Use captures(address) instead of captures(none) for indirect args
While provenance cannot be captured through these arguments, the address / object identity can.
Fixes https://github.com/rust-lang/rust/issues/137668.
r? `@ghost`
The underlying implementation of `LLVMCreateConstantRangeAttribute` assumes
that each of `LowerWords` and `UpperWords` points to enough u64 values to
define an integer of the specified bit-length, and will encounter UB if that is
not the case.
Our safe wrapper function always passes pointers to `[u64; 2]` arrays,
regardless of the bit-length specified. That's fine in practice, because scalar
primitives never exceed 128 bits, but it is technically a soundness hole in a
safe function.
We can close the soundness hole by explicitly asserting `size_bits <= 128`.
This is effectively just a stricter version of the existing check that the
value must be small enough to fit in `c_uint`.
`&Freeze` parameters are not only `readonly` within the function,
but any captures of the pointer can also only be used for reads.
This can now be encoded using the `captures(address, read_provenance)`
attribute.
Set the dead_on_return attribute (added in LLVM 21) for arguments
that are passed indirectly, but not byval.
This indicates that the value of the argument on return does not
matter, enabling additional dead store elimination.
Implement support for `become` and explicit tail call codegen for the LLVM backend
This PR implements codegen of explicit tail calls via `become` in `rustc_codegen_ssa` and support within the LLVM backend. Completes a task on (https://github.com/rust-lang/rust/issues/112788). This PR implements all the necessary bits to make explicit tail calls usable, other backends have received stubs for now and will ICE if you use `become` on them. I suspect there is some bikeshedding to be done on how we should go about implementing this for other backends, but it should be relatively straightforward for GCC after this is merged.
During development I also put together a POC bytecode VM based on tail call dispatch to test these changes out and analyze the codegen to make sure it generates expected assembly. That is available [here](https://github.com/xacrimon/tcvm).
Replace our `LLVMRustDIBuilderRef` with LLVM-C's `LLVMDIBuilderRef`
Inspired by trying to split #134009 into smaller steps that are easier to review individually.
This makes it possible to start incrementally replacing our debuginfo bindings with the ones in the LLVM-C API, all of which operate on `LLVMDIBuilderRef`.
There should be no change to compiler behaviour.
This makes it possible to start incrementally replacing our debuginfo bindings
with the ones in the LLVM-C API, all of which operate on `LLVMDIBuilderRef`.
[Debuginfo] Force enum `DISCR_*` to `static const u64` to allow for inspection via LLDB
see [here](https://rust-lang.zulipchat.com/#narrow/channel/317568-t-compiler.2Fwg-debugging/topic/Revamping.20Debuginfo/near/486614878) for more info.
This change mainly helps `*-msvc` debugged with LLDB. Currently, LLDB cannot inspect `static` struct fields, so the intended visualization for enums is only borderline functional, and niche enums with ranges of discriminant cannot be determined at all .
LLDB *can* inspect `static const` values (though for whatever reason, non-enum/non-u64 consts don't work).
This change adds the `LLVMRustDIBuilderCreateQualifiedType` to the rust FFI layer to wrap the discr type with a `const` modifier, as well as forcing all generated integer enum `DISCR_*` values to be u64's. Those values will only ever be used by debugger visualizers anyway, so it shouldn't be a huge deal, but I left a fixme comment for it just in case.. The `tag` also still properly reflects the discriminant type, so no information is lost.
Allow disabling ASan instrumentation for globals
AddressSanitizer adds instrumentation to global variables unless the [`no_sanitize_address`](https://llvm.org/docs/LangRef.html#global-attributes) attribute is set on them.
This commit extends the existing `#[no_sanitize(address)]` attribute to set this; previously it only had the desired effect on functions.
(cc https://github.com/rust-lang/rust/issues/39699)
LLVM does not expect to ever see multiple dbg_declares for the same variable at the same
location with different values. proc-macros make it possible for arbitrary code,
including multiple calls that get inlined, to happen at any given location in the source
code. Add discriminators when that happens so these locations are different to LLVM.
This may interfere with the AddDiscriminators pass in LLVM, which is added by the
unstable flag -Zdebug-info-for-profiling.
Fixes#131944
Trim and tidy includes in `rustc_llvm`
These includes tend to accumulate over time, and are usually only removed when something breaks in a new LLVM version, so it's nice to clean them up manually once in a while.
General strategy used for this PR:
- Remove all includes from `LLVMWrapper.h` that aren't needed by the header itself, transplanting them to individual source files as necessary.
- For each source file, temporarily remove each include if doing so doesn't cause a compile error.
- If a “required” include looks like it shouldn't be needed, try replacing it with its sub-includes, then trim that list.
- After doing all of the above, go back and re-add any removed include if the file does actually use things defined in that header, even if the header happens to also be included by something else.