Fix ICE on offsetted ZST pointer
I'm not sure this is the *right* fix, but it's simple enough and does roughly what I'd expect. Like with the previous optimization to codegen usize rather than a zero-sized static, there's no guarantee that we continue returning a particular value from the offsetting.
A grep for `const_usize.*align` found the same code copied to rustc_codegen_gcc and cranelift but a quick skim didn't find other cases of similar 'optimization'. That said, I'm not convinced I caught everything, it's not trivial to search for this.
Closesrust-lang/rust#147516
Restrict sysroot crate imports to those defined in this repo.
It's common to import dependencies from the sysroot via `extern crate` rather than use an explicit cargo dependency, when it's necessary to use the same dependency version as used by rustc itself. However, this is dangerous for crates.io crates, since rustc may not pull in the dependency on some targets, or may pull in multiple versions. In both cases, the `extern crate` fails to resolve.
To address this, re-export all such dependencies from the appropriate `rustc_*` crates, and use this alias from crates which would otherwise need to use `extern crate`.
See https://github.com/rust-lang/rust/pull/143492 for an example of the kind of issue that can occur.
It's common to import dependencies from the sysroot via `extern crate`
rather than use an explicit cargo dependency, when it's necessary to use
the same dependency version as used by rustc itself. However, this is
dangerous for crates.io crates, since rustc may not pull in the
dependency on some targets, or may pull in multiple versions. In both
cases, the `extern crate` fails to resolve.
To address this, re-export all such dependencies from the appropriate
`rustc_*` crates, and use this alias from crates which would otherwise
need to use `extern crate`.
Move computation of allocator shim contents to cg_ssa
In the future this should make it easier to use weak symbols for the allocator shim on platforms that properly support weak symbols. And it would allow reusing the allocator shim code for handling default implementations of the upcoming externally implementable items feature on platforms that don't properly support weak symbols.
In addition to make this possible, the alloc error handler is now handled in a way such that it is possible to avoid using the allocator shim when liballoc is compiled without `no_global_oom_handling` if you use `#[alloc_error_handler]`. Previously this was only possible if you avoided liballoc entirely or compiled it with `no_global_oom_handling`. You still need to avoid libstd and to define the symbol that indicates that avoiding the allocator shim is unstable.
Validate CopyForDeref and DerefTemps better and remove them from runtime MIR
(split from my WIP rust-lang/rust#145344)
This PR:
- Removes `Rvalue::CopyForDeref` and `LocalInfo::DerefTemp` from runtime MIR
- Using a new mir pass `EraseDerefTemps`
- `CopyForDeref(x)` is turned into `Use(Copy(x))`
- `DerefTemp` is turned into `Boring`
- Not sure if this part is actually necessary, it made more sense in rust-lang/rust#145344 with `DerefTemp` storing actual data that I wanted to keep from having to be kept in sync with the rest of the body in runtime MIR
- Checks in validation that `CopyForDeref` and `DerefTemp` are only used together
- Removes special handling for `CopyForDeref` from many places
- Removes `CopyForDeref` from `custom_mir` reverting rust-lang/rust#111587
- In runtime MIR simple copies can be used instead
- In post cleanup analysis MIR it was already wrong to use due to the lack of support for creating `DerefTemp` locals
- Possibly this should be its own PR?
- Adds an argument to `deref_finder` to avoid creating new `DerefTemp`s and `CopyForDeref` in runtime MIR.
- Ideally we would just avoid making intermediate derefs instead of fixing it at the end of a pass / during shim building
- Removes some usages of `deref_finder` that I found out don't actually do anything
r? oli-obk
In the future this should make it easier to use weak symbols for the
allocator shim on platforms that properly support weak symbols. And it
would allow reusing the allocator shim code for handling default
implementations of the upcoming externally implementable items feature
on platforms that don't properly support weak symbols.
Currently it is possible to avoid linking the allocator shim when
__rust_no_alloc_shim_is_unstable_v2 is defined when linking rlibs
directly as some build systems need. However this requires liballoc to
be compiled with --cfg no_global_oom_handling, which places huge
restrictions on what functions you can call and makes it impossible to
use libstd. Or alternatively you have to define
__rust_alloc_error_handler and (when using libstd)
__rust_alloc_error_handler_should_panic
using #[rustc_std_internal_symbol]. With this commit you can either use
libstd and define __rust_alloc_error_handler_should_panic or not use
libstd and use #[alloc_error_handler] instead. Both options are still
unstable though.
