Refactor lint buffering to avoid requiring a giant enum
Lint buffering currently relies on a giant enum `BuiltinLintDiag` containing all the lints that might potentially get buffered. In addition to being an unwieldy enum in a central crate, this also makes `rustc_lint_defs` a build bottleneck: it depends on various types from various crates (with a steady pressure to add more), and many crates depend on it.
Having all of these variants in a separate crate also prevents detecting when a variant becomes unused, which we can do with a dedicated type defined and used in the same crate.
Refactor this to use a dyn trait, to allow using `LintDiagnostic` types directly.
Because the existing `BuiltinLintDiag` requires some additional types in order to decorate some variants, which are only available later in `rustc_lint`, use an enum `DecorateDiagCompat` to handle both the `dyn LintDiagnostic` case and the `BuiltinLintDiag` case.
---
With the infrastructure in place, use it to migrate three of the enum variants to use `LintDiagnostic` directly, as a proof of concept and to demonstrate that the net result is a reduction in code size and a removal of a boilerplate-heavy layer of indirection.
Also remove an unused `BuiltinLintDiag` variant.
Lint buffering currently relies on a giant enum `BuiltinLintDiag`
containing all the lints that might potentially get buffered. In
addition to being an unwieldy enum in a central crate, this also makes
`rustc_lint_defs` a build bottleneck: it depends on various types from
various crates (with a steady pressure to add more), and many crates
depend on it.
Having all of these variants in a separate crate also prevents detecting
when a variant becomes unused, which we can do with a dedicated type
defined and used in the same crate.
Refactor this to use a dyn trait, to allow using `LintDiagnostic` types
directly.
This requires boxing, but all of this is already on the slow path
(emitting an error).
Because the existing `BuiltinLintDiag` requires some additional types in
order to decorate some variants, which are only available later in
`rustc_lint`, use an enum `DecorateDiagCompat` to handle both the `dyn
LintDiagnostic` case and the `BuiltinLintDiag` case.
Prevent impossible combinations in `ast::ModKind`.
`ModKind::Loaded` has an `inline` field and a `had_parse_error` field. If the `inline` field is `Inline::Yes` then `had_parse_error` must be `Ok(())`.
This commit moves the `had_parse_error` field into the `Inline::No` variant. This makes it impossible to create the nonsensical combination of `inline == Inline::Yes` and `had_parse_error = Err(_)`.
r? ```@Urgau```
`ModKind::Loaded` has an `inline` field and a `had_parse_error` field.
If the `inline` field is `Inline::Yes` then `had_parse_error` must be
`Ok(())`.
This commit moves the `had_parse_error` field into the `Inline::No`
variant. This makes it impossible to create the nonsensical combination
of `inline == Inline::Yes` and `had_parse_error = Err(_)`.
Couple of codegen_fn_attrs improvements
As noted in https://github.com/rust-lang/rust/pull/144678#discussion_r2245060329 here is no need to keep link_name and export_name separate, which the third commit fixes by merging them. The second commit removes some dead code and the first commit merges two ifs with equivalent conditions. The last commit is an unrelated change which removes an unused `feature(autodiff)`.
Using an error type instead of `()` avoids the duplicated errors
on `struct SUnsizedField` in `deriving-from-wrong-target.rs`. It also
improves the expanded output from this:
```
struct S2(u32, u32);
impl ::core::convert::From<()> for S2 {
#[inline]
fn from(value: ()) -> S2 { (/*ERROR*/) }
}
```
to this:
```
struct S2(u32, u32);
impl ::core::convert::From<(/*ERROR*/)> for S2 {
#[inline]
fn from(value: (/*ERROR*/)) -> S2 { (/*ERROR*/) }
}
```
The new code also only matchs on `item.kind` once.
Implement `#[derive(From)]`
Implements the `#[derive(From)]` feature ([tracking issue](https://github.com/rust-lang/rust/issues/144889), [RFC](https://github.com/rust-lang/rfcs/pull/3809)).
It allows deriving the `From` impl on structs and tuple structs with exactly one field. Some implementation notes:
- I wasn't exactly sure which spans to use in the derive generating code, so I just used `span` everywhere. I don't know if it's the Right Thing To Do. In particular the errors when `#[derive(From)]` is used on a struct with an unsized field are weirdly duplicated.
