cleanup: merge `RvalueScopes` into `ScopeTree`
This gets rid of `RvalueCandidate`, inlines the definition of `RvalueScopes` into `ScopeTree`, and removes two `RvalueScopes`-specific modules, consolidating the scoping logic a bit. Removing the extra step of going from `RvalueCandidate`s to `RvalueScopes` and removing the duplication between them should also hopefully improve perf.
I've also taken the liberty of doing a bit of renaming and comment updates, changing some "rvalue scope"s to "extended temporary scope"s. This is a bit closer to the Reference's terminology and makes it clearer that it's specific to temporary lifetime extension. This isn't comprehensive. In particular, I've left `record_rvalue_scope_if_borrow_expr` untouched since rust-lang/rust#146098 gets rid of it.
Pulled out from rust-lang/rust#146098.
r? BoxyUwU as the reviewer of rust-lang/rust#146098 (though feel free to reassign/claim! this is just cleanup)
cc `@dingxiangfei2009`
Implement `&pin` patterns and `ref pin` binding modes
Implement `&pin` patterns and `ref pin` binding modes, part of [pin ergonomics](https://github.com/rust-lang/rust/issues/130494).
r? `@Nadrieril`
cc `@traviscross` `@eholk`
stop specializing on `Copy`
fixes https://github.com/rust-lang/rust/issues/132442
`std` specializes on `Copy` to optimize certain library functions such as `clone_from_slice`. This is unsound, however, as the `Copy` implementation may not be always applicable because of lifetime bounds, which specialization does not take into account; the result being that values are copied even though they are not `Copy`. For instance, this code:
```rust
struct SometimesCopy<'a>(&'a Cell<bool>);
impl<'a> Clone for SometimesCopy<'a> {
fn clone(&self) -> Self {
self.0.set(true);
Self(self.0)
}
}
impl Copy for SometimesCopy<'static> {}
let clone_called = Cell::new(false);
// As SometimesCopy<'clone_called> is not 'static, this must run `clone`,
// setting the value to `true`.
let _ = [SometimesCopy(&clone_called)].clone();
assert!(clone_called.get());
```
should not panic, but does ([playground](https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=6be7a48cad849d8bd064491616fdb43c)).
To solve this, this PR introduces a new `unsafe` trait: `TrivialClone`. This trait may be implemented whenever the `Clone` implementation is equivalent to copying the value (so e.g. `fn clone(&self) -> Self { *self }`). Because of lifetime erasure, there is no way for the `Clone` implementation to observe lifetime bounds, meaning that even if the `TrivialClone` has stricter bounds than the `Clone` implementation, its invariant still holds. Therefore, it is sound to specialize on `TrivialClone`.
I've changed all `Copy` specializations in the standard library to specialize on `TrivialClone` instead. Unfortunately, the unsound `#[rustc_unsafe_specialization_marker]` attribute on `Copy` cannot be removed in this PR as `hashbrown` still depends on it. I'll make a PR updating `hashbrown` once this lands.
With `Copy` no longer being considered for specialization, this change alone would result in the standard library optimizations not being applied for user types unaware of `TrivialClone`. To avoid this and restore the optimizations in most cases, I have changed the expansion of `#[derive(Clone)]`: Currently, whenever both `Clone` and `Copy` are derived, the `clone` method performs a copy of the value. With this PR, the derive macro also adds a `TrivialClone` implementation to make this case observable using specialization. I anticipate that most users will use `#[derive(Clone, Copy)]` whenever both are applicable, so most users will still profit from the library optimizations.
Unfortunately, Hyrum's law applies to this PR: there are some popular crates which rely on the precise specialization behaviour of `core` to implement "specialization at home", e.g. [`libAFL`](89cff63702/libafl_bolts/src/tuples.rs (L27-L49)). I have no remorse for breaking such horrible code, but perhaps we should open other, better ways to satisfy their needs – for example by dropping the `'static` bound on `TypeId::of`...
Add `overflow_checks` intrinsic
This adds an intrinsic which allows code in a pre-built library to inherit the overflow checks option from a crate depending on it. This enables code in the standard library to explicitly change behavior based on whether `overflow_checks` are enabled, regardless of the setting used when standard library was compiled.
This is very similar to the `ub_checks` intrinsic, and refactors the two to use a common mechanism.
