It's currently lacking comments. This commit adds some, which is useful
because there are some methods with non-obvious behaviour.
The commit also renames two things:
- `patch_map` becomes `term_patch_map`, because it's only about
terminators.
- `is_patched` becomes `is_term_patched`, for the same reason.
(I would guess that originally `MirPatch` only handled terminators, and
then over time it expanded to allow other modifications, but these names
weren't updated.)
Because it's only used in `rustc_mir_transform`. (Presumably it is
currently in `rustc_middle` because lots of other MIR-related stuff is,
but that's not a hard requirement.) And because `rustc_middle` is huge
and it's always good to make it smaller.
`rustc_mir_dataflow/src/elaborate_drops.rs` contains some infrastructure
used by a few MIR passes: the `elaborate_drop` function, the
`DropElaborator` trait, etc.
`rustc_mir_transform/src/elaborate_drops.rs` (same file name, different
crate) contains the `ElaborateDrops` pass. It relies on a lot of the
infrastructure from `rustc_mir_dataflow/src/elaborate_drops.rs`.
It turns out that the drop infrastructure is only used in
`rustc_mir_transform`, so this commit moves it there. (The only
exception is the small `DropFlagState` type, which is moved to the
existing `rustc_mir_dataflow/src/drop_flag_effects.rs`.) The file is
renamed from `rustc_mir_dataflow/src/elaborate_drops.rs` to
`rustc_mir_transform/src/elaborate_drop.rs` (with no trailing `s`)
because (a) the `elaborate_drop` function is the most important export,
and (b) `rustc_mir_transform/src/elaborate_drops.rs` already exists.
All the infrastructure pieces that used to be `pub` are now
`pub(crate)`, because they are now only used within
`rustc_mir_transform`.
It uses `MaybeInitializedPlaces` and `MaybeUninitializedPlaces`, but
calls the results `live` and `dead`. This is very confusing given that
there are also analyses called `MaybeLiveLocals` and `MaybeStorageLive`
and `MaybeStorageDead`.
This commit changes it to use `maybe_init` and `maybe_uninit`.
the behavior of the type system not only depends on the current
assumptions, but also the currentnphase of the compiler. This is
mostly necessary as we need to decide whether and how to reveal
opaque types. We track this via the `TypingMode`.
This is a standard pattern:
```
MyAnalysis.into_engine(tcx, body).iterate_to_fixpoint()
```
`into_engine` and `iterate_to_fixpoint` are always called in pairs, but
sometimes with a builder-style `pass_name` call between them. But a
builder-style interface is overkill here. This has been bugging me a for
a while.
This commit:
- Merges `Engine::new` and `Engine::iterate_to_fixpoint`. This removes
the need for `Engine` to have fields, leaving it as a trivial type
that the next commit will remove.
- Renames `Analysis::into_engine` as `Analysis::iterate_to_fixpoint`,
gives it an extra argument for the optional pass name, and makes it
call `Engine::iterate_to_fixpoint` instead of `Engine::new`.
This turns the pattern from above into this:
```
MyAnalysis.iterate_to_fixpoint(tcx, body, None)
```
which is shorter at every call site, and there's less plumbing required
to support it.
There are four related dataflow structs: `MaybeInitializedPlaces`,
`MaybeUninitializedPlaces`, and `EverInitializedPlaces`,
`DefinitelyInitializedPlaces`. They all have a `&Body` and a
`&MoveData<'tcx>` field. The first three use different lifetimes for the
two fields, but the last one uses the same lifetime for both.
This commit changes the first three to use the same lifetime, removing
the need for one of the lifetimes. Other structs that also lose a
lifetime as a result of this are `LivenessContext`, `LivenessResults`,
`InitializationData`.
It then does similar things in various other structs.
Because that's now the only crate that uses it.
Moving stuff out of `rustc_middle` is always welcome.
I chose to use `impl crate::MirPass`/`impl crate::MirLint` (with
explicit `crate::`) everywhere because that's the only mention of
`MirPass`/`MirLint` used in all of these files. (Prior to this change,
`MirPass` was mostly imported via `use rustc_middle::mir::*` items.)
The `mir!` macro has multiple parts:
- An optional return type annotation.
- A sequence of zero or more local declarations.
- A mandatory starting anonymous basic block, which is brace-delimited.
- A sequence of zero of more additional named basic blocks.
Some `mir!` invocations use braces with a "block" style, like so:
```
mir! {
let _unit: ();
{
let non_copy = S(42);
let ptr = std::ptr::addr_of_mut!(non_copy);
// Inside `callee`, the first argument and `*ptr` are basically
// aliasing places!
Call(_unit = callee(Move(*ptr), ptr), ReturnTo(after_call), UnwindContinue())
}
after_call = {
Return()
}
}
```
Some invocations use parens with a "block" style, like so:
```
mir!(
let x: [i32; 2];
let one: i32;
{
x = [42, 43];
one = 1;
x = [one, 2];
RET = Move(x);
Return()
}
)
```
And some invocations uses parens with a "tighter" style, like so:
```
mir!({
SetDiscriminant(*b, 0);
Return()
})
```
This last style is generally used for cases where just the mandatory
starting basic block is present. Its braces are placed next to the
parens.
This commit changes all `mir!` invocations to use braces with a "block"
style. Why?
- Consistency is good.
- The contents of the invocation is a block of code, so it's odd to use
parens. They are more normally used for function-like macros.
- Most importantly, the next commit will enable rustfmt for
`tests/mir-opt/`. rustfmt is more aggressive about formatting macros
that use parens than macros that use braces. Without this commit's
changes, rustfmt would break a couple of `mir!` macro invocations that
use braces within `tests/mir-opt` by inserting an extraneous comma.
E.g.:
```
mir!(type RET = (i32, bool);, { // extraneous comma after ';'
RET.0 = 1;
RET.1 = true;
Return()
})
```
Switching those `mir!` invocations to use braces avoids that problem,
resulting in this, which is nicer to read as well as being valid
syntax:
```
mir! {
type RET = (i32, bool);
{
RET.0 = 1;
RET.1 = true;
Return()
}
}
```
I have a suspicion that quite a few delayed bug paths are impossible to
reach, so I did an experiment.
I converted every `delayed_bug` to a `bug`, ran the full test suite,
then converted back every `bug` that was hit. A surprising number were
never hit.
The next commit will convert some more back, based on human judgment.
detects redundant imports that can be eliminated.
for #117772 :
In order to facilitate review and modification, split the checking code and
removing redundant imports code into two PR.
`on_all_children_bits` has two arguments that are unused: `tcx` and
`body`. This was not detected by the compiler because it's a recursive
function.
This commit removes them, and removes lots of other arguments and fields
that are no longer necessary.