/// Returns iterator that yields elements that unify with `goal`.
///
/// _Note that there is no use of calling this tactic in every iteration as the output does not
/// depend on the current state of `lookup`_
pub(super) fn trivial<'a, DB: HirDatabase>(
ctx: &'a TermSearchCtx<'a, DB>,
defs: &'a FxHashSet<ScopeDef>,
lookup: &'a mut LookupTable,
) -> impl Iterator<Item = TypeTree> + 'a {
let db = ctx.sema.db;
defs.iter().filter_map(|def| {
let tt = match def {
ScopeDef::ModuleDef(ModuleDef::Const(it)) => Some(TypeTree::Const(*it)),
ScopeDef::ModuleDef(ModuleDef::Static(it)) => Some(TypeTree::Static(*it)),
ScopeDef::GenericParam(GenericParam::ConstParam(it)) => Some(TypeTree::ConstParam(*it)),
ScopeDef::Local(it) => {
if ctx.config.enable_borrowcheck {
let borrowck = db.borrowck(it.parent).ok()?;
let invalid = borrowck.iter().any(|b| {
b.partially_moved.iter().any(|moved| {
Some(&moved.local) == b.mir_body.binding_locals.get(it.binding_id)
}) || b.borrow_regions.iter().any(|region| {
// Shared borrows are fine
Some(&region.local) == b.mir_body.binding_locals.get(it.binding_id)
&& region.kind != BorrowKind::Shared
})
});
if invalid {
return None;
}
}
Some(TypeTree::Local(*it))
}
_ => None,
}?;
lookup.mark_exhausted(*def);
let ty = tt.ty(db);
lookup.insert(ty.clone(), std::iter::once(tt.clone()));
// Don't suggest local references as they are not valid for return
if matches!(tt, TypeTree::Local(_)) && ty.contains_reference(db) {
return None;
}
ty.could_unify_with_deeply(db, &ctx.goal).then(|| tt)
})
}
/// # Type constructor tactic
///
/// Attempts different type constructors for enums and structs in scope
///
/// Updates lookup by new types reached and returns iterator that yields
/// elements that unify with `goal`.
///
/// # Arguments
/// * `ctx` - Context for the term search
/// * `defs` - Set of items in scope at term search target location
/// * `lookup` - Lookup table for types
pub(super) fn type_constructor<'a, DB: HirDatabase>(
ctx: &'a TermSearchCtx<'a, DB>,
defs: &'a FxHashSet<ScopeDef>,
lookup: &'a mut LookupTable,
) -> impl Iterator<Item = TypeTree> + 'a {
let db = ctx.sema.db;
let module = ctx.scope.module();
fn variant_helper(
db: &dyn HirDatabase,
lookup: &mut LookupTable,
parent_enum: Enum,
variant: Variant,
goal: &Type,
config: &TermSearchConfig,
) -> Vec<(Type, Vec<TypeTree>)> {
let generics = GenericDef::from(variant.parent_enum(db));
// Ignore unstable variants
if variant.is_unstable(db) {
return Vec::new();
}
// Ignore enums with const generics
if !generics.const_params(db).is_empty() {
return Vec::new();
}
// We currently do not check lifetime bounds so ignore all types that have something to do
// with them
if !generics.lifetime_params(db).is_empty() {
return Vec::new();
}
// Only account for stable type parameters for now
let type_params = generics.type_params(db);
// Only account for stable type parameters for now, unstable params can be default
// tho, for example in `Box<T, #[unstable] A: Allocator>`
if type_params.iter().any(|it| it.is_unstable(db) && it.default(db).is_none()) {
return Vec::new();
}
let non_default_type_params_len =
type_params.iter().filter(|it| it.default(db).is_none()).count();
let generic_params = lookup
.iter_types()
.collect::<Vec<_>>() // Force take ownership
.into_iter()
.permutations(non_default_type_params_len);
generic_params
.filter_map(move |generics| {
// Insert default type params
let mut g = generics.into_iter();
let generics: Vec<_> = type_params
.iter()
.map(|it| match it.default(db) {
Some(ty) => ty,
None => g.next().expect("Missing type param"),
})
.collect();
let enum_ty = parent_enum.ty_with_generics(db, generics.iter().cloned());
// Allow types with generics only if they take us straight to goal for
// performance reasons
if !generics.is_empty() && !enum_ty.could_unify_with_deeply(db, goal) {
return None;
}
// Ignore types that have something to do with lifetimes
if config.enable_borrowcheck && enum_ty.contains_reference(db) {
return None;
}
// Early exit if some param cannot be filled from lookup
let param_trees: Vec<Vec<TypeTree>> = variant
.fields(db)
.into_iter()
.map(|field| {