The primary use case for this is to allow the new `RangeFrom` iterator to yield the maximum element before overflowing, as requested [here](https://github.com/rust-lang/rust/issues/125687#issuecomment-2151118208). This PR includes a working `IterRangeFrom` implementation based on this new intrinsic that exhibits the desired behavior.
[Prior discussion on Zulip](https://rust-lang.zulipchat.com/#narrow/stream/219381-t-libs/topic/Ability.20to.20select.20code.20based.20on.20.60overflow_checks.60.3F)
mgca: Add ConstArg representation for const items
tracking issue: rust-lang/rust#132980fixesrust-lang/rust#131046fixesrust-lang/rust#134641
As part of implementing `min_generic_const_args`, we need to distinguish const items that can be used in the type system, such as in associated const equality projections, from const items containing arbitrary const code, which must be kept out of the type system. Specifically, all "type consts" must be either concrete (no generics) or generic with a trivial expression like `N` or a path to another type const item.
To syntactically distinguish these cases, we require, for now at least, that users annotate all type consts with the `#[type_const]` attribute. Then, we validate that the const's right-hand side is indeed eligible to be a type const and represent it differently in the HIR.
We accomplish this representation using a new `ConstItemRhs` enum in the HIR, and a similar but simpler enum in the AST. When `#[type_const]` is **not** applied to a const (e.g. on stable), we represent const item right-hand sides (rhs's) as HIR bodies, like before. However, when the attribute is applied, we instead lower to a `hir::ConstArg`. This syntactically distinguishes between trivial const args (paths) and arbitrary expressions, which are represented using `AnonConst`s. Then in `generics_of`, we can take advantage of the existing machinery to bar the `AnonConst` rhs's from using parent generics.
re-use `self.get_all_attrs` result for pass indirectly attribute
Could be a fix for a potential performance regression reported here https://github.com/rust-lang/rust/pull/144529#issuecomment-3491236458. Apparently the regression later disappeared. Nevertheless, this seems like a decent refactor.
r? ````@JonathanBrouwer```` (vaguely attribute-related, maybe there are other optimizations to that PR that we're missing)
Add LLVM realtime sanitizer
This is a new attempt at adding the [LLVM real-time sanitizer](https://clang.llvm.org/docs/RealtimeSanitizer.html) to rust.
Previously this was attempted in https://github.com/rust-lang/rfcs/pull/3766.
Since then the `sanitize` attribute was introduced in https://github.com/rust-lang/rust/pull/142681 and it is a lot more flexible than the old `no_santize` attribute. This allows adding real-time sanitizer without the need for a new attribute, like it was proposed in the RFC. Because i only add a new value to a existing command line flag and to a attribute i don't think an MCP is necessary.
Currently real-time santizer is usable in rust code with the [rtsan-standalone](https://crates.io/crates/rtsan-standalone) crate. This downloads or builds the sanitizer runtime and then links it into the rust binary.
The first commit adds support for more detailed sanitizer information.
The second commit then actually adds real-time sanitizer.
The third adds a warning against using real-time sanitizer with async functions, cloures and blocks because it doesn't behave as expected when used with async functions. I am not sure if this is actually wanted, so i kept it in a seperate commit.
The fourth commit adds the documentation for real-time sanitizer.
Add alignment parameter to `simd_masked_{load,store}`
This PR adds an alignment parameter in `simd_masked_load` and `simd_masked_store`, in the form of a const-generic enum `core::intrinsics::simd::SimdAlign`. This represents the alignment of the `ptr` argument in these intrinsics as follows
- `SimdAlign::Unaligned` - `ptr` is unaligned/1-byte aligned
- `SimdAlign::Element` - `ptr` is aligned to the element type of the SIMD vector (default behavior in the old signature)
- `SimdAlign::Vector` - `ptr` is aligned to the SIMD vector type
The main motive for this is stdarch - most vector loads are either fully aligned (to the vector size) or unaligned (byte-aligned), so the previous signature doesn't cut it.
Now, stdarch will mostly use `SimdAlign::Unaligned` and `SimdAlign::Vector`, whereas portable-simd will use `SimdAlign::Element`.
