Add an attribute to check the number of lanes in a SIMD vector after monomorphization
Allows std::simd to drop the `LaneCount<N>: SupportedLaneCount` trait and maintain good error messages.
Also, extends rust-lang/rust#145967 by including spans in layout errors for all ADTs.
r? ``@RalfJung``
cc ``@workingjubilee`` ``@programmerjake``
Add panic=immediate-abort
MCP: https://github.com/rust-lang/compiler-team/issues/909
This adds a new panic strategy, `-Cpanic=immediate-abort`. This panic strategy essentially just codifies use of `-Zbuild-std-features=panic_immediate_abort`. This PR is intended to just set up infrastructure, and while it will change how the compiler is invoked for users of the feature, there should be no other impacts.
In many parts of the compiler, `PanicStrategy::ImmediateAbort` behaves just like `PanicStrategy::Abort`, because actually most parts of the compiler just mean to ask "can this unwind?" so I've added a helper function so we can say `sess.panic_strategy().unwinds()`.
The panic and unwind strategies have some level of compatibility, which mostly means that we can pre-compile the sysroot with unwinding panics then the sysroot can be linked with aborting panics later. The immediate-abort strategy is all-or-nothing, enforced by `compiler/rustc_metadata/src/dependency_format.rs` and this is tested for in `tests/ui/panic-runtime/`. We could _technically_ be more compatible with the other panic strategies, but immediately-aborting panics primarily exist for users who want to eliminate all the code size responsible for the panic runtime. I'm open to other use cases if people want to present them, but not right now. This PR is already large.
`-Cpanic=immediate-abort` sets both `cfg(panic = "immediate-abort")` _and_ `cfg(panic = "abort")`. bjorn3 pointed out that people may be checking for the abort cfg to ask if panics will unwind, and also the sysroot feature this is replacing used to require `-Cpanic=abort` so this seems like a good back-compat step. At least for the moment. Unclear if this is a good idea indefinitely. I can imagine this being confusing.
The changes to the standard library attributes are purely mechanical. Apart from that, I removed an `unsafe` we haven't needed for a while since the `abort` intrinsic became safe, and I've added a helpful diagnostic for people trying to use the old feature.
To test that `-Cpanic=immediate-abort` conflicts with other panic strategies, I've beefed up the core-stubs infrastructure a bit. There is now a separate attribute to set flags on it.
I've added a test that this produces the desired codegen, called `tests/run-make-cargo/panic-immediate-abort-codegen/` and also a separate run-make-cargo test that checks that we can build a binary.
Remove Rvalue::Len again.
Now that we have `RawPtrKind::FakeForPtrMetadata`, we can reimplement `Rvalue::Len` using `PtrMetadata(&raw const (fake) place)`.
r? ``@scottmcm``
initial implementation of the darwin_objc unstable feature
Tracking issue: https://github.com/rust-lang/rust/issues/145496
This feature makes it possible to reference Objective-C classes and selectors using the same ABI used by native Objective-C on Apple/Darwin platforms. Without it, Rust code interacting with Objective-C must resort to loading classes and selectors using costly string-based lookups at runtime. With it, these references can be loaded efficiently at dynamic load time.
r? ```@tmandry```
try-job: `*apple*`
try-job: `x86_64-gnu-nopt`
Some hygiene doc improvements
Improve some doc comments around SyntaxContext, outer_expn and friends.
Based on discussion at https://github.com/rust-lang/rust/pull/146100.
r? petrochenkov
Minor symbol comment fixes.
- The empty symbol is no longer a keyword.
- I don't think any of the special reserved identifiers are used for error recovery.
r? ```@petrochenkov```
Implement `#[rustc_align_static(N)]` on `static`s
Tracking issue: https://github.com/rust-lang/rust/issues/146177
```rust
#![feature(static_align)]
#[rustc_align_static(64)]
static SO_ALIGNED: u64 = 0;
```
We need a different attribute than `rustc_align` because unstable attributes are tied to their feature (we can't have two unstable features use the same unstable attribute). Otherwise this uses all of the same infrastructure as `#[rustc_align]`.
r? `@traviscross`
We need a different attribute than `rustc_align` because unstable attributes are
tied to their feature (we can't have two unstable features use the same
unstable attribute). Otherwise this uses all of the same infrastructure
as `#[rustc_align]`.
Implement Integer funnel shifts
Tracking issue: rust-lang/rust#145686
ACP: https://github.com/rust-lang/libs-team/issues/642
This implements funnel shifts on primitive integer types. Implements this for cg_llvm, with a fallback impl for everything else
Thanks `@folkertdev` for the fixes and tests
cc `@rust-lang/libs-api`
Add LSX accelerated implementation for source file analysis
This patch introduces an LSX-optimized version of `analyze_source_file` for the `loongarch64` target. Similar to existing SSE2 implementation for x86, this version:
- Processes 16-byte chunks at a time using LSX vector intrinsics.
- Quickly identifies newlines in ASCII-only chunks.
- Falls back to the generic implementation when multi-byte UTF-8 characters are detected or in the tail portion.
Allow `inline(always)` with a target feature behind a unstable feature `target_feature_inline_always`.