lookup.find(db, &field.ty_with_generics(db, generics.iter().cloned()))
})
.collect::<Option<_>>()?;
// Note that we need special case for 0 param constructors because of multi cartesian
// product
let variant_trees: Vec<TypeTree> = if param_trees.is_empty() {
vec![TypeTree::Variant {
variant,
generics: generics.clone(),
params: Vec::new(),
}]
} else {
param_trees
.into_iter()
.multi_cartesian_product()
.take(MAX_VARIATIONS)
.map(|params| TypeTree::Variant {
variant,
generics: generics.clone(),
params,
})
.collect()
};
lookup.insert(enum_ty.clone(), variant_trees.iter().cloned());
Some((enum_ty, variant_trees))
})
.collect()
}
defs.iter()
.filter_map(move |def| match def {
ScopeDef::ModuleDef(ModuleDef::Variant(it)) => {
let variant_trees =
variant_helper(db, lookup, it.parent_enum(db), *it, &ctx.goal, &ctx.config);
if variant_trees.is_empty() {
return None;
}
lookup.mark_fulfilled(ScopeDef::ModuleDef(ModuleDef::Variant(*it)));
Some(variant_trees)
}
ScopeDef::ModuleDef(ModuleDef::Adt(Adt::Enum(enum_))) => {
let trees: Vec<(Type, Vec<TypeTree>)> = enum_
.variants(db)
.into_iter()
.flat_map(|it| {
variant_helper(db, lookup, enum_.clone(), it, &ctx.goal, &ctx.config)
})
.collect();
if !trees.is_empty() {
lookup.mark_fulfilled(ScopeDef::ModuleDef(ModuleDef::Adt(Adt::Enum(*enum_))));
}
Some(trees)
}
ScopeDef::ModuleDef(ModuleDef::Adt(Adt::Struct(it))) => {
// Ignore unstable and not visible
if it.is_unstable(db) || !it.is_visible_from(db, module) {
return None;
}
let generics = GenericDef::from(*it);
// Ignore enums with const generics
if !generics.const_params(db).is_empty() {
return None;
}
// We currently do not check lifetime bounds so ignore all types that have something to do
// with them
if !generics.lifetime_params(db).is_empty() {
return None;
}
let type_params = generics.type_params(db);
// Only account for stable type parameters for now, unstable params can be default
// tho, for example in `Box<T, #[unstable] A: Allocator>`
if type_params.iter().any(|it| it.is_unstable(db) && it.default(db).is_none()) {
return None;
}
let non_default_type_params_len =
type_params.iter().filter(|it| it.default(db).is_none()).count();
let generic_params = lookup
.iter_types()
.collect::<Vec<_>>() // Force take ownership
.into_iter()
.permutations(non_default_type_params_len);
let trees = generic_params
.filter_map(|generics| {
// Insert default type params
let mut g = generics.into_iter();
let generics: Vec<_> = type_params
.iter()
.map(|it| match it.default(db) {
Some(ty) => ty,
None => g.next().expect("Missing type param"),
})
.collect();
let struct_ty = it.ty_with_generics(db, generics.iter().cloned());
// Allow types with generics only if they take us straight to goal for
// performance reasons
if non_default_type_params_len != 0
&& struct_ty.could_unify_with_deeply(db, &ctx.goal)
{
return None;
}
// Ignore types that have something to do with lifetimes
if ctx.config.enable_borrowcheck && struct_ty.contains_reference(db) {
return None;
}
let fileds = it.fields(db);
// Check if all fields are visible, otherwise we cannot fill them
if fileds.iter().any(|it| !it.is_visible_from(db, module)) {
return None;
}
// Early exit if some param cannot be filled from lookup
let param_trees: Vec<Vec<TypeTree>> = fileds
.into_iter()
.map(|field| lookup.find(db, &field.ty(db)))
.collect::<Option<_>>()?;
// Note that we need special case for 0 param constructors because of multi cartesian
// product
let struct_trees: Vec<TypeTree> = if param_trees.is_empty() {
vec![TypeTree::Struct { strukt: *it, generics, params: Vec::new() }]
} else {
param_trees
.into_iter()
.multi_cartesian_product()
.take(MAX_VARIATIONS)
.map(|params| TypeTree::Struct {
strukt: *it,
generics: generics.clone(),
params,
})
.collect()
};
lookup
.mark_fulfilled(ScopeDef::ModuleDef(ModuleDef::Adt(Adt::Struct(*it))));
lookup.insert(struct_ty.clone(), struct_trees.iter().cloned());
Some((struct_ty, struct_trees))
})
.collect();
Some(trees)
}
_ => None,
})
.flatten()
.filter_map(|(ty, trees)| ty.could_unify_with_deeply(db, &ctx.goal).then(|| trees))
.flatten()
}
/// # Free function tactic
///
/// Attempts to call different functions in scope with parameters from lookup table.