- [x] `cg_llvm`
- [x] `cg_clif`
- [x] `miri`/`const_eval`
## Alternatives
Using a const-generic/"const" `u32` parameter as alignment (and we error during codegen if this argument is not a power of two). This, although more flexible than this, has a few drawbacks
- If we use an const-generic argument, then portable-simd somehow needs to pass `align_of::<T>()` as the alignment, which isn't possible without GCE
- "const" function parameters are just an ugly hack, and a pain to deal with in non-LLVM backends
We can remedy the problem with the const-generic `u32` parameter by adding a special rule for the element alignment case (e.g. `0` can mean "use the alignment of the element type), but I feel like this is not as expressive as the enum approach, although I am open to suggestions
cc `@workingjubilee` `@RalfJung` `@BoxyUwU`
FCW for repr(C) enums whose discriminant values do not fit into a c_int or c_uint
Context: https://github.com/rust-lang/rust/issues/124403
The current behavior of repr(C) enums is as follows:
- The discriminant values are interpreted as const expressions of type `isize`
- We compute the smallest size that can hold all discriminant values
- The target spec contains the smallest size for repr(C) enums
- We take the larger of these two sizes
Unfortunately, this doesn't always match what C compilers do. In particular, MSVC seems to *always* give enums a size of 4 bytes, whereas the algorithm above will give enums a size of up to 8 bytes on 64bit targets. Here's an example enum affected by this:
```
// We give this size 4 on 32bit targets (with a warning since the discriminant is wrapped to fit an isize)
// and size 8 on 64bit targets.
#[repr(C)]
enum OverflowingEnum {
A = 9223372036854775807, // i64::MAX
}
// MSVC always gives this size 4 (without any warning).
// GCC always gives it size 8 (without any warning).
// Godbolt: https://godbolt.org/z/P49MaYvMd
enum overflowing_enum {
OVERFLOWING_ENUM_A = 9223372036854775807,
};
```
If we look at the C standard, then up until C20, there was no official support enums without an explicit underlying type and with discriminants that do not fit an `int`. With C23, this has changed: now enums have to grow automatically if there is an integer type that can hold all their discriminants. MSVC does not implement this part of C23.
Furthermore, Rust fundamentally cannot implement this (without major changes)! Enum discriminants work fundamentally different in Rust and C:
- In Rust, every enum has a discriminant type entirely determined by its repr flags, and then the discriminant values must be const expressions of that type. For repr(C), that type is `isize`. So from the outset we interpret 9223372036854775807 as an isize literal and never give it a chance to be stored in a bigger type. If the discriminant is given as a literal without type annotation, it gets wrapped implicitly with a warning; otherwise the user has to write `as isize` explicitly and thus trigger the wrapping. Later, we can then decide to make the *tag* that stores the discriminant smaller than the discriminant type if all discriminant values fit into a smaller type, but those values have allready all been made to fit an `isize` so nothing bigger than `isize` could ever come out of this. That makes the behavior of 32bit GCC impossible for us to match.
- In C, things flow the other way around: every discriminant value has a type determined entirely by its constant expression, and then the type for the enum is determined based on that. IOW, the expression can have *any type* a priori, different variants can even use a different type, and then the compiler is supposed to look at the resulting *values* (presumably as mathematical integers) and find a type that can hold them all. For the example above, 9223372036854775807 is a signed integer, so the compiler looks for the smallest signed type that can hold it, which is `long long`, and then uses that to compute the size of the enum (at least that's what C23 says should happen and GCC does this correctly).
Realistically I think the best we can do is to not attempt to support C23 enums, and to require repr(C) enums to satisfy the C20 requirements: all discriminants must fit into a c_int. So that's what this PR implements, by adding a FCW for enums with discriminants that do not fit into `c_int`. As a slight extension, we do *not* lint enums where all discriminants fit into a `c_uint` (i.e. `unsigned int`): while C20 does (in my reading) not allow this, and C23 does not prescribe the size of such an enum, this seems to behave consistently across compilers (giving the enum the size of an `unsigned int`). IOW, the lint fires whenever our layout algorithm would make the enum larger than an `int`, irrespective of whether we pick a signed or unsigned discriminant. This extension was added because [crater found](https://github.com/rust-lang/rust/pull/147017#issuecomment-3357077199) multiple cases of such enums across the ecosystem.