Eventually the alloc_error_handler may either be removed entirely
(though the PR for that has been stale for years now) or we may start
using weak symbols for it instead. For the latter case this commit is a
prerequisite anyway.
Turn ProjectionElem::Subtype into CastKind::Subtype
I noticed that drop elaboration can't, in general, handle `ProjectionElem::SubType`. It creates a disjoint move path that overlaps with other move paths. (`Subslice` does too, and I'm working on a different PR to make that special case less fragile.) If its skipped and treated as the same move path as its parent then `MovePath.place` has multiple possible projections. (It would probably make sense to remove all `Subtype` projections for the canonical place but it doesn't make sense to have this special case for a problem that doesn't actually occur in real MIR.)
The only reason this doesn't break is that `Subtype` is always the sole projection of the local its applied to. For the same reason, it works fine as a `CastKind` so I figured that makes more sense than documenting and validating this hidden invariant.
cc rust-lang/rust#112651, rust-lang/rust#133258
r? Icnr (bc you've been the main person dealing with `Subtype` it looks like)
Much of the compiler calls functions on Align projected from AbiAlign.
AbiAlign impls Deref to its inner Align, so we can simplify these away.
Also, it will minimize disruption when AbiAlign is removed.
For now, preserve usages that might resolve to PartialOrd or PartialEq,
as those have odd inference.
Add an attribute to check the number of lanes in a SIMD vector after monomorphization
Allows std::simd to drop the `LaneCount<N>: SupportedLaneCount` trait and maintain good error messages.
Also, extends rust-lang/rust#145967 by including spans in layout errors for all ADTs.
r? ``@RalfJung``
cc ``@workingjubilee`` ``@programmerjake``
Clean up `ty::Dynamic`
1. As a follow-up to PR rust-lang/rust#143036, remove `DynKind` entirely.
2. Inside HIR ty lowering, consolidate modules `dyn_compatibility` and `lint` into `dyn_trait`
* `dyn_compatibility` wasn't about dyn compatibility itself, it's about lowering trait object types
* `lint` contained dyn-Trait-specific diagnostics+lints only
Split `run-make` into two {`run-make`,`run-make-cargo`} test suites
## Summary
Split `tests/run-make` into two test suites, to make it faster and more convenient for contributors to run run-make tests that do not need in-tree `cargo`.
| New test suites | Explanation |
| ---------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `tests/run-make` | The "fast path" test suite intended for run-make tests that do not need in-tree `cargo`. These tests may not use `cargo`. |
| `tests/run-make-cargo` | The "slow path" test suite that requires checking out `cargo` submodule and building in-tree `cargo`, and thus will have access to in-tree `cargo`. In practice, these constitute a very small portion of the original `run-make` tests. |
This PR carries out [MCP 847: Split run-make test suite into slower-building test suite with suitably-staged cargo and faster-building test suite without cargo](https://github.com/rust-lang/compiler-team/issues/847).
Fixesrust-lang/rust#135573 (for the tests that do not need in-tree `cargo`).
Fixesrust-lang/rust#134109.
## Remarks
- I considered if we want to split by in-tree tools previously. However, as discussed rust-lang/rust#134109, in practice `rustdoc` is not very slow to build, but `cargo` takes a good few minutes. So, the partition boundary was determined to be along in-tree `cargo` availability.
- The `run-make` tests previously that wanted to use `cargo` cannot just use the bootstrap `cargo`, otherwise they would run into situations where bootstrap `cargo` can significantly diverge from in-tree `cargo` (see https://github.com/rust-lang/rust/pull/130642).
---
try-job: aarch64-msvc-1
try-job: test-various
try-job: x86_64-gnu-debug
try-job: aarch64-gnu-debug
try-job: aarch64-apple
try-job: dist-various-1
A lot of places had special handling just in case they would get an
allocator module even though most of these places could never get one or
would have a trivial implementation for the allocator module. Moving all
handling of the allocator module to a single place simplifies things a
fair bit.
MIR dumping is a mess. There are lots of functions and entry points,
e.g. `dump_mir`, `dump_mir_with_options`, `dump_polonius_mir`,
`dump_mir_to_writer`. Also, it's crucial that `create_dump_file` is
never called without `dump_enabled` first being checked, but there is no
mechanism for ensuring this and it's hard to tell if it is satisfied on
all paths. (`dump_enabled` is checked twice on some paths, however!)
