refactor `AttributeGate` and `rustc_attr!` to emit notes during feature checking
First commit changes the following:
- `AttributeGate ` from an enum with (four) tuple fields to (five) named fields
- adds a `notes` fields that is emitted as notes in the `PostExpansionVisitor` pass
- removes the `this compiler was built on YYYY-MM-DD; consider upgrading it if it is out of date` note if the feature gate is `rustc_attrs`.
- various phrasing changes and touchups
- and finally, the reason why I went down this path to begin with: tell people they can use the diagnostic namespace when they hit the rustc_on_unimplemented feature gate 🙈
Second commit removes unused machinery for deprecated attributes
Specifically `TyAlias`, `Enum`, `Struct`, `Union`. So the fields match
the textual order in the source code.
The interesting part of the change is in
`compiler/rustc_hir/src/hir.rs`. The rest is extremely mechanical
refactoring.
This updates the lint-docs tool to default to the 2024 edition. The lint
docs are supposed to illustrate the code with the latest edition, and I
just forgot to update this in
https://github.com/rust-lang/rust/pull/133349.
Some docs needed to add the `edition` attribute since they were assuming
a particular edition, but were missing the explicit annotation.
Add new `PatKind::Missing` variants
To avoid some ugly uses of `kw::Empty` when handling "missing" patterns, e.g. in bare fn tys. Helps with #137978. Details in the individual commits.
r? ``@oli-obk``
`ast::Item` has an `ident` field.
- It's always non-empty for these item kinds: `ExternCrate`, `Static`,
`Const`, `Fn`, `Mod`, `TyAlias`, `Enum`, `Struct`, `Union`,
`Trait`, `TraitAlias`, `MacroDef`, `Delegation`.
- It's always empty for these item kinds: `Use`, `ForeignMod`,
`GlobalAsm`, `Impl`, `MacCall`, `DelegationMac`.
There is a similar story for `AssocItemKind` and `ForeignItemKind`.
Some sites that handle items check for an empty ident, some don't. This
is a very C-like way of doing things, but this is Rust, we have sum
types, we can do this properly and never forget to check for the
exceptional case and never YOLO possibly empty identifiers (or possibly
dummy spans) around and hope that things will work out.
The commit is large but it's mostly obvious plumbing work. Some notable
things.
- `ast::Item` got 8 bytes bigger. This could be avoided by boxing the
fields within some of the `ast::ItemKind` variants (specifically:
`Struct`, `Union`, `Enum`). I might do that in a follow-up; this
commit is big enough already.
- For the visitors: `FnKind` no longer needs an `ident` field because
the `Fn` within how has one.
- In the parser, the `ItemInfo` typedef is no longer needed. It was used
in various places to return an `Ident` alongside an `ItemKind`, but
now the `Ident` (if present) is within the `ItemKind`.
- In a few places I renamed identifier variables called `name` (or
`foo_name`) as `ident` (or `foo_ident`), to better match the type, and
because `name` is normally used for `Symbol`s. It's confusing to see
something like `foo_name.name`.
"Missing" patterns are possible in bare fn types (`fn f(u32)`) and
similar places. Currently these are represented in the AST with
`ast::PatKind::Ident` with no `by_ref`, no `mut`, an empty ident, and no
sub-pattern. This flows through to `{hir,thir}::PatKind::Binding` for
HIR and THIR.
This is a bit nasty. It's very non-obvious, and easy to forget to check
for the exceptional empty identifier case.
This commit adds a new variant, `PatKind::Missing`, to do it properly.
The process I followed:
- Add a `Missing` variant to `{ast,hir,thir}::PatKind`.
- Chang `parse_param_general` to produce `ast::PatKind::Missing`
instead of `ast::PatKind::Missing`.
- Look through `kw::Empty` occurrences to find functions where an
existing empty ident check needs replacing with a `PatKind::Missing`
check: `print_param`, `check_trait_item`, `is_named_param`.
- Add a `PatKind::Missing => unreachable!(),` arm to every exhaustive
match identified by the compiler.
- Find which arms are actually reachable by running the test suite,
changing them to something appropriate, usually by looking at what
would happen to a `PatKind::Ident`/`PatKind::Binding` with no ref, no
`mut`, an empty ident, and no subpattern.
Quite a few of the `unreachable!()` arms were never reached. This makes
sense because `PatKind::Missing` can't happen in every pattern, only
in places like bare fn tys and trait fn decls.
I also tried an alternative approach: modifying `ast::Param::pat` to
hold an `Option<P<Pat>>` instead of a `P<Pat>`, but that quickly turned
into a very large and painful change. Adding `PatKind::Missing` is much
easier.
`hir::Item` has an `ident` field.
- It's always non-empty for these item kinds: `ExternCrate`, `Static`,
`Const`, `Fn`, `Macro`, `Mod`, `TyAlias`, `Enum`, `Struct`, `Union`,
Trait`, TraitAalis`.
- It's always empty for these item kinds: `ForeignMod`, `GlobalAsm`,
`Impl`.
- For `Use`, it is non-empty for `UseKind::Single` and empty for
`UseKind::{Glob,ListStem}`.
All of this is quite non-obvious; the only documentation is a single
comment saying "The name might be a dummy name in case of anonymous
items". Some sites that handle items check for an empty ident, some
don't. This is a very C-like way of doing things, but this is Rust, we
have sum types, we can do this properly and never forget to check for
the exceptional case and never YOLO possibly empty identifiers (or
possibly dummy spans) around and hope that things will work out.
The commit is large but it's mostly obvious plumbing work. Some notable
things.
- A similar transformation makes sense for `ast::Item`, but this is
already a big change. That can be done later.
- Lots of assertions are added to item lowering to ensure that
identifiers are empty/non-empty as expected. These will be removable
when `ast::Item` is done later.
- `ItemKind::Use` doesn't get an `Ident`, but `UseKind::Single` does.
- `lower_use_tree` is significantly simpler. No more confusing `&mut
Ident` to deal with.
- `ItemKind::ident` is a new method, it returns an `Option<Ident>`. It's
used with `unwrap` in a few places; sometimes it's hard to tell
exactly which item kinds might occur. None of these unwraps fail on
the test suite. It's conceivable that some might fail on alternative
input. We can deal with those if/when they happen.
- In `trait_path` the `find_map`/`if let` is replaced with a loop, and
things end up much clearer that way.
- `named_span` no longer checks for an empty name; instead the call site
now checks for a missing identifier if necessary.
- `maybe_inline_local` doesn't need the `glob` argument, it can be
computed in-function from the `renamed` argument.
- `arbitrary_source_item_ordering::check_mod` had a big `if` statement
that was just getting the ident from the item kinds that had one. It
could be mostly replaced by a single call to the new `ItemKind::ident`
method.
- `ItemKind` grows from 56 to 64 bytes, but `Item` stays the same size,
and that's what matters, because `ItemKind` only occurs within `Item`.
Continuing the work from #137350.
Removes the unused methods: `expect_variant`, `expect_field`,
`expect_foreign_item`.
Every method gains a `hir_` prefix.
Give `global_asm` a fake body to store typeck results, represent `sym fn` as a hir expr to fix `sym fn` operands with lifetimes
There are a few intertwined problems with `sym fn` operands in both inline and global asm macros.
Specifically, unlike other anon consts, they may evaluate to a type with free regions in them without actually having an item-level type annotation to give them a "proper" type. This is in contrast to named constants, which always have an item-level type annotation, or unnamed constants which are constrained by their position (e.g. a const arg in a turbofish, or a const array length).
Today, we infer the type of the operand by looking at the HIR typeck results; however, those results are region-erased, so during borrowck we ICE since we don't expect to encounter erased regions. We can't just fill this type with something like `'static`, since we may want to use real (free) regions:
```rust
fn foo<'a>() {
asm!("/* ... */", sym bar::<&'a ()>);
}
```
The first idea may be to represent `sym fn` operands using *inline* consts instead of anon consts. This makes sense, since inline consts can reference regions from the parent body (like the `'a` in the example above). However, this introduces a problem with `global_asm!`, which doesn't *have* a parent body; inline consts *must* be associated with a parent body since they are not a body owner of their own. In #116087, I attempted to fix this by using two separate `sym` operands for global and inline asm. However, this led to a lot of confusion and also some unattractive code duplication.
In this PR, I adjust the lowering of `global_asm!` so that it's lowered in a "fake" HIR body. This body contains a single expression which is `ExprKind::InlineAsm`; we don't *use* this HIR body, but it's used in typeck and borrowck so that we can properly infer and validate the the lifetimes of `sym fn` operands.
I then adjust the lowering of `sym fn` to instead be represented with a HIR expression. This is both because it's no longer necessary to represent this operand as an anon const, since it's *just* a path expression, and also more importantly to sidestep yet another ICE (https://github.com/rust-lang/rust/issues/137179), which has to do with the existing code breaking an invariant of def-id creation and anon consts. Specifically, we are not allowed to synthesize a def-id for an anon const when that anon const contains expressions with def-ids whose parent is *not* that anon const. This is somewhat related to https://github.com/rust-lang/rust/pull/130443#issuecomment-2445678945, which is also a place in the compiler where synthesizing anon consts leads to def-id parenting issue.
As a side-effect, this consolidates the type checking for inline and global asm, so it allows us to simplify `InlineAsmCtxt` a bit. It also allows us to delete a bit of hacky code from anon const `type_of` which was there to detect `sym fn` operands specifically. This also could be generalized to support `const` asm operands with types with lifetimes in them. Since we specifically reject these consts today, I'm not going to change the representation of those consts (but they'd just be turned into inline consts).
r? oli-obk -- mostly b/c you're patient and also understand the breadth of the code that this touches, please reassign if you don't want to review this.
Fixes#111709Fixes#96304Fixes#137179
The end goal is to eliminate `Map` altogether.
I added a `hir_` prefix to all of them, that seemed simplest. The
exceptions are `module_items` which became `hir_module_free_items` because
there was already a `hir_module_items`, and `items` which became
`hir_free_items` for consistency with `hir_module_free_items`.
The wording unsafe pointer is less common and not mentioned in a lot of
places, instead this is usually called a "raw pointer". For the sake of
uniformity, we rename this method.
This came up during the review of
https://github.com/rust-lang/rust/pull/134424.
`rustc_middle` is a huge crate and it's always good to move stuff out of
it. There are lots of similar methods already on `Span`, so these two
functions, `in_external_macro` and `is_from_async_await`, fit right in.
The diff is big because `in_external_macro` is used a lot by clippy
lints.
This link makes sense because someone who wishes to avoid unusable `pub`
is likely, but not guaranteed, to be interested in avoiding unnameable
types.
Also fixed some grammar problems I noticed in the area.
Fixes#116604.
`rustc_span::symbol` defines some things that are re-exported from
`rustc_span`, such as `Symbol` and `sym`. But it doesn't re-export some
closely related things such as `Ident` and `kw`. So you can do `use
rustc_span::{Symbol, sym}` but you have to do `use
rustc_span::symbol::{Ident, kw}`, which is inconsistent for no good
reason.
This commit re-exports `Ident`, `kw`, and `MacroRulesNormalizedIdent`,
and changes many `rustc_span::symbol::` qualifiers in `compiler/` to
`rustc_span::`. This is a 200+ net line of code reduction, mostly
because many files with two `use rustc_span` items can be reduced to
one.
Because `TokenStreamIter` is a much better name for a `TokenStream`
iterator. Also rename the `TokenStream::trees` method as
`TokenStream::iter`, and some local variables.
When we expand a `mod foo;` and parse `foo.rs`, we now track whether that file had an unrecovered parse error that reached the end of the file. If so, we keep that information around. When resolving a path like `foo::bar`, we do not emit any errors for "`bar` not found in `foo`", as we know that the parse error might have caused `bar` to not be parsed and accounted for.
When this happens in an existing project, every path referencing `foo` would be an irrelevant compile error. Instead, we now skip emitting anything until `foo.rs` is fixed. Tellingly enough, we didn't have any test for errors caused by `mod` expansion.
Fix#97734.
As a rule, the application of `unsafe` to a declaration requires that use-sites
of that declaration also require `unsafe`. For example, a field declared
`unsafe` may only be read in the lexical context of an `unsafe` block.
For nearly all safe traits, the safety obligations of fields are explicitly
discharged when they are mentioned in method definitions. For example,
idiomatically implementing `Clone` (a safe trait) for a type with unsafe fields
will require `unsafe` to clone those fields.
Prior to this commit, `Copy` violated this rule. The trait is marked safe, and
although it has no explicit methods, its implementation permits reads of `Self`.
This commit resolves this by making `Copy` conditionally safe to implement. It
remains safe to implement for ADTs without unsafe fields, but unsafe to
implement for ADTs with unsafe fields.
Tracking: #132922
the behavior of the type system not only depends on the current
assumptions, but also the currentnphase of the compiler. This is
mostly necessary as we need to decide whether and how to reveal
opaque types. We track this via the `TypingMode`.
Rename `rustc_abi::Abi` to `BackendRepr`
Remove the confabulation of `rustc_abi::Abi` with what "ABI" actually means by renaming it to `BackendRepr`, and rename `Abi::Aggregate` to `BackendRepr::Memory`. The type never actually represented how things are passed, as that has to have `PassMode` considered, at minimum, but rather it just is how we represented some things to the backend. This conflation arose because LLVM, the primary backend at the time, would lower certain IR forms using certain ABIs. Even that only somewhat was true, as it broke down when one ventured significantly afield of what is described by the System V AMD64 ABI either by using different architectures, ABI-modifying IR annotations, the same architecture **with different ISA extensions enabled**, or other... unexpected delights.
Unfortunately both names are still somewhat of a misnomer right now, as people have written code for years based on this misunderstanding. Still, their original names are even moreso, and for better or worse, this backend code hasn't received as much maintenance as the rest of the compiler, lately. Actually arriving at a correct end-state will simply require us to disentangle a lot of code in order to fix, much of it pointlessly repeated in several places. Thus this is not an "actual fix", just a way to deflect further misunderstandings.