Note that it is impossible to trigger this FCW on targets where isize and c_int are the same size (i.e., the typical 32bit target): since we interpret discriminant values as isize, by the time we look at them, they have already been wrapped. However, we have an existing lint (overflowing_literals) that should notify people when this kind of wrapping occurs implicitly. Also, 64bit targets are much more common. On the other hand, even on 64bit targets it is possible to fall into the same trap by writing a literal that is so big that it does not fit into isize, gets wrapped (triggering overflowing_literals), and the wrapped value fits into c_int. Furthermore, overflowing_literals is just a lint, so if it occurs in a dependency you won't notice. (Arguably there is also a more general problem here: for literals of type `usize`/`isize`, it is fairly easy to write code that only triggers `overflowing_literals` on 32bit targets, and to never see that lint if one develops on a 64bit target.)
Specifically, the above example triggers the FCW on 64bit targets, but on 32bit targets we get this err-by-default lint instead (which will be hidden if it occurs in a dependency):
```
error: literal out of range for `isize`
--> $DIR/repr-c-big-discriminant1.rs:16:9
|
LL | A = 9223372036854775807,
| ^^^^^^^^^^^^^^^^^^^
|
= note: the literal `9223372036854775807` does not fit into the type `isize` whose range is `-2147483648..=2147483647`
= note: `#[deny(overflowing_literals)]` on by default
```
Also see the tests added by this PR.
This isn't perfect, but so far I don't think I have seen a better option. In https://github.com/rust-lang/rust/pull/146504 I tried adjusting our enum logic to make the size of the example enum above actually match what C compilers do, but that's a massive breaking change since we have to change the expected type of the discriminant expression from `isize` to `i64` or even `i128` -- so that seems like a no-go. To improve the lint we could analyze things on the HIR level and specifically catch "repr(C) enums with discriminants defined as literals that are too big", but that would have to be on top of the lint in this PR I think since we'd still want to also always check the actually evaluated value (which we can't always determined on the HIR level).
Cc `@workingjubilee` `@CAD97`
Rollup of 7 pull requests
Successful merges:
- rust-lang/rust#146573 (Constify Range functions)
- rust-lang/rust#146699 (Add `is_ascii` function optimized for LoongArch64 for [u8])
- rust-lang/rust#148026 (std: don't leak the thread closure if destroying the thread attributes fails)
- rust-lang/rust#148135 (Ignore unix socket related tests for VxWorks)
- rust-lang/rust#148211 (clippy fixes and code simplification)
- rust-lang/rust#148395 (Generalize branch references)
- rust-lang/rust#148405 (Fix suggestion when there were a colon already in generics)
r? `@ghost`
`@rustbot` modify labels: rollup
Generalize branch references
It should be safe to merge this before the rename, and I'd like to do that, so we can test if beta/stable PRs work.
r? ``@marcoieni``
Mention crate being analyzed in query description
"running analysis passes on this crate" -> "running analysis passes on crate `foo`"
This message is displayed in cycle errors in particular, and in some cases without any spans or any other identifiable information to determine which dependency introduced the cycle.
Address rust-lang/rust#74380, but we still need a test for that case in particular.
Implement pin-project in pattern matching for `&pin mut|const T`
This PR implements part of rust-lang/rust#130494. It supports pin-project in pattern matching for `&pin mut|const T`.
~Pin-projection by field access (i.e. `&pin mut|const place.field`) is not fully supported yet since pinned-borrow is not ready (rust-lang/rust#135731).~
CC ``````@traviscross``````
"running analysis passes on this crate" -> "running analysis passes on crate `foo`"
This message is displayed in cycle errors in particular, and in some cases without any spans or any other identifiable information to determine which dependency introduced the cycle.
Adjust successor iterators.
Because rust-lang/rust#148054 was a slight perf regression.
The problem was seemingly because this iterator structure:
```
slice_iter.chain(Option_iter.chain(Option_iter))
```
changed to this:
```
slice_iter.chain(Option_iter).chain(Option_iter)
```
The commit also tweaks the `slice_iter` part, changing `into_iter` to `iter` and using `[]` instead of `(&[])`, for conciseness and consistency.
r? `@saethlin`
Constify trait aliases
Allow `const trait Foo = Bar + [const] Baz;` trait alias declarations. Their rules are the same as with super traits of const traits. So `[const] Baz` or `const Baz` is only required for `[const] Foo` or `const Foo` bounds respectively.
tracking issue rust-lang/rust#41517 (part of the general trait alias feature gate, but I can split it out into a separate const trait alias feature gate. I just assumed that const traits would stabilize before trait aliases, and we'd want to stabilize trait aliases together with const trait aliases at the same time)
r? ``@compiler-errors`` ``@fee1-dead``