/// Functions that include generics are not used for performance reasons.
///
/// Updates lookup by new types reached and returns iterator that yields
/// elements that unify with `goal`.
///
/// # Arguments
/// * `ctx` - Context for the term search
/// * `defs` - Set of items in scope at term search target location
/// * `lookup` - Lookup table for types
pub(super) fn free_function<'a, DB: HirDatabase>(
ctx: &'a TermSearchCtx<'a, DB>,
defs: &'a FxHashSet<ScopeDef>,
lookup: &'a mut LookupTable,
) -> impl Iterator<Item = TypeTree> + 'a {
let db = ctx.sema.db;
let module = ctx.scope.module();
defs.iter()
.filter_map(move |def| match def {
ScopeDef::ModuleDef(ModuleDef::Function(it)) => {
let generics = GenericDef::from(*it);
// Skip functions that require const generics
if !generics.const_params(db).is_empty() {
return None;
}
// Ignore lifetimes as we do not check them
if !generics.lifetime_params(db).is_empty() {
return None;
}
let type_params = generics.type_params(db);
// Only account for stable type parameters for now, unstable params can be default
// tho, for example in `Box<T, #[unstable] A: Allocator>`
if type_params.iter().any(|it| it.is_unstable(db) && it.default(db).is_none()) {
return None;
}
let non_default_type_params_len =
type_params.iter().filter(|it| it.default(db).is_none()).count();
// Ignore bigger number of generics for now as they kill the performance
if non_default_type_params_len > 0 {
return None;
}
let generic_params = lookup
.iter_types()
.collect::<Vec<_>>() // Force take ownership
.into_iter()
.permutations(non_default_type_params_len);
let trees: Vec<_> = generic_params
.filter_map(|generics| {
// Insert default type params
let mut g = generics.into_iter();
let generics: Vec<_> = type_params
.iter()
.map(|it| match it.default(db) {
Some(ty) => ty,
None => g.next().expect("Missing type param"),
})
.collect();
let ret_ty = it.ret_type_with_generics(db, generics.iter().cloned());
// Filter out private and unsafe functions
if !it.is_visible_from(db, module)
|| it.is_unsafe_to_call(db)
|| it.is_unstable(db)
|| ctx.config.enable_borrowcheck && ret_ty.contains_reference(db)
|| ret_ty.is_raw_ptr()
{
return None;
}
// Early exit if some param cannot be filled from lookup
let param_trees: Vec<Vec<TypeTree>> = it
.params_without_self_with_generics(db, generics.iter().cloned())
.into_iter()
.map(|field| {
let ty = field.ty();
match ty.is_mutable_reference() {
true => None,
false => lookup.find_autoref(db, &ty),
}
})
.collect::<Option<_>>()?;
// Note that we need special case for 0 param constructors because of multi cartesian
// product
let fn_trees: Vec<TypeTree> = if param_trees.is_empty() {
vec![TypeTree::Function { func: *it, generics, params: Vec::new() }]
} else {
param_trees
.into_iter()
.multi_cartesian_product()
.take(MAX_VARIATIONS)
.map(|params| TypeTree::Function {
func: *it,
generics: generics.clone(),
params,
})
.collect()
};
lookup.mark_fulfilled(ScopeDef::ModuleDef(ModuleDef::Function(*it)));
lookup.insert(ret_ty.clone(), fn_trees.iter().cloned());
Some((ret_ty, fn_trees))
})
.collect();
Some(trees)
}
_ => None,
})
.flatten()
.filter_map(|(ty, trees)| ty.could_unify_with_deeply(db, &ctx.goal).then(|| trees))
.flatten()
}
/// # Impl method tactic
///
/// Attempts to to call methods on types from lookup table.