This commit introduces `MirWriter`, which controls the MIR writing, and
encapsulates the `extra_data` closure and `options`. Two existing
functions are now methods of this type. It sets reasonable defaults,
allowing the removal of many `|_, _| Ok(())` closures.
The commit also introduces `MirDumper`, which is layered on top of
`MirWriter`, and which manages the creation of the dump files,
encapsulating pass names, disambiguators, etc. Four existing functions
are now methods of this type.
- `MirDumper::new` will only succeed if dumps are enabled, and will
return `None` otherwise, which makes it impossible to dump when you
shouldn't.
- It also sets reasonable defaults for various things like
disambiguators, which means you no longer need to specify them in many
cases. When they do need to be specified, it's now done via setter
methods.
- It avoids some repetition. E.g. `dump_nll_mir` previously specifed the
pass name `"nll"` four times and the disambiguator `&0` three times;
now it specifies them just once, to put them in the `MirDumper`.
- For Polonius, the `extra_data` closure can now be specified earlier,
which avoids having to pass some arguments through some functions.
atomicrmw on pointers: move integer-pointer cast hacks into backend
Conceptually, we want to have atomic operations on pointers of the form `fn atomic_add(ptr: *mut T, offset: usize, ...)`. However, LLVM does not directly support such operations (https://github.com/llvm/llvm-project/issues/120837), so we have to cast the `offset` to a pointer somewhere.
This PR moves that hack into the LLVM backend, so that the standard library, intrinsic, and Miri all work with the conceptual operation we actually want. Hopefully, one day LLVM will gain a way to represent these operations without integer-pointer casts, and then the hack will disappear entirely.
Cc ```@nikic``` -- this is the best we can do right now, right?
Fixes https://github.com/rust-lang/rust/issues/134617
The implementation of the linkage attribute inside extern blocks defines
symbols starting with _rust_extern_with_linkage_. If someone tries to
also define this symbol you will get a symbol conflict or even an ICE.
By adding an unpredictable component to the symbol name, this becomes
less of an issue.
give Pointer::into_parts a more scary name and offer a safer alternative
`into_parts` is a bit too innocent of a name for a somewhat subtle operation.
r? `@oli-obk`
Add SIMD funnel shift and round-to-even intrinsics
This PR adds 3 new SIMD intrinsics
- `simd_funnel_shl` - funnel shift left
- `simd_funnel_shr` - funnel shift right
- `simd_round_ties_even` (vector version of `round_ties_even_fN`)
TODO (future PR): implement `simd_fsh{l,r}` in miri, cg_gcc and cg_clif (it is surprisingly hard to implement without branches, the common tricks that rotate uses doesn't work because we have 2 elements now. e.g, the `-n&31` trick used by cg_gcc to implement rotate doesn't work with this because then `fshl(a, b, 0)` will be `a | b`)
[#t-compiler > More SIMD intrinsics](https://rust-lang.zulipchat.com/#narrow/channel/131828-t-compiler/topic/More.20SIMD.20intrinsics/with/522130286)
`@rustbot` label T-compiler T-libs A-intrinsics F-core_intrinsics
r? `@workingjubilee`
Insert checks for enum discriminants when debug assertions are enabled
Similar to the existing null-pointer and alignment checks, this checks for valid enum discriminants on creation of enums through unsafe transmutes. Essentially this sanitizes patterns like the following:
```rust
let val: MyEnum = unsafe { std::mem::transmute<u32, MyEnum>(42) };
```
An extension of this check will be done in a follow-up that explicitly sanitizes for extern enum values that come into Rust from e.g. C/C++.
This check is similar to Miri's capabilities of checking for valid construction of enum values.
This PR is inspired by saethlin@'s PR
https://github.com/rust-lang/rust/pull/104862. Thank you so much for keeping this code up and the detailed comments!
I also pair-programmed large parts of this together with vabr-g@.
r? `@saethlin`
Similar to the existing nullpointer and alignment checks, this checks
for valid enum discriminants on creation of enums through unsafe
transmutes. Essentially this sanitizes patterns like the following:
```rust
let val: MyEnum = unsafe { std::mem::transmute<u32, MyEnum>(42) };
```
An extension of this check will be done in a follow-up that explicitly
sanitizes for extern enum values that come into Rust from e.g. C/C++.
This check is similar to Miri's capabilities of checking for valid
construction of enum values.
This PR is inspired by saethlin@'s PR
https://github.com/rust-lang/rust/pull/104862. Thank you so much for
keeping this code up and the detailed comments!
I also pair-programmed large parts of this together with vabr-g@.