a more general version of https://github.com/rust-lang/rust/pull/146080.
after a bit of hacking in [`fluent.rs`](https://github.com/rust-lang/rust/blob/master/compiler/rustc_fluent_macro/src/fluent.rs), i discovered that i'm not the only one that is bad at following guidelines 😅. this pr lowercases the first letter of all the error messages in the codebase.
(i did not change things that are traditionally uppercased such as _MIR_, _ABI_ or _C_)
i think it's reasonable to run a `@bors try` so all the test suite is checked, as i cannot run some of the tests on my machine. i double checked (and replaced manually) all the old error messages, but better be safe than sorry.
in the future i will try to add a check in `x test tidy` that errors if an error message starts with an uppercase letter.
This removes the #[no_sanitize] attribute, which was behind an unstable
feature named no_sanitize. Instead, we introduce the sanitize attribute
which is more powerful and allows to be extended in the future (instead
of just focusing on turning sanitizers off).
This also makes sanitize(kernel_address = ..) attribute work with
-Zsanitize=address
To do it the same as how clang disables address sanitizer, we now
disable ASAN on sanitize(kernel_address = "off") and KASAN on
sanitize(address = "off").
The same was added to clang in https://reviews.llvm.org/D44981.
This change implements the #[sanitize(..)] attribute, which opts to
replace the currently unstable #[no_sanitize]. Essentially the new
attribute works similar as #[no_sanitize], just with more flexible
options regarding where it is applied. E.g. it is possible to turn
a certain sanitizer either on or off:
`#[sanitize(address = "on|off")]`
This attribute now also applies to more places, e.g. it is possible
to turn off a sanitizer for an entire module or impl block:
```rust
\#[sanitize(address = "off")]
mod foo {
fn unsanitized(..) {}
#[sanitize(address = "on")]
fn sanitized(..) {}
}
\#[sanitize(thread = "off")]
impl MyTrait for () {
...
}
```
This attribute is enabled behind the unstable `sanitize` feature.
Add diagnostic explaining STATUS_STACK_BUFFER_OVERRUN not only being used for stack buffer overruns if link.exe exits with that exit code
`STATUS_STACK_BUFFER_OVERRUN` is also used for fast abnormal program termination, e.g. by abort(). Emit a special diagnostic to let people know that this most likely doesn't indicate a stack buffer overrun.
This doesn't look up the crash report in the event log to determine what the fast fail error code is. This is due to the way crashes are logged: When a process crash happens, the system logs an "Application Error" event, which contains the exit code and the process ID, but not the fast fail error code. A second event by Windows Error Reporting does contain that fast fail code, but not the process ID - but that event is not emitted at process exit, but when WER has dealt with it (on my system, it happens roughly two seconds later), so querying the code would have to read the `IntegratorReportId`, wait two seconds or potentially longer for the WER event with the same `ReportID`, and read out the code. (Also, that second event doesn't happen if WER is disabled.)
Fixesrust-lang/rust#100519.
atomicrmw on pointers: move integer-pointer cast hacks into backend
Conceptually, we want to have atomic operations on pointers of the form `fn atomic_add(ptr: *mut T, offset: usize, ...)`. However, LLVM does not directly support such operations (https://github.com/llvm/llvm-project/issues/120837), so we have to cast the `offset` to a pointer somewhere.
This PR moves that hack into the LLVM backend, so that the standard library, intrinsic, and Miri all work with the conceptual operation we actually want. Hopefully, one day LLVM will gain a way to represent these operations without integer-pointer casts, and then the hack will disappear entirely.
Cc ```@nikic``` -- this is the best we can do right now, right?
Fixes https://github.com/rust-lang/rust/issues/134617
used for stack buffer overruns if link.exe exits with that exit code
`STATUS_STACK_BUFFER_OVERRUN` is also used for fast abnormal program
termination, e.g. by abort(). Emit a special diagnostic to let people
know that this most likely doesn't indicate a stack buffer overrun.
Extract some shared code from codegen backend target feature handling
There's a bunch of code duplication between the GCC and LLVM backends in target feature handling. This moves that into new shared helper functions in `rustc_codegen_ssa`.
