Remove `#[const_trait]`
Remove `#[const_trait]` since we now have `const trait`. Update all structured diagnostics that still suggested the attribute.
r? ```@rust-lang/project-const-traits```
Add LLVM realtime sanitizer
This is a new attempt at adding the [LLVM real-time sanitizer](https://clang.llvm.org/docs/RealtimeSanitizer.html) to rust.
Previously this was attempted in https://github.com/rust-lang/rfcs/pull/3766.
Since then the `sanitize` attribute was introduced in https://github.com/rust-lang/rust/pull/142681 and it is a lot more flexible than the old `no_santize` attribute. This allows adding real-time sanitizer without the need for a new attribute, like it was proposed in the RFC. Because i only add a new value to a existing command line flag and to a attribute i don't think an MCP is necessary.
Currently real-time santizer is usable in rust code with the [rtsan-standalone](https://crates.io/crates/rtsan-standalone) crate. This downloads or builds the sanitizer runtime and then links it into the rust binary.
The first commit adds support for more detailed sanitizer information.
The second commit then actually adds real-time sanitizer.
The third adds a warning against using real-time sanitizer with async functions, cloures and blocks because it doesn't behave as expected when used with async functions. I am not sure if this is actually wanted, so i kept it in a seperate commit.
The fourth commit adds the documentation for real-time sanitizer.
This implements a new unstable compiler flag `-Zannotate-moves` that makes
move and copy operations visible in profilers by creating synthetic debug
information. This is achieved with zero runtime cost by manipulating debug
info scopes to make moves/copies appear as calls to `compiler_move<T, SIZE>`
and `compiler_copy<T, SIZE>` marker functions in profiling tools.
This allows developers to identify expensive move/copy operations in their
code using standard profiling tools, without requiring specialized tooling
or runtime instrumentation.
The implementation works at codegen time. When processing MIR operands
(`Operand::Move` and `Operand::Copy`), the codegen creates an `OperandRef`
with an optional `move_annotation` field containing an `Instance` of the
appropriate profiling marker function. When storing the operand,
`store_with_annotation()` wraps the store operation in a synthetic debug
scope that makes it appear inlined from the marker.
Two marker functions (`compiler_move` and `compiler_copy`) are defined
in `library/core/src/profiling.rs`. These are never actually called -
they exist solely as debug info anchors.
Operations are only annotated if the type:
- Meets the size threshold (default: 65 bytes, configurable via
`-Zannotate-moves=SIZE`)
- Has a non-scalar backend representation (scalars use registers,
not memcpy)
This has a very small size impact on object file size. With the default
limit it's well under 0.1%, and even with a very small limit of 8 bytes
it's still ~1.5%. This could be enabled by default.
Change cfg_trace, cfg_attr_trace symbol values
For debugging - I ran into this working on `cfg` stuff in Clippy where I didn't notice the value was wrapped in `<>`, adding `_trace` makes it easier to spot
Implement pin-project in pattern matching for `&pin mut|const T`
This PR implements part of rust-lang/rust#130494. It supports pin-project in pattern matching for `&pin mut|const T`.
~Pin-projection by field access (i.e. `&pin mut|const place.field`) is not fully supported yet since pinned-borrow is not ready (rust-lang/rust#135731).~
CC ``````@traviscross``````
Mark desugared range expression spans with DesugaringKind::RangeExpr
This is a prerequisite to removing `QPath::LangItem` (rust-lang/rust#115178) because otherwise there would be no way to detect a range expression in the HIR.
There are some non-obvious Clippy changes so a Clippy team review would be good.
Where supported, VSX is a 64x128b register set which encompasses
both the floating point and vector registers.
In the type tests, xvsqrtdp is used as it is the only two-argument
vsx opcode supported by all targets on llvm. If you need to copy
a vsx register, the preferred way is "xxlor xt, xa, xa".