/// This includes both functions from direct impl blocks as well as functions from traits.
/// Methods defined in impl blocks that are generic and methods that are themselves have
/// generics are ignored for performance reasons.
///
/// Updates lookup by new types reached and returns iterator that yields
/// elements that unify with `goal`.
///
/// # Arguments
/// * `ctx` - Context for the term search
/// * `defs` - Set of items in scope at term search target location
/// * `lookup` - Lookup table for types
pub(super) fn impl_method<'a, DB: HirDatabase>(
ctx: &'a TermSearchCtx<'a, DB>,
_defs: &'a FxHashSet<ScopeDef>,
lookup: &'a mut LookupTable,
) -> impl Iterator<Item = TypeTree> + 'a {
let db = ctx.sema.db;
let module = ctx.scope.module();
lookup
.new_types(NewTypesKey::ImplMethod)
.into_iter()
.flat_map(|ty| {
Impl::all_for_type(db, ty.clone()).into_iter().map(move |imp| (ty.clone(), imp))
})
.flat_map(|(ty, imp)| imp.items(db).into_iter().map(move |item| (imp, ty.clone(), item)))
.filter_map(|(imp, ty, it)| match it {
AssocItem::Function(f) => Some((imp, ty, f)),
_ => None,
})
.filter_map(move |(imp, ty, it)| {
let fn_generics = GenericDef::from(it);
let imp_generics = GenericDef::from(imp);
// Ignore impl if it has const type arguments
if !fn_generics.const_params(db).is_empty() || !imp_generics.const_params(db).is_empty()
{
return None;
}
// Ignore all functions that have something to do with lifetimes as we don't check them
if !fn_generics.lifetime_params(db).is_empty() {
return None;
}
// Ignore functions without self param
if !it.has_self_param(db) {
return None;
}
// Filter out private and unsafe functions
if !it.is_visible_from(db, module) || it.is_unsafe_to_call(db) || it.is_unstable(db) {
return None;
}
let imp_type_params = imp_generics.type_params(db);
let fn_type_params = fn_generics.type_params(db);
// Only account for stable type parameters for now, unstable params can be default
// tho, for example in `Box<T, #[unstable] A: Allocator>`
if imp_type_params.iter().any(|it| it.is_unstable(db) && it.default(db).is_none())
|| fn_type_params.iter().any(|it| it.is_unstable(db) && it.default(db).is_none())
{
return None;
}
let non_default_type_params_len = imp_type_params
.iter()
.chain(fn_type_params.iter())
.filter(|it| it.default(db).is_none())
.count();
// Ignore bigger number of generics for now as they kill the performance
if non_default_type_params_len > 0 {
return None;
}
let generic_params = lookup
.iter_types()
.collect::<Vec<_>>() // Force take ownership
.into_iter()
.permutations(non_default_type_params_len);
let trees: Vec<_> = generic_params
.filter_map(|generics| {
// Insert default type params
let mut g = generics.into_iter();
let generics: Vec<_> = imp_type_params
.iter()
.chain(fn_type_params.iter())
.map(|it| match it.default(db) {
Some(ty) => ty,
None => g.next().expect("Missing type param"),
})
.collect();
let ret_ty = it.ret_type_with_generics(
db,
ty.type_arguments().chain(generics.iter().cloned()),
);
// Filter out functions that return references
if ctx.config.enable_borrowcheck && ret_ty.contains_reference(db)
|| ret_ty.is_raw_ptr()
{
return None;
}
// Ignore functions that do not change the type
if ty.could_unify_with_deeply(db, &ret_ty) {
return None;
}
let self_ty = it
.self_param(db)
.expect("No self param")
.ty_with_generics(db, ty.type_arguments().chain(generics.iter().cloned()));
// Ignore functions that have different self type
if !self_ty.autoderef(db).any(|s_ty| ty == s_ty) {
return None;
}
let target_type_trees = lookup.find(db, &ty).expect("Type not in lookup");
// Early exit if some param cannot be filled from lookup
let param_trees: Vec<Vec<TypeTree>> = it
.params_without_self_with_generics(
db,
ty.type_arguments().chain(generics.iter().cloned()),
)
.into_iter()
.map(|field| lookup.find_autoref(db, &field.ty()))
.collect::<Option<_>>()?;
let fn_trees: Vec<TypeTree> = std::iter::once(target_type_trees)
.chain(param_trees.into_iter())
.multi_cartesian_product()
.take(MAX_VARIATIONS)
.map(|params| TypeTree::Function { func: it, generics: Vec::new(), params })
.collect();
lookup.insert(ret_ty.clone(), fn_trees.iter().cloned());
Some((ret_ty, fn_trees))
})
.collect();
Some(trees)
})
.flatten()
.filter_map(|(ty, trees)| ty.could_unify_with_deeply(db, &ctx.goal).then(|| trees))
.flatten()
}
/// # Struct projection tactic
///
/// Attempts different struct fields (`foo.bar.baz`)
///
/// Updates lookup by new types reached and returns iterator that yields
/// elements that unify with `goal`.