The first two commits should be purely refactoring. I am fairly sure the LLVM-side behavior stays the same; if the GCC side deliberately diverges from this then I may have missed that. I did account for one divergence, which I do not know is deliberate or not: GCC does not seem to use the `-Ctarget-feature` flag to populate `cfg(target_feature)`. That seems odd, since the `-Ctarget-feature` flag is used to populate the return value of `global_gcc_features` which controls the target features actually used by GCC. ``@GuillaumeGomez`` ``@antoyo`` is there a reason `target_config` ignores `-Ctarget-feature` but `global_gcc_features` does not? The second commit also cleans up a bunch of unneeded complexity added in https://github.com/rust-lang/rust/pull/135927.
The third commit extracts some shared logic out of the functions that populate `cfg(target_feature)` and the backend target feature set, respectively. This one actually has some slight functional changes:
- Before, with `-Ctarget-feature=-feat`, if there is some other feature `x` that implies `feat` we would *not* add `-x` to the backend target feature set. Now, we do. This fixesrust-lang/rust#134792.
- The logic that removes `x` from `cfg(target_feature)` in this case also changed a bit, avoiding a large number of calls to the (uncached) `sess.target.implied_target_features` (if there were a large number of positive features listed before a negative feature) but instead constructing a full inverse implication map when encountering the first negative feature. Ideally this would be done with queries but the backend target feature logic runs before `tcx` so we can't use that...
- Previously, if feature "a" implied "b" and "b" was unstable, then using `-Ctarget-feature=+a` would also emit a warning about `b`. I had to remove this since when accounting for negative implications, this emits a ton of warnings in a bunch of existing tests... I assume this was unintentional anyway.
The fourth commit increases consistency of the GCC backend with the LLVM backend.
The last commit does some further cleanup:
- Get rid of RUSTC_SPECIAL_FEATURES. It was only needed for s390x "backchain", but since LLVM 19 that is always a regular target feature so we don't need this hack any more. The hack also has various unintended side-effects so we don't want to keep it. Fixes https://github.com/rust-lang/rust/issues/142412.
- Move RUSTC_SPECIFIC_FEATURES handling into the shared parse_rust_feature_flag helper so all consumers of `-Ctarget-feature` that only care about actual target features (and not "crt-static") have it. Previously, we actually set `cfg(target_feature = "crt-static")` twice: once in the backend target feature logic, and once specifically for that one feature. IIUC, some targets are meant to ignore `-Ctarget-feature=+crt-static`, it seems like before this PR that flag still incorrectly enabled `cfg(target_feature = "crt-static")` (but I didn't test this).
- Move fixed_x18 handling together with retpoline handling.
- Forbid setting fixed_x18 as a regular target feature, even unstably. It must be set via the `-Z` flag.
``@bjorn3`` I did not touch the cranelift backend here, since AFAIK it doesn't really support target features. But if you ever do, please use the new helpers. :)
Cc ``@workingjubilee``
Move metadata object generation for dylibs to the linker code
This deduplicates some code between codegen backends and may in the future allow adding extra metadata that is only known at link time.
Prerequisite of https://github.com/rust-lang/rust/issues/96708.
simd intrinsics with mask: accept unsigned integer masks, and fix some of the errors
It's not clear at all why the mask would have to be signed, it is anyway interpreted bitwise. The backend should just make sure that works no matter the surface-level type; our LLVM backend already does this correctly. The note of "the mask may be widened, which only has the correct behavior for signed integers" explains... nothing? Why can't the code do the widening correctly? If necessary, just cast to the signed type first...
Also while we are at it, fix the errors. For simd_masked_load/store, the errors talked about the "third argument" but they meant the first argument (the mask is the first argument there). They also used the wrong type for `expected_element`.
I have extremely low confidence in the GCC part of this PR.
See [discussion on Zulip](https://rust-lang.zulipchat.com/#narrow/channel/257879-project-portable-simd/topic/On.20the.20sign.20of.20masks)
Autodiff Upstreaming - rustc_codegen_ssa, rustc_middle
This PR should not be merged until the rustc_codegen_llvm part is merged.
