add a scope for `if let` guard temporaries and bindings
This fixes my concern with `if let` guard drop order, namely that the guard's bindings and temporaries were being dropped after their arm's pattern's bindings, instead of before (https://github.com/rust-lang/rust/pull/141295#issuecomment-2968975596). The guard's bindings and temporaries now live in a new scope, which extends until (but not past) the end of the arm, guaranteeing they're dropped before the arm's pattern's bindings.
This only introduces a new scope for match arms with guards. Perf results (https://github.com/rust-lang/rust/pull/143376#issuecomment-3034922617) seemed to indicate there wasn't a significant hit to introduce a new scope on all match arms, but guard patterns (rust-lang/rust#129967) will likely benefit from only adding new scopes when necessary (with some patterns requiring multiple nested scopes).
Tracking issue for `if_let_guard`: rust-lang/rust#51114
Tests are adapted from examples by `@traviscross,` `@est31,` and myself on rust-lang/rust#141295.
atomicrmw on pointers: move integer-pointer cast hacks into backend
Conceptually, we want to have atomic operations on pointers of the form `fn atomic_add(ptr: *mut T, offset: usize, ...)`. However, LLVM does not directly support such operations (https://github.com/llvm/llvm-project/issues/120837), so we have to cast the `offset` to a pointer somewhere.
This PR moves that hack into the LLVM backend, so that the standard library, intrinsic, and Miri all work with the conceptual operation we actually want. Hopefully, one day LLVM will gain a way to represent these operations without integer-pointer casts, and then the hack will disappear entirely.
Cc ```@nikic``` -- this is the best we can do right now, right?
Fixes https://github.com/rust-lang/rust/issues/134617
`TyCtxt::short_string` ensures that user visible type paths aren't overwhelming on the terminal output, and properly saves the long name to disk as a side-channel. We already use these throughout the compiler and have been using them as needed when users find cases where the output is verbose. This is a proactive search of some cases to use `short_string`.
We add support for shortening the path of "trait path only".
Every manual use of `short_string` is a bright marker that that error should be using structured diagnostics instead (as they have proper handling of long types without the maintainer having to think abou tthem).
When we don't actually print out a shortened type we don't need the "use `--verbose`" note.
On E0599 show type identity to avoid expanding the receiver's generic parameters.
Unify wording on `long_ty_path` everywhere.
Distinguish prepending and replacing self ty in predicates
There are two kinds of functions called `with_self_ty`:
1. Prepends the `Self` type onto an `ExistentialPredicate` which lacks it in its internal representation.
2. Replaces the `Self` type of an existing predicate, either for diagnostics purposes or in the new trait solver when normalizing that self type.
This PR distinguishes these two because I often want to only grep for one of them. Namely, let's call it `with_replaced_self_ty` when all we're doing is replacing the self type.
expand WF obligations when checking method calls
Don't wrap a bunch of signatures in `FnPtr` then check their WF; instead, check the WFness of each input/output separately.
This is useful for the new trait solver, since because we stall on root obligations we end up needing to repeatedly recompute the WFness of possibly very large function signature types if it ends up bottoming out in ambiguity.
This may also give us more chances to hit the WF fast path for certain types like built-ins.
Finally, this just seems conceptually correct to do. There's nothing conceptually that suggests that wrapping the function signature in an fn pointer makes sense at all to do; I'm guessing that it was just convenient so that we didn't have to register WF obligations in a loop, but it doesn't affect the readability of this code at all.
Improve formatting of doc code blocks
We don't currently apply automatic formatting to doc comment code blocks. As a
result, it has built up various idiosyncracies, which make such automatic
formatting difficult. Some of those idiosyncracies also make things harder for
human readers or other tools.
This PR makes a few improvements to doc code formatting, in the hopes of making
future automatic formatting easier, as well as in many cases providing net
readability improvements.
I would suggest reading each commit separately, as each commit contains one
class of changes.
Remove the witness type from coroutine *args* (without actually removing the type)
This does as much of rust-lang/rust#144157 as we can without having to break rust-lang/rust#143545 and/or introduce some better way of handling higher ranked assumptions.
Namely, it:
* Stalls coroutines based off of the *coroutine* type rather than the witness type.
* Reworks the dtorck constraint hack to not rely on the witness type.
* Removes the witness type from the args of the coroutine, eagerly creating the type for nested obligations when needed (auto/clone impls).
I'll experiment with actually removing the witness type in a follow-up.
r? lcnr
There are identical definitions in `rustc_type_ir` and `rustc_ast`. This
commit removes them and places a single definition in `rustc_ast_ir`.
This requires adding `rust_span` as a dependency of `rustc_ast_ir`, but
means a bunch of silly conversion functions can be removed.
The one annoying wrinkle is that the old version had differences in
their `Debug` impls, e.g. one printed `u32` while the other printed
`U32`. Some compiler error messages rely on the former (yuk), and some
clippy output depends on the latter. So the commit also changes clippy
to not rely on `Debug` and just implement what it needs itself.
