match exhaustiveness diagnostics: show a trailing comma on singleton tuple consructors in witness patterns (and clean up a little)
Constructor patterns of type `(T,)` are written `(pat,)`, not `(pat)`. However, exhaustiveness/usefulness diagnostics would print them as `(pat)` when e.g. providing a witness of non-exhaustiveness and suggesting adding arms to make matches exhaustive; this would result in an error when applied.
rust-analyzer already prints the trailing comma, so it doesn't need changing.
This also includes some cleanup in the second commit, with justification in the commit message.
By construction, `subpatterns` contains all fields in order. Witness
patterns are constructed with all fields in order by
`WitnessPat::wild_from_ctor` and `WitnessStack::apply_constructor`, and
the order is preserved at `write_struct_like`'s call-site in
`print_witness_pat`. It's thus no longer necessary to go looking for
fields or handle missing fields.
In rustc_pattern_analysis, put `true` witnesses before `false` witnesses
In rustc it doesn't really matter what the order of the witnesses is, but I'm planning to use the witnesses for implementing the "add missing match arms" assist in rust-analyzer, and there `true` before `false` is the natural order (like `Some` before `None`), and also what the current assist does.
The current order doesn't seem to be intentional; the code was created when bool ctors became their own thing, not just int ctors, but for integer, 0 before 1 is indeed the natural order.
r? `@Nadrieril`
In rustc it doesn't really matter what the order of the witnesses is, but I'm planning to use the witnesses for implementing the "add missing match arms" assist in rust-analyzer, and there `true` before `false` is the natural order (like `Some` before `None`), and also what the current assist does.
The current order doesn't seem to be intentional; the code was created when bool ctors became their own thing, not just int ctors, but for integer, 0 before 1 is indeed the natural order.
pattern_analysis: add option to get a full set of witnesses
This adds an option to the rustc_pattern_analysis machinery to have it report a complete set of patterns when a match is non-exhaustive (by default we only guarantee to report _some_ missing patterns). This is for use in rust-analyzer.
Leaving as draft until I'm sure this is what r-a needs.
r? ghost
This removes special-casing of boxes from `rustc_pattern_analysis`, as a
first step in replacing `box_patterns` with `deref_patterns`.
Incidentally, it fixes a bug caused by box patterns being represented as
structs rather than pointers, where `exhaustive_patterns` could generate
spurious `unreachable_patterns` lints on arms required for
exhaustiveness; following the lint's advice would result in an error.
Without adding proper support for mixed exhaustiveness, mixing deref
patterns with normal constructors would either violate
`ConstructorSet::split`'s invariant 4 or 7. We'd either be ignoring rows
with normal constructors or we'd have problems in unspecialization from
non-disjoint constructors. Checking mixed exhaustivenss similarly to how
unions are currently checked should work, but the diagnostics for unions
are confusing. Since mixing deref patterns with normal constructors is
pretty niche (currently it only makes sense for `Cow`), emitting an
error lets us avoid committing to supporting mixed exhaustiveness
without a good answer for the diagnostics.
This does not yet handle the case of mixed deref patterns with normal
constructors; it'll ICE in `Constructor::is_covered_by`. That'll be
fixed in a later commit.
This will allow us to eagerly translate messages on a top-level
diagnostic, such as a `LintDiagnostic`. As a bonus, we can remove the
awkward closure passed into Subdiagnostic and make better use of
`Into`.
Add new `PatKind::Missing` variants
To avoid some ugly uses of `kw::Empty` when handling "missing" patterns, e.g. in bare fn tys. Helps with #137978. Details in the individual commits.
r? ``@oli-obk``
add `TypingMode::Borrowck`
Shares the first commit with #138499, doesn't really matter which PR to land first 😊😁
Introduces `TypingMode::Borrowck` which unlike `TypingMode::Analysis`, uses the hidden type computed by HIR typeck as the initial value of opaques instead of an unconstrained infer var. This is a part of https://github.com/rust-lang/types-team/issues/129.
Using this new `TypingMode` is unfortunately a breaking change for now, see tests/ui/impl-trait/non-defining-uses/as-projection-term.rs. Using an inference variable as the initial value results in non-defining uses in the defining scope. We therefore only enable it if with `-Znext-solver=globally` or `-Ztyping-mode-borrowck`
To do that the PR contains the following changes:
- `TypeckResults::concrete_opaque_type` are already mapped to the definition of the opaque type
- writeback now checks that the non-lifetime parameters of the opaque are universal
- for this, `fn check_opaque_type_parameter_valid` is moved from `rustc_borrowck` to `rustc_trait_selection`
- we add a new `query type_of_opaque_hir_typeck` which, using the same visitors as MIR typeck, attempts to merge the hidden types from HIR typeck from all defining scopes
- done by adding a `DefiningScopeKind` flag to toggle between using borrowck and HIR typeck
- the visitors stop checking that the MIR type matches the HIR type. This is trivial as the HIR type are now used as the initial hidden types of the opaque. This check is useful as a safeguard when not using `TypingMode::Borrowck`, but adding it to the new structure is annoying and it's not soundness critical, so I intend to not add it back.