I will also alter it a little based on what get's shaved off from the cg_llvm PR,
and address some of the feedback I received in the other PR (including cleanups).
I am putting it already up to
1) Discuss with `@jieyouxu` if there is more work needed to add tests to this and
2) Pray that there is someone reviewing who can tell me why some of my autodiff invocations get lost.
Re 1: My test require fat-lto. I also modify the compilation pipeline. So if there are any other llvm-ir tests in the same compilation unit then I will likely break them. Luckily there are two groups who currently have the same fat-lto requirement for their GPU code which I have for my autodiff code and both groups have some plans to enable support for thin-lto. Once either that work pans out, I'll copy it over for this feature. I will also work on not changing the optimization pipeline for functions not differentiated, but that will require some thoughts and engineering, so I think it would be good to be able to run the autodiff tests isolated from the rest for now. Can you guide me here please?
For context, here are some of my tests in the samples folder: https://github.com/EnzymeAD/rustbook
Re 2: This is a pretty serious issue, since it effectively prevents publishing libraries making use of autodiff: https://github.com/EnzymeAD/rust/issues/173. For some reason my dummy code persists till the end, so the code which calls autodiff, deletes the dummy, and inserts the code to compute the derivative never gets executed. To me it looks like the rustc_autodiff attribute just get's dropped, but I don't know WHY? Any help would be super appreciated, as rustc queries look a bit voodoo to me.
Tracking:
- https://github.com/rust-lang/rust/issues/124509
r? `@jieyouxu`
Target option to require explicit cpu
Some targets have many different CPUs and no generic CPU that can be used as a default. For these targets, the user needs to explicitly specify a CPU through `-C target-cpu=`.
Add an option for targets and an error message if no CPU is set.
This affects the proposed amdgpu and avr targets.
amdgpu tracking issue: #135024
AVR MCP: https://github.com/rust-lang/compiler-team/issues/800
Some targets have many different CPUs and no generic CPU that can be
used as a default. For these targets, the user needs to explicitly
specify a CPU through `-C target-cpu=`.
Add an option for targets and an error message if no CPU is set.
This affects the proposed amdgpu and avr targets.
bootstrap/codegen_ssa: ship llvm-strip and use it for -Cstrip
Fixes#131206.
- Includes `llvm-strip` (a symlink to `llvm-objcopy`) in the compiler dist artifact so that it can be used for `-Cstrip` instead of the system tooling.
- Uses `llvm-strip` instead of `/usr/bin/strip` for macOS. macOS needs a specific linker and the system one is preferred, hence #130781 but that doesn't work when cross-compiling, so use the `llvm-strip` utility instead.
cc #123151
mark some target features as 'forbidden' so they cannot be (un)set with -Ctarget-feature
The context for this is https://github.com/rust-lang/rust/issues/116344: some target features change the way floats are passed between functions. Changing those target features is unsound as code compiled for the same target may now use different ABIs.
So this introduces a new concept of "forbidden" target features (on top of the existing "stable " and "unstable" categories), and makes it a hard error to (un)set such a target feature. For now, the x86 and ARM feature `soft-float` is on that list. We'll have to make some effort to collect more relevant features, and similar features from other targets, but that can happen after the basic infrastructure for this landed. (These features are being collected in https://github.com/rust-lang/rust/issues/131799.)
I've made this a warning for now to give people some time to speak up if this would break something.
MCP: https://github.com/rust-lang/compiler-team/issues/780
codegen_ssa: consolidate tied target checks
Fixes#105110.
Fixes#105111.
`rustc_codegen_llvm` and `rustc_codegen_gcc` duplicated logic for checking if tied target features were partially enabled. This PR consolidates these checks into `rustc_codegen_ssa` in the `codegen_fn_attrs` query, which also is run pre-monomorphisation for each function, which ensures that this check is run for unused functions, as would be expected.
Also adds a test confirming that enabling one tied feature doesn't imply another - the appropriate error for this was already being emitted. I did a bisect and narrowed it down to two patches it was likely to be - something in #128796, probably #128221 or #128679.