- I had to solve an import stability problem, where if I just added the unstable `macro From` to `core::convert`, previously working code like `use std::convert::From` would suddenly require an unstable feature gate, because rustc would think that you're trying to import the unstable macro. `@petrochenkov` suggested that I add the macro the the core prelude instead. This has worked well, although it only works in edition 2021+. Not sure if I botched the prelude somehow and it should live elsewhere (?).
- I had to add `Ty::AstTy`, because the `from` function receives an argument with the type of the single field, and the existing variants of the `Ty` enum couldn't represent an arbitrary type.
Implement autodiff using intrinsics
This PR aims to move autodiff logic to `autodiff` intrinsic. Allowing us to delete a great part of our frontend code and overall, simplify the compilation pipeline of autodiff functions.
Change the desugaring of `assert!` for better error output
In the desugaring of `assert!`, we now expand to a `match` expression instead of `if !cond {..}`.
The span of incorrect conditions will point only at the expression, and not the whole `assert!` invocation.
```
error[E0308]: mismatched types
--> $DIR/issue-14091.rs:2:13
|
LL | assert!(1,1);
| ^ expected `bool`, found integer
```
We no longer mention the expression needing to implement the `Not` trait.
```
error[E0308]: mismatched types
--> $DIR/issue-14091-2.rs:15:13
|
LL | assert!(x, x);
| ^ expected `bool`, found `BytePos`
```
Now `assert!(val)` desugars to:
```rust
match val {
true => {},
_ => $crate::panic::panic_2021!(),
}
```
Fix#122159.
In the desugaring of `assert!`, we now expand to a `match` expression
instead of `if !cond {..}`.
The span of incorrect conditions will point only at the expression, and not
the whole `assert!` invocation.
```
error[E0308]: mismatched types
--> $DIR/issue-14091.rs:2:13
|
LL | assert!(1,1);
| ^ expected `bool`, found integer
```
We no longer mention the expression needing to implement the `Not` trait.
```
error[E0308]: mismatched types
--> $DIR/issue-14091-2.rs:15:13
|
LL | assert!(x, x);
| ^ expected `bool`, found `BytePos`
```
`assert!(val)` now desugars to:
```rust
match val {
true => {},
_ => $crate::panic::panic_2021!(),
}
```
Fix#122159.
We make some minor changes to some diagnostics to avoid span overlap on
type mismatch or inverted "expected"/"found" on type errors.
We remove some unnecessary parens from core, alloc and miri.
address review comments
Modify `AttributeTemplate` to support list of alternatives for list and name value attribute styles.
Suggestions now provide more correct suggested code:
```
error[E0805]: malformed `used` attribute input
--> $DIR/used_with_multi_args.rs:3:1
|
LL | #[used(compiler, linker)]
| ^^^^^^------------------^
| |
| expected a single argument here
|
help: try changing it to one of the following valid forms of the attribute
|
LL - #[used(compiler, linker)]
LL + #[used(compiler)]
|
LL - #[used(compiler, linker)]
LL + #[used(linker)]
|
LL - #[used(compiler, linker)]
LL + #[used]
|
```
instead of the prior "masking" of the lack of this feature by suggesting pipe-separated lists:
```
error[E0805]: malformed `used` attribute input
--> $DIR/used_with_multi_args.rs:3:1
|
LL | #[used(compiler, linker)]
| ^^^^^^------------------^
| |
| expected a single argument here
|
help: try changing it to one of the following valid forms of the attribute
|
LL - #[used(compiler, linker)]
LL + #[used(compiler|linker)]
|
LL - #[used(compiler, linker)]
LL + #[used]
|
```
Use `splice` to avoid shifting the other items twice.
Put `extern crate std;` first so it's already resolved when we resolve `::std::prelude::rust_20XX`.
Make slice comparisons const
This needed a fix for `derive_const`, too, as it wasn't usable in libcore anymore as trait impls need const stability attributes. I think we can't use the same system as normal trait impls while `const_trait_impl` is still unstable.
r? ```@fee1-dead```
cc rust-lang/rust#143800
There are many places that join path segments with `::` to produce a
string. A lot of these use `join("::")`. Many in rustdoc use
`join_with_double_colon`, and a few use `.joined("..")`. One in Clippy
uses `itertools::join`. A couple of them look for `kw::PathRoot` in the
first segment, which can be important.