- add a `TypingMode::Borrowck` which behaves just like `TypingMode::Analysis` except when normalizing opaque types
- it uses `type_of_opaque_hir_typeck(opaque)` as the initial value after replacing its regions with new inference vars
- it uses structural lookup in the new solver
fixes#112201, fixes#132335, fixes#137751
r? `@compiler-errors` `@oli-obk`
"Missing" patterns are possible in bare fn types (`fn f(u32)`) and
similar places. Currently these are represented in the AST with
`ast::PatKind::Ident` with no `by_ref`, no `mut`, an empty ident, and no
sub-pattern. This flows through to `{hir,thir}::PatKind::Binding` for
HIR and THIR.
This is a bit nasty. It's very non-obvious, and easy to forget to check
for the exceptional empty identifier case.
This commit adds a new variant, `PatKind::Missing`, to do it properly.
The process I followed:
- Add a `Missing` variant to `{ast,hir,thir}::PatKind`.
- Chang `parse_param_general` to produce `ast::PatKind::Missing`
instead of `ast::PatKind::Missing`.
- Look through `kw::Empty` occurrences to find functions where an
existing empty ident check needs replacing with a `PatKind::Missing`
check: `print_param`, `check_trait_item`, `is_named_param`.
- Add a `PatKind::Missing => unreachable!(),` arm to every exhaustive
match identified by the compiler.
- Find which arms are actually reachable by running the test suite,
changing them to something appropriate, usually by looking at what
would happen to a `PatKind::Ident`/`PatKind::Binding` with no ref, no
`mut`, an empty ident, and no subpattern.
Quite a few of the `unreachable!()` arms were never reached. This makes
sense because `PatKind::Missing` can't happen in every pattern, only
in places like bare fn tys and trait fn decls.
I also tried an alternative approach: modifying `ast::Param::pat` to
hold an `Option<P<Pat>>` instead of a `P<Pat>`, but that quickly turned
into a very large and painful change. Adding `PatKind::Missing` is much
easier.
Consider fields to be inhabited if they are unstable
Fixes#133885 with a simple heuristic
r? Nadrieril
Not totally certain if this needs T-lang approval or a crater run.
It's very useful. There are some false positives involving integration
tests in `rustc_pattern_analysis` and `rustc_serialize`. There is also a
false positive involving `rustc_driver_impl`'s
`rustc_randomized_layouts` feature. And I removed a `rustc_span` mention
in a doc comment in `rustc_log` because it wasn't integral to the
comment but caused a dev-dependency.
mir_build: consider privacy when checking for irrefutable patterns
This PR fixes#137999.
Note that, since this makes the compiler reject code that was previously accepted, it will probably need a crater run.
I include a commit that factors out a common code pattern into a helper function, purely because the fact that this was repeated all over the place was bothering me. Let me know if I should split that into a separate PR instead.
Revert <https://github.com/rust-lang/rust/pull/138084> to buy time to
consider options that avoids breaking downstream usages of cargo on
distributed `rustc-src` artifacts, where such cargo invocations fail due
to inability to inherit `lints` from workspace root manifest's
`workspace.lints` (this is only valid for the source rust-lang/rust
workspace, but not really the distributed `rustc-src` artifacts).
This breakage was reported in
<https://github.com/rust-lang/rust/issues/138304>.
This reverts commit 48caf81484b50dca5a5cebb614899a3df81ca898, reversing
changes made to c6662879b27f5161e95f39395e3c9513a7b97028.
By naming them in `[workspace.lints.rust]` in the top-level
`Cargo.toml`, and then making all `compiler/` crates inherit them with
`[lints] workspace = true`. (I omitted `rustc_codegen_{cranelift,gcc}`,
because they're a bit different.)
The advantages of this over the current approach:
- It uses a standard Cargo feature, rather than special handling in
bootstrap. So, easier to understand, and less likely to get
accidentally broken in the future.
- It works for proc macro crates.
It's a shame it doesn't work for rustc-specific lints, as the comments
explain.
A check for `#[non_exhaustive]` is often done in combination with
checking whether the type is local to the crate, in a variety of ways.
Create a helper method and standardize on it as the way to check for
this.