Align android `sigaddset` impl with the reference impl from Bionic
In https://github.com/rust-lang/rust/pull/100737 I noticed we were treating the sigset_t as an array of bytes, while referencing code from android (ad8dcd6023/libc/include/android/legacy_signal_inlines.h) which treats it as an array of unsigned long.
That said, the behavior difference is so subtle here that it's not hard to see why nobody noticed. This fixes the implementation to be equivalent to the one in bionic.
Add guarantee that Vec::default() does not alloc
Currently `Vec::new()` is guaranteed to not allocate until elements are pushed onto the `Vec`, but such a guarantee is missing for `Vec`'s implementation of `Default::default`.
This adds such a guarantee for `Vec::default()` to the API reference.
See also [this discussion on URLO](https://users.rust-lang.org/t/guarantee-that-vec-default-does-not-allocate/79903).
Use pointer `is_aligned*` methods
This PR replaces some manual alignment checks with calls to `pointer::{is_aligned, is_aligned_to}` and removes a useless pointer cast.
r? `@scottmcm`
_split off from #100746_
Guarantee `try_reserve` preserves the contents on error
Update doc comments to make the guarantee explicit. However, some
implementations does not have the statement though.
* `HashMap`, `HashSet`: require guarantees on hashbrown side.
* `PathBuf`: simply redirecting to `OsString`.
Fixes#99606.
Rework Ipv6Addr::is_global to check for global reachability rather than global scope - rebase
Rebasing of pull request #86634 off of master to try and get the feature "ip" stabilized.
I also found a test failure in the rebase that is_global was considering the benchmark space to be globally reachable.
This is related to my other rebasing pull request #99947
Currently `Vec::new()` is guaranteed to not allocate until elements are
pushed onto the `Vec`, but such a guarantee is missing for `Vec`'s
implementation of `Default::default`. This adds such a guarantee for
`Vec::default()` to the API reference.
Add tests that check `Vec::retain` predicate execution order.
This behaviour is documented for `Vec::retain` which means that there is code that rely on that but there weren't tests about that.
Std module docs improvements
My primary goal is to create a cleaner separation between primitive types and primitive type helper modules (fixes#92777). I also changed a few header lines in other top-level std modules (seen at https://doc.rust-lang.org/std/) for consistency.
Some conventions used/established:
* "The \`Box\<T>` type for heap allocation." - if a module mainly provides a single type, name it and summarize its purpose in the module header
* "Utilities for the _ primitive type." - this wording is used for the header of helper modules
* Documentation for primitive types themselves are removed from helper modules
* provided-by-core functionality of primitive types is documented in the primitive type instead of the helper module (such as the "Iteration" section in the slice docs)
I wonder if some content in `std::ptr` should be in `pointer` but I did not address this.
Replace most uses of `pointer::offset` with `add` and `sub`
As PR title says, it replaces `pointer::offset` in compiler and standard library with `pointer::add` and `pointer::sub`. This generally makes code cleaner, easier to grasp and removes (or, well, hides) integer casts.
This is generally trivially correct, `.offset(-constant)` is just `.sub(constant)`, `.offset(usized as isize)` is just `.add(usized)`, etc. However in some cases we need to be careful with signs of things.
r? ````@scottmcm````
_split off from #100746_
Make some docs nicer wrt pointer offsets
This PR replaces `pointer::offset` with `pointer::add` and similarly `.cast().wrapping_add().cast()` with `.wrapping_byte_add()` **in docs**.
r? ``````@scottmcm``````
_split off from #100746_
Clamp Function for f32 and f64
I thought the clamp function could use a little improvement for readability purposes. The function now returns early in order to skip the extra bound checks.
If there was a reason for binding `self` to `x` or if this code is incorrect, please correct me :)
add miri-test-libstd support to libstd
- The first commit mirrors what we already have in liballoc.
- The second commit adds some regression tests that only really make sense to be run in Miri, since they rely on Miri's extra checks to detect anything.
- The third commit makes the MPSC tests work in reasonable time in Miri by reducing iteration counts.
- The fourth commit silences some warnings due to code being disabled with `cfg(miri)`
Windows: Load synch functions together
Attempt to load all the required sync functions and fail if any one of them fails.
This fixes a FIXME by going back to optional loading of `WakeByAddressSingle`.
Also reintroduces a macro for optional loading of functions but keeps it separate from the fallback macro rather than having that do two different jobs.
r? `@thomcc`
Fix trailing space showing up in example
The current text is rendered as: U+005B ..= U+0060 ``[ \ ] ^ _ ` ``, or (**note the final space!**)
This patch changes that to render as: U+005B ..= U+0060 `` [ \ ] ^ _ ` ``, or (**note no final space!**)
The reason for that, is that CommonMark has a solution for starting or ending inline code with a backtick/grave accent: padding both sides with a space, makes that padding disappear.
Expose `Utf8Lossy` as `Utf8Chunks`
This PR changes the feature for `Utf8Lossy` from `str_internals` to `utf8_lossy` and improves the API. This is done to eventually expose the API as stable.