Currently there is `Ty` and `BoundTy`, and `Region` and `BoundRegion`,
and `Const` and... `BoundVar`. An annoying inconsistency.
This commit repurposes the existing `BoundConst`, which was barely used,
so it's the partner to `Const`. Unlike `BoundTy`/`BoundRegion` it lacks
a `kind` field but it's still nice to have because it makes the const
code more similar to the ty/region code everywhere.
The commit also removes `impl From<BoundVar> for BoundTy`, which has a
single use and doesn't seem worth it.
These changes fix the "FIXME: We really should have a separate
`BoundConst` for consts".
Because doc code does not get automatically formatted, some doc code has
creative placements of comments that automatic formatting can't handle.
Reformat those comments to make the resulting code support standard Rust
formatting without breaking; this is generally an improvement to
readability as well.
Some comments are not indented to the prevailing indent, and are instead
aligned under some bit of code. Indent them to the prevailing indent,
and put spaces *inside* the comments to align them with code.
Some comments span several lines of code (which aren't the line the
comment is about) and expect alignment. Reformat them into one comment
not broken up by unrelated intervening code.
Some comments are placed on the same line as an opening brace, placing
them effectively inside the subsequent block, such that formatting would
typically format them like a line of that block. Move those comments to
attach them to what they apply to.
Some comments are placed on the same line as a one-line braced block,
effectively attaching them to the closing brace, even though they're
about the code inside the block. Reformat to make sure the comment will
stay on the same line as the code it's commenting.
Remove dead code and extend test coverage and diagnostics around it
I was staring a bit at the `dont_niche_optimize_enum` variable and figured out that part of it is dead code (at least today it is). I changed the diagnostic and test around the code that makes that part dead code, so everything that makes removing that code sound is visible in this PR
We lost the following comment during refactorings:
The current code for niche-filling relies on variant indices instead of actual discriminants, so enums with explicit discriminants (RFC 2363) would misbehave.
Having multiple relaxed bounds like `?Sized + ?Iterator` is actually *fine*.
We actually want to reject *duplicate* relaxed bounds like `?Sized + ?Sized`
because these most certainly represent a user error.
Note that this doesn't mean that we accept more code because a bound like
`?Iterator` is still invalid as it's not relaxing a *default* trait and
the only way to define / use more default bounds is under the experimental
and internal feature `more_maybe_bounds` plus `lang_items` plus unstable
flag `-Zexperimental-default-bounds` (historical context: for the longest
time, bounds like `?Iterator` were actually allowed and lead to a hard
warning).
Ultimately, this simply *reframes* the diagnostic. The scope of
`more_maybe_bounds` / `-Zexperimental-default-bounds` remains unchanged
as well.
* The phrasing "only does something for" made sense back when this
diagnostic was a (hard) warning. Now however, it's simply a hard
error and thus completely rules out "doing something".
* The primary message was way too long
* The new wording more closely mirrors the wording we use for applying
other bound modifiers (like `const` and `async`) to incompatible
traits.
* "all other traits are not bound by default" is no longer accurate
under Sized Hierarchy. E.g., traits and assoc tys are (currently)
bounded by `MetaSized` by default but can't be relaxed using
`?MetaSized` (instead, you relax it by adding `PointeeSized`).
* I've decided against adding any diagnositic notes or suggestions
for now like "trait `Trait` can't be relaxed as it's not bound by
default" which would be incorrect for `MetaSized` and assoc tys
as mentioned above) or "consider changing `?MetaSized` to
`PointeeSized`" as the Sized Hierarchy impl is still WIP)
`-Zhigher-ranked-assumptions`: Consider WF of coroutine witness when proving outlives assumptions
### TL;DR
This PR introduces an unstable flag `-Zhigher-ranked-assumptions` which tests out a new algorithm for dealing with some of the higher-ranked outlives problems that come from auto trait bounds on coroutines. See:
* rust-lang/rust#110338
While it doesn't fix all of the issues, it certainly fixed many of them, so I'd like to get this landed so people can test the flag on their own code.
### Background
Consider, for example:
```rust
use std::future::Future;
trait Client {
type Connecting<'a>: Future + Send
where
Self: 'a;
fn connect(&self) -> Self::Connecting<'_>;
}
fn call_connect<C>(c: C) -> impl Future + Send
where
C: Client + Send + Sync,
{
async move { c.connect().await }
}
```
Due to the fact that we erase the lifetimes in a coroutine, we can think of the interior type of the async block as something like: `exists<'r, 's> { C, &'r C, C::Connecting<'s> }`. The first field is the `c` we capture, the second is the auto-ref that we perform on the call to `.connect()`, and the third is the resulting future we're awaiting at the first and only await point. Note that every region is uniquified differently in the interior types.