///
/// # Arguments
/// * `ctx` - Context for the term search
/// * `defs` - Set of items in scope at term search target location
/// * `lookup` - Lookup table for types
pub(super) fn struct_projection<'a, DB: HirDatabase>(
ctx: &'a TermSearchCtx<'a, DB>,
_defs: &'a FxHashSet<ScopeDef>,
lookup: &'a mut LookupTable,
) -> impl Iterator<Item = TypeTree> + 'a {
let db = ctx.sema.db;
let module = ctx.scope.module();
lookup
.new_types(NewTypesKey::StructProjection)
.into_iter()
.map(|ty| (ty.clone(), lookup.find(db, &ty).expect("TypeTree not in lookup")))
.flat_map(move |(ty, targets)| {
ty.fields(db).into_iter().filter_map(move |(field, filed_ty)| {
if !field.is_visible_from(db, module) {
return None;
}
let trees = targets
.clone()
.into_iter()
.map(move |target| TypeTree::Field { field, type_tree: Box::new(target) });
Some((filed_ty, trees))
})
})
.filter_map(|(ty, trees)| ty.could_unify_with_deeply(db, &ctx.goal).then(|| trees))
.flatten()
}
/// # Famous types tactic
///
/// Attempts different values of well known types such as `true` or `false`.
///
/// Updates lookup by new types reached and returns iterator that yields
/// elements that unify with `goal`.
///
/// _Note that there is no point of calling it iteratively as the output is always the same_
///
/// # Arguments
/// * `ctx` - Context for the term search
/// * `defs` - Set of items in scope at term search target location
/// * `lookup` - Lookup table for types
pub(super) fn famous_types<'a, DB: HirDatabase>(
ctx: &'a TermSearchCtx<'a, DB>,
_defs: &'a FxHashSet<ScopeDef>,
lookup: &'a mut LookupTable,
) -> impl Iterator<Item = TypeTree> + 'a {
let db = ctx.sema.db;
let module = ctx.scope.module();
[
TypeTree::FamousType { ty: Type::new(db, module.id, TyBuilder::bool()), value: "true" },
TypeTree::FamousType { ty: Type::new(db, module.id, TyBuilder::bool()), value: "false" },
TypeTree::FamousType { ty: Type::new(db, module.id, TyBuilder::unit()), value: "()" },
]
.into_iter()
.map(|tt| {
lookup.insert(tt.ty(db), std::iter::once(tt.clone()));
tt
})
.filter(|tt| tt.ty(db).could_unify_with_deeply(db, &ctx.goal))
}
/// # Impl static method (without self type) tactic
///
/// Attempts different functions from impl blocks that take no self parameter.
///
/// Updates lookup by new types reached and returns iterator that yields
/// elements that unify with `goal`.