This commit introduces `rustc_ast::join_path_{syms,ident}` to do the
joining for everyone. `rustc_ast` is as good a location for these as
any, being the earliest-running of the several crates with a `Path`
type. Two functions are needed because `Ident` printing is more complex
than simple `Symbol` printing.
The commit also removes `join_with_double_colon`, and
`estimate_item_path_byte_length` with it.
There are still a handful of places that join strings with "::" that are
unchanged. They are not that important: some of them are in tests, and
some of them first split a path around "::" and then rejoin with "::".
This fixes one test case where `{{root}}` shows up in an error message.
compiler: rename BareFn to FnPtr
At some point "BareFn" was the chosen name for a "bare" function, without the niceties of `~fn`, `&fn`, or a few other ways of writing a function type. However, at some point the syntax for a "bare function" and any other function diverged even more. We started calling them what they are: function pointers, denoted by their own syntax.
However, we never changed the *internal* name for these, as this divergence was very gradual. Personally, I have repeatedly searched for "FnPtr" and gotten confused until I find the name is BareFn, only to forget this until the next time, since I don't routinely interact with the higher-level AST and HIR. But even tools that interact with these internal types only touch on them in a few places, making a migration easy enough. Let's use a more intuitive and obvious name, as this 12+ year old name has little to do with current Rust.
Fix some comments and related types and locals where it is obvious, e.g.
- bare_fn -> fn_ptr
- LifetimeBinderKind::BareFnType -> LifetimeBinderKind::FnPtrType
Co-authored-by: León Orell Valerian Liehr <me@fmease.dev>
rustc_builtin_macros: Make sure registered attributes stay sorted
As with the list of builtin macros, use tidy to make sure the list of
builtin attributes stays sorted.
It's like `Symbol` but for byte strings. The interner is now used for
both `Symbol` and `ByteSymbol`. E.g. if you intern `"dog"` and `b"dog"`
you'll get a `Symbol` and a `ByteSymbol` with the same index and the
characters will only be stored once.
The motivation for this is to eliminate the `Arc`s in `ast::LitKind`, to
make `ast::LitKind` impl `Copy`, and to avoid the need to arena-allocate
`ast::LitKind` in HIR. The latter change reduces peak memory by a
non-trivial amount on literal-heavy benchmarks such as `deep-vector` and
`tuple-stress`.
`Encoder`, `Decoder`, `SpanEncoder`, and `SpanDecoder` all get some
changes so that they can handle normal strings and byte strings.
This change does slow down compilation of programs that use
`include_bytes!` on large files, because the contents of those files are
now interned (hashed). This makes `include_bytes!` more similar to
`include_str!`, though `include_bytes!` contents still aren't escaped,
and hashing is still much cheaper than escaping.
Add runtime check to avoid overwrite arg in `Diag`
## Origin PR description
At first, I set up a `debug_assert` check for the arg method to make sure that `args` in `Diag` aren't easily overwritten, and I added the `remove_arg()` method, so that if you do need to overwrite an arg, then you can explicitly call `remove_arg()` to remove it first, then call `arg()` to overwrite it.
For the code before the rust-lang/rust#142015 change, it won't compile because it will report an error
```
arg `instance`already exists.
```
This PR also modifies all diagnostics that fail the check to pass the check. There are two cases of check failure:
1. ~~Between *the parent diagnostic and the subdiagnostic*, or *between the subdiagnostics* have the same field between them. In this case, I renamed the conflicting fields.~~
2. ~~For subdiagnostics stored in `Vec`, the rendering may iteratively write the same arg over and over again. In this case, I changed the auto-generation with `derive(SubDiagnostic)` to manually implementing `SubDiagnostic` and manually rendered it with `eagerly_translate()`, similar to https://github.com/rust-lang/rust/issues/142031#issuecomment-2984812090, and after rendering it I manually deleted useless arg with the newly added `remove_arg` method.~~
## Final Decision
After trying and discussing, we made a final decision.
For `#[derive(Subdiagnostic)]`, This PR made two changes:
1. After the subdiagnostic is rendered, remove all args of this subdiagnostic, which allows for usage like `Vec<Subdiag>`.
2. Store `diag.args` before setting arguments, so that you can restore the contents of the main diagnostic after deleting the arguments after subdiagnostic is rendered, to avoid deleting the main