For the async block to be `Send`, we must prove that both of the interior types are `Send`. First, we have an `exists<'r, 's>` binder, which needs to be instantiated universally since we treat the regions in this binder as *unknown*[^exist]. This gives us two types: `{ &'!r C, C::Connecting<'!s> }`. Proving `&'!r C: Send` is easy due to a [`Send`](https://doc.rust-lang.org/nightly/std/marker/trait.Send.html#impl-Send-for-%26T) impl for references.
Proving `C::Connecting<'!s>: Send` can only be done via the item bound, which then requires `C: '!s` to hold (due to the `where Self: 'a` on the associated type definition). Unfortunately, we don't know that `C: '!s` since we stripped away any relationship between the interior type and the param `C`. This leads to a bogus borrow checker error today!
### Approach
Coroutine interiors are well-formed by virtue of them being borrow-checked, as long as their callers are invoking their parent functions in a well-formed way, then substitutions should also be well-formed. Therefore, in our example above, we should be able to deduce the assumption that `C: '!s` holds from the well-formedness of the interior type `C::Connecting<'!s>`.
This PR introduces the notion of *coroutine assumptions*, which are the outlives assumptions that we can assume hold due to the well-formedness of a coroutine's interior types. These are computed alongside the coroutine types in the `CoroutineWitnessTypes` struct. When we instantiate the binder when proving an auto trait for a coroutine, we instantiate the `CoroutineWitnessTypes` and stash these newly instantiated assumptions in the region storage in the `InferCtxt`. Later on in lexical region resolution or MIR borrowck, we use these registered assumptions to discharge any placeholder outlives obligations that we would otherwise not be able to prove.
### How well does it work?
I've added a ton of tests of different reported situations that users have shared on issues like rust-lang/rust#110338, and an (anecdotally) large number of those examples end up working straight out of the box! Some limitations are described below.
### How badly does it not work?
The behavior today is quite rudimentary, since we currently discharge the placeholder assumptions pretty early in region resolution. This manifests itself as some limitations on the code that we accept.
For example, `tests/ui/async-await/higher-ranked-auto-trait-11.rs` continues to fail. In that test, we must prove that a placeholder is equal to a universal for a param-env candidate to hold when proving an auto trait, e.g. `'!1 = 'a` is required to prove `T: Trait<'!1>` in a param-env that has `T: Trait<'a>`. Unfortunately, at that point in the MIR body, we only know that the placeholder is equal to some body-local existential NLL var `'?2`, which only gets equated to the universal `'a` when being stored into the return local later on in MIR borrowck.
This could be fixed by integrating these assumptions into the type outlives machinery in a more first-class way, and delaying things to the end of MIR typeck when we know the full relationship between existential and universal NLL vars. Doing this integration today is quite difficult today.
`tests/ui/async-await/higher-ranked-auto-trait-11.rs` fails because we don't compute the full transitive outlives relations between placeholders. In that test, we have in our region assumptions that some `'!1 = '!2` and `'!2 = '!3`, but we must prove `'!1 = '!3`.
This can be fixed by computing the set of coroutine outlives assumptions in a more transitive way, or as I mentioned above, integrating these assumptions into the type outlives machinery in a more first-class way, since it's already responsible for the transitive outlives assumptions of universals.
### Moving forward
I'm still quite happy with this implementation, and I'd like to land it for testing. I may work on overhauling both the way we compute these coroutine assumptions and also how we deal with the assumptions during (lexical/nll) region checking. But for now, I'd like to give users a chance to try out this new `-Zhigher-ranked-assumptions` flag to uncover more shortcomings.
[^exist]: Instantiating this binder with infer regions would be incomplete, since we'd be asking for *some* instantiation of the interior types, not proving something for *all* instantiations of the interior types.
Dont collect assoc ty item bounds from trait where clause for host effect predicates
For background, we uplift `where Self::Assoc: Trait` bounds in a trait's where clauses into *item bounds* on `type Assoc;`. This is because before we *had* syntactical item bounds, users would express their item bounds like so.
Let's opt out of doing this same behavior for `HostEffect` predicates like `where Self::Assoc: [const] Trait`. I left a comment in the code:
```rust
// FIXME(const_trait_impl): We *could* uplift the
// `where Self::Assoc: [const] Trait` bounds from the parent trait
// here too, but we'd need to split `const_conditions` into two
// queries (like we do for `trait_explicit_predicates_and_bounds`)
// since we need to also filter the predicates *out* of the const
// conditions or they lead to cycles in the trait solver when
// utilizing these bounds. For now, let's do nothing.
```
As an aside, this was an ICE that was only triggerable when building libraries and not binaries because we never were calling `tcx.ensure_ok().explicit_implied_const_bounds(def_id);` on associated types like we should have been. I adjusted the calls to `ensure_ok` to make sure this happens, so we catch bugs like this in the future more easily.
As another aside, I fixed the bound uplifting logic for *always const* predicates, since those act like normal clauses and have no notion of conditional constness.
r? ```@oli-obk``` ```@fee1-dead``` or anyone really
Fixesrust-lang/rust#133275