///
/// # Arguments
/// * `ctx` - Context for the term search
/// * `defs` - Set of items in scope at term search target location
/// * `lookup` - Lookup table for types
pub(super) fn impl_static_method<'a, DB: HirDatabase>(
ctx: &'a TermSearchCtx<'a, DB>,
_defs: &'a FxHashSet<ScopeDef>,
lookup: &'a mut LookupTable,
) -> impl Iterator<Item = TypeTree> + 'a {
let db = ctx.sema.db;
let module = ctx.scope.module();
lookup
.take_types_wishlist()
.into_iter()
.chain(iter::once(ctx.goal.clone()))
.flat_map(|ty| {
Impl::all_for_type(db, ty.clone()).into_iter().map(move |imp| (ty.clone(), imp))
})
.filter(|(_, imp)| !imp.is_unsafe(db))
.flat_map(|(ty, imp)| imp.items(db).into_iter().map(move |item| (imp, ty.clone(), item)))
.filter_map(|(imp, ty, it)| match it {
AssocItem::Function(f) => Some((imp, ty, f)),
_ => None,
})
.filter_map(move |(imp, ty, it)| {
let fn_generics = GenericDef::from(it);
let imp_generics = GenericDef::from(imp);
// Ignore impl if it has const type arguments
if !fn_generics.const_params(db).is_empty() || !imp_generics.const_params(db).is_empty()
{
return None;
}
// Ignore all functions that have something to do with lifetimes as we don't check them
if !fn_generics.lifetime_params(db).is_empty()
|| !imp_generics.lifetime_params(db).is_empty()
{
return None;
}
// Ignore functions with self param
if it.has_self_param(db) {
return None;
}
// Filter out private and unsafe functions
if !it.is_visible_from(db, module) || it.is_unsafe_to_call(db) || it.is_unstable(db) {
return None;
}
let imp_type_params = imp_generics.type_params(db);
let fn_type_params = fn_generics.type_params(db);
// Only account for stable type parameters for now, unstable params can be default
// tho, for example in `Box<T, #[unstable] A: Allocator>`
if imp_type_params.iter().any(|it| it.is_unstable(db) && it.default(db).is_none())
|| fn_type_params.iter().any(|it| it.is_unstable(db) && it.default(db).is_none())
{
return None;
}
let non_default_type_params_len = imp_type_params
.iter()
.chain(fn_type_params.iter())
.filter(|it| it.default(db).is_none())
.count();
// Ignore bigger number of generics for now as they kill the performance
if non_default_type_params_len > 0 {
return None;
}
let generic_params = lookup
.iter_types()
.collect::<Vec<_>>() // Force take ownership
.into_iter()
.permutations(non_default_type_params_len);
let trees: Vec<_> = generic_params
.filter_map(|generics| {
// Insert default type params
let mut g = generics.into_iter();
let generics: Vec<_> = imp_type_params
.iter()
.chain(fn_type_params.iter())
.map(|it| match it.default(db) {
Some(ty) => ty,
None => g.next().expect("Missing type param"),
})
.collect();
let ret_ty = it.ret_type_with_generics(
db,
ty.type_arguments().chain(generics.iter().cloned()),
);
// Filter out functions that return references
if ctx.config.enable_borrowcheck && ret_ty.contains_reference(db)
|| ret_ty.is_raw_ptr()
{
return None;
}
// Ignore functions that do not change the type
// if ty.could_unify_with_deeply(db, &ret_ty) {
// return None;
// }
// Early exit if some param cannot be filled from lookup
let param_trees: Vec<Vec<TypeTree>> = it
.params_without_self_with_generics(
db,
ty.type_arguments().chain(generics.iter().cloned()),
)
.into_iter()
.map(|field| lookup.find_autoref(db, &field.ty()))
.collect::<Option<_>>()?;
// Note that we need special case for 0 param constructors because of multi cartesian
// product
let fn_trees: Vec<TypeTree> = if param_trees.is_empty() {
vec![TypeTree::Function { func: it, generics, params: Vec::new() }]
} else {
param_trees
.into_iter()
.multi_cartesian_product()
.take(MAX_VARIATIONS)
.map(|params| TypeTree::Function {
func: it,
generics: generics.clone(),
params,
})
.collect()
};
lookup.insert(ret_ty.clone(), fn_trees.iter().cloned());
Some((ret_ty, fn_trees))
})
.collect();
Some(trees)
})
.flatten()
.filter_map(|(ty, trees)| ty.could_unify_with_deeply(db, &ctx.goal).then(|| trees))
.flatten()
}