Proposal: rust-lang/libs-team#54
Tracking Issue: #99543
Avoid zeroing a 1kb stack buffer on every call to `std::sys::windows::fill_utf16_buf`
I've also tried to be slightly more careful about integer overflows, although in practice this is likely still not handled ideally.
r? `@ChrisDenton`
Refactor iteration logic in the `Flatten` and `FlatMap` iterators
The `Flatten` and `FlatMap` iterators both delegate to `FlattenCompat`:
```rust
struct FlattenCompat<I, U> {
iter: Fuse<I>,
frontiter: Option<U>,
backiter: Option<U>,
}
```
Every individual iterator method that `FlattenCompat` implements needs to carefully manage this state, checking whether the `frontiter` and `backiter` are present, and storing the current iterator appropriately if iteration is aborted. This has led to methods such as `next`, `advance_by`, and `try_fold` all having similar code for managing the iterator's state.
I have extracted this common logic of iterating the inner iterators with the option to exit early into a `iter_try_fold` method:
```rust
impl<I, U> FlattenCompat<I, U>
where
I: Iterator<Item: IntoIterator<IntoIter = U>>,
{
fn iter_try_fold<Acc, Fold, R>(&mut self, acc: Acc, fold: Fold) -> R
where
Fold: FnMut(Acc, &mut U) -> R,
R: Try<Output = Acc>,
{ ... }
}
```
It passes each of the inner iterators to the given function as long as it keep succeeding. It takes care of managing `FlattenCompat`'s state, so that the actual `Iterator` methods don't need to. The resulting code that makes use of this abstraction is much more straightforward:
```rust
fn next(&mut self) -> Option<U::Item> {
#[inline]
fn next<U: Iterator>((): (), iter: &mut U) -> ControlFlow<U::Item> {
match iter.next() {
None => ControlFlow::CONTINUE,
Some(x) => ControlFlow::Break(x),
}
}
self.iter_try_fold((), next).break_value()
}
```
Note that despite being implemented in terms of `iter_try_fold`, `next` is still able to benefit from `U`'s `next` method. It therefore does not take the performance hit that implementing `next` directly in terms of `Self::try_fold` causes (in some benchmarks).
This PR also adds `iter_try_rfold` which captures the shared logic of `try_rfold` and `advance_back_by`, as well as `iter_fold` and `iter_rfold` for folding without early exits (used by `fold`, `rfold`, `count`, and `last`).
Benchmark results:
```
before after
bench_flat_map_sum 423,255 ns/iter 414,338 ns/iter
bench_flat_map_ref_sum 1,942,139 ns/iter 2,216,643 ns/iter
bench_flat_map_chain_sum 1,616,840 ns/iter 1,246,445 ns/iter
bench_flat_map_chain_ref_sum 4,348,110 ns/iter 3,574,775 ns/iter
bench_flat_map_chain_option_sum 780,037 ns/iter 780,679 ns/iter
bench_flat_map_chain_option_ref_sum 2,056,458 ns/iter 834,932 ns/iter
```
I added the last two benchmarks specifically to demonstrate an extreme case where `FlatMap::next` can benefit from custom internal iteration of the outer iterator, so take it with a grain of salt. We should probably do a perf run to see if the changes to `next` are worth it in practice.
Don't derive `PartialEq::ne`.
Currently we skip deriving `PartialEq::ne` for C-like (fieldless) enums
and empty structs, thus reyling on the default `ne`. This behaviour is
unnecessarily conservative, because the `PartialEq` docs say this:
> Implementations must ensure that eq and ne are consistent with each other:
>
> `a != b` if and only if `!(a == b)` (ensured by the default
> implementation).
This means that the default implementation (`!(a == b)`) is always good
enough. So this commit changes things such that `ne` is never derived.
The motivation for this change is that not deriving `ne` reduces compile
times and binary sizes.
Observable behaviour may change if a user has defined a type `A` with an
inconsistent `PartialEq` and then defines a type `B` that contains an
`A` and also derives `PartialEq`. Such code is already buggy and
preserving bug-for-bug compatibility isn't necessary.
Two side-effects of the change:
- There is only one error message produced for types where `PartialEq`
cannot be derived, instead of two.
- For coverage reports, some warnings about generated `ne` methods not
being executed have disappeared.
Both side-effects seem fine, and possibly preferable.
Attempt to load all the required sync functions and fail if any one of them fails.
This reintroduces a macro for optional loading of functions but keeps it separate from the fallback macro rather than having that do two different jobs.
unwind: don't build dependency when building for Miri
This is basically re-submitting https://github.com/rust-lang/rust/pull/94813.
In that PR there was a suggestion to instead have bootstrap set a `RUST_CHECK` env var and use that rather than doing something Miri-specific. However, such an env var would mean that when switching between `./x.py check` and `./x.py build`, the build script gets re-run each time, which doesn't seem good. So I think for now checking for Miri probably causes fewer problems.
r? ````@Mark-Simulacrum````