Validate CopyForDeref and DerefTemps better and remove them from runtime MIR
(split from my WIP rust-lang/rust#145344)
This PR:
- Removes `Rvalue::CopyForDeref` and `LocalInfo::DerefTemp` from runtime MIR
- Using a new mir pass `EraseDerefTemps`
- `CopyForDeref(x)` is turned into `Use(Copy(x))`
- `DerefTemp` is turned into `Boring`
- Not sure if this part is actually necessary, it made more sense in rust-lang/rust#145344 with `DerefTemp` storing actual data that I wanted to keep from having to be kept in sync with the rest of the body in runtime MIR
- Checks in validation that `CopyForDeref` and `DerefTemp` are only used together
- Removes special handling for `CopyForDeref` from many places
- Removes `CopyForDeref` from `custom_mir` reverting rust-lang/rust#111587
- In runtime MIR simple copies can be used instead
- In post cleanup analysis MIR it was already wrong to use due to the lack of support for creating `DerefTemp` locals
- Possibly this should be its own PR?
- Adds an argument to `deref_finder` to avoid creating new `DerefTemp`s and `CopyForDeref` in runtime MIR.
- Ideally we would just avoid making intermediate derefs instead of fixing it at the end of a pass / during shim building
- Removes some usages of `deref_finder` that I found out don't actually do anything
r? oli-obk
Prevent downstream `impl DerefMut for Pin<LocalType>`
The safety requirements for [`PinCoerceUnsized`](https://doc.rust-lang.org/stable/std/pin/trait.PinCoerceUnsized.html) are essentially that the type does not have a malicious `Deref` or `DerefMut` impl. However, the `Pin` type is fundamental, so the end-user can provide their own implementation of `DerefMut` for `Pin<&SomeLocalType>`, so it's possible for `Pin` to have a malicious `DerefMut` impl. This unsoundness is known as rust-lang/rust#85099.
Unfortunately, this means that the implementation of `PinCoerceUnsized` for `Pin` is currently unsound. To fix that, modify the impl so that it becomes impossible for downstream crates to provide their own implementation of `DerefMut` for `Pin` by abusing a hidden struct that is not fundamental.
This PR is a breaking change, but it fixesrust-lang/rust#85099. The PR supersedes rust-lang/rust#144896.
r? lcnr
Skip cleanups on unsupported targets
This commit is an update to the `AbortUnwindingCalls` MIR pass in the compiler. Specifically a new boolean is added for "can this target possibly unwind" and if that's `false` then terminators are all adjusted to be unreachable/not present. The end result is that this fixesrust-lang/rust#140293 for wasm targets.
The motivation for this PR is that currently on WebAssembly targets the usage of the `C-unwind` ABI can lead LLVM to either (a) emit exception-handling instructions or (b) hit a LLVM-ICE-style codegen error. WebAssembly as a base instruction set does not support unwinding at all, and a later proposal to WebAssembly, the exception-handling proposal, was what enabled this. This means that the current intent of WebAssembly targets is that they maintain the baseline of "don't emit exception-handling instructions unless enabled". The commit here is intended to restore this behavior by skipping these instructions even when `C-unwind` is present.
Exception-handling is a relatively tricky and also murky topic in WebAssembly, however. There are two sets of instructions LLVM can emit for WebAssembly exceptions, Rust's Emscripten target supports exceptions, WASI targets do not, the LLVM flags to enable this are not always obvious, and additionally this all touches on "changing exception-handling behavior should be a target-level concern, not a feature". Effectively WebAssembly's exception-handling integration into Rust is not finalized at this time. The best idea at this time is that a parallel set of targets will eventually be added which support exceptions, but it's not clear if/when to do this. In the meantime the goal is to keep existing targets working while still enabling experimentation with exception-handling with `-Zbuild-std` and various permutations of LLVM flags.
To that extent this commit does not blanket disable these landing pads and cleanup routines for WebAssembly but instead checks to see if panic=unwind is enabled or if `+exception-handling` is enabled. Tests are updated here as well to account for this where, by default, using a `C-unwind` ABI won't affect Rust codegen at all. If `+exception-handling` is enabled, however, then Rust codegen will look like native platforms where exceptions are caught and the program aborts. More-or-less I've done my best to keep exceptions working on wasm where it's possible to have them work, but turned them off where they're not supposed to be emitted.
Closesrust-lang/rust#140293
Reland "Add LSX accelerated implementation for source file analysis"
This patch introduces an LSX-optimized version of `analyze_source_file` for the `loongarch64` target. Similar to existing SSE2 implementation for x86, this version:
- Processes 16-byte chunks at a time using LSX vector intrinsics.
- Quickly identifies newlines in ASCII-only chunks.
- Falls back to the generic implementation when multi-byte UTF-8 characters are detected or in the tail portion.
Reland rust-lang/rust#145963
r? ``@lqd``
This patch introduces an LSX-optimized version of `analyze_source_file`
for the `loongarch64` target. Similar to existing SSE2 implementation
for x86, this version:
- Processes 16-byte chunks at a time using LSX vector intrinsics.
- Quickly identifies newlines in ASCII-only chunks.
- Falls back to the generic implementation when multi-byte UTF-8
characters are detected or in the tail portion.
Introduce CoerceShared lang item and trait, and basic Reborrow tests
Part of rust-lang/rust#145612: This introduces the `CoerceShared` trait which is the `Reborrow` equivalent of a `&mut T` -> `&T` coercion. The trait has a `Target` GAT which makes this (currently) unique in the `core/src/marker.rs`; I'm not sure if this can be considered problematic. Maybe this is not the way such things should be done at the marker trait level? Or maybe it is fine.
Improtantly, this PR introduces a battery of basic `Reborrow` and `CoerceShared` tests. These test the very basics of the feature; custom marker types intended to have exclusive semantics (`Custom<'a>(PhantomData<&'a mut ()>)`), custom exclusive reference wrappers, and standard library exclusive reference wrappers (`Pin<&mut T>` and `Option<&mut T>`). None of these of course work since the implementation for `Reborrow` and `CoerceShared` is entirely missing, but this is the first step towards making these work.
Future PRs will introduce more tests, such as "recursive" reborrowing (ie. reborrowing structs that contain multiple reborrowable fields) and checks around the lifetime semantics of reborrowing ie. that a reborrow produces a new type with the same lifetime as the original.
Add an attribute to check the number of lanes in a SIMD vector after monomorphization
Allows std::simd to drop the `LaneCount<N>: SupportedLaneCount` trait and maintain good error messages.
Also, extends rust-lang/rust#145967 by including spans in layout errors for all ADTs.
r? ``@RalfJung``
cc ``@workingjubilee`` ``@programmerjake``
Add panic=immediate-abort
MCP: https://github.com/rust-lang/compiler-team/issues/909
This adds a new panic strategy, `-Cpanic=immediate-abort`. This panic strategy essentially just codifies use of `-Zbuild-std-features=panic_immediate_abort`. This PR is intended to just set up infrastructure, and while it will change how the compiler is invoked for users of the feature, there should be no other impacts.
In many parts of the compiler, `PanicStrategy::ImmediateAbort` behaves just like `PanicStrategy::Abort`, because actually most parts of the compiler just mean to ask "can this unwind?" so I've added a helper function so we can say `sess.panic_strategy().unwinds()`.
The panic and unwind strategies have some level of compatibility, which mostly means that we can pre-compile the sysroot with unwinding panics then the sysroot can be linked with aborting panics later. The immediate-abort strategy is all-or-nothing, enforced by `compiler/rustc_metadata/src/dependency_format.rs` and this is tested for in `tests/ui/panic-runtime/`. We could _technically_ be more compatible with the other panic strategies, but immediately-aborting panics primarily exist for users who want to eliminate all the code size responsible for the panic runtime. I'm open to other use cases if people want to present them, but not right now. This PR is already large.
`-Cpanic=immediate-abort` sets both `cfg(panic = "immediate-abort")` _and_ `cfg(panic = "abort")`. bjorn3 pointed out that people may be checking for the abort cfg to ask if panics will unwind, and also the sysroot feature this is replacing used to require `-Cpanic=abort` so this seems like a good back-compat step. At least for the moment. Unclear if this is a good idea indefinitely. I can imagine this being confusing.
The changes to the standard library attributes are purely mechanical. Apart from that, I removed an `unsafe` we haven't needed for a while since the `abort` intrinsic became safe, and I've added a helpful diagnostic for people trying to use the old feature.
To test that `-Cpanic=immediate-abort` conflicts with other panic strategies, I've beefed up the core-stubs infrastructure a bit. There is now a separate attribute to set flags on it.
I've added a test that this produces the desired codegen, called `tests/run-make-cargo/panic-immediate-abort-codegen/` and also a separate run-make-cargo test that checks that we can build a binary.