Rather than adding the inline always attribute to the function definition, we add it to the callsite. We can then check that the target features match and that the call would be safe to inline. If the function isn't inlined due to a mismatch, we emit a warning informing the user that the function can't be inlined due to the target feature mismatch.
See tracking issue rust-lang/rust#145574
This patch introduces an LSX-optimized version of `analyze_source_file`
for the `loongarch64` target. Similar to existing SSE2 implementation
for x86, this version:
- Processes 16-byte chunks at a time using LSX vector intrinsics.
- Quickly identifies newlines in ASCII-only chunks.
- Falls back to the generic implementation when multi-byte UTF-8
characters are detected or in the tail portion.
This was done in #145740 and #145947. It is causing problems for people
using r-a on anything that uses the rustc-dev rustup package, e.g. Miri,
clippy.
This repository has lots of submodules and subtrees and various
different projects are carved out of pieces of it. It seems like
`[workspace.dependencies]` will just be more trouble than it's worth.
Add new `doc(attribute = "...")` attribute
Fixesrust-lang/rust#141123.
The implementation and purpose of this new `#[doc(attribute = "...")]` attribute is very close to `#[doc(keyword = "...")]`. Which means that luckily for us, most of the code needed was already in place and `@Noratrieb` nicely wrote a first draft that helped me implement this new attribute very fast.
Now with all this said, there is one thing I didn't do yet: adding a `rustdoc-js-std` test. I added GUI tests with search results for attributes so should be fine but I still plan on adding one for it once documentation for builtin attributes will be written into the core/std libs.
You can test it [here](https://rustdoc.crud.net/imperio/doc-attribute-attribute/foo/index.html).
cc `@Noratrieb` `@Veykril`
rustc_codegen_ssa: More comprehensive RISC-V ELF flags
This change implements more conformant, more comprehensive RISC-V ELF flags handling when generating certain object files directly from rustc.
* Use `"zca"` instead of `"c"`
The "Zca" extension (a subset of "C") is the minimal configuration for compressed instructions to set `EF_RISCV_RVC` flag.
* Set TSO flag from `"ztso"`
The "Ztso" extension denotes that the program depends on the RVTSO (Total Store Ordering) memory consistency model, which is stronger than the standard RVWMO (Weak Memory Ordering) consistency model and on ELF targets, we need to set `EF_RISCV_TSO` flag.
This commit implements more conformant, more comprehensive RISC-V ELF
flags handling when generating certain object files directly from rustc.
* Use "zca" instead of "c"
The "Zca" extension (a subset of "C") is the minimal configuration
for compressed instructions to set `EF_RISCV_RVC` flag.
* Set TSO flag from "ztso"
The "Ztso" extension denotes that the program depends on the RVTSO
(Total Store Ordering) memory consistency model, which is stronger
than the standard RVWMO (Weak Memory Ordering) consistency model and
on ELF targets, we need to set `EF_RISCV_TSO` flag.
Experiment: Reborrow trait
Tracking issue: rust-lang/rust#145612
Starting off really small here: just introduce the unstable feature and the feature gate, and one of the two traits that the Reborrow experiment deals with.
### Cliff-notes explanation
The `Reborrow` trait is conceptually a close cousin of `Copy` with the exception that it disables the source (`self`) for the lifetime of the target / result of the reborrow action. It can be viewed as a method of `fn reborrow(self: Self<'a>) -> Self<'a>` with the compiler adding tracking of the resulting `Self<'a>` (or any value derived from it that retains the `'a` lifetime) to keep the `self` disabled for reads and writes.
No method is planned to be surfaced to the user, however, as reborrowing cannot be seen in code (except for method calls [`a.foo()` reborrows `a`] and explicit reborrows [`&*a`]) and thus triggering user-code in it could be viewed as "spooky action at a distance". Furthermore, the added compiler tracking cannot be seen on the method itself, violating the Golden Rule. Note that the userland "reborrow" method is not True Reborrowing, but rather a form of a "Fancy Deref":
```rust
fn reborrow(&'short self: Self<'long>) -> Self<'short>;
```
The lifetime shortening is the issue here: a reborrowed `Self` or any value derived from it is bound to the method that called `reborrow`, since `&'short` is effectively a local variable. True Reborrowing does not shorten the lifetime of the result.
To avoid having to introduce new kinds of references, new kinds of lifetime annotations, or a blessed trait method, no method will be introduced at all. Instead, the `Reborrow` trait is intended to be a derived trait that effectively reborrows each field individually; `Copy` fields end up just copying, while fields that themselves `Reborrow` get disabled in the source, usually leading to the source itself being disabled (some differences may appear with structs that contain multiple reborrowable fields). The goal of the experiment is to determine how the actual implementation here will shape out, and what the "bottom case" for the recursive / deriving `Reborrow` is.
`Reborrow` has a friend trait, `CoerceShared`, which is equivalent to a `&'a mut T -> &'a T` conversion. This is needed as a different trait and different operation due to the different semantics it enforces on the source: a `CoerceShared` operation only disables the source for writes / exclusive access for the lifetime of the result. That trait is not yet introduced in this PR, though there is no particular reason why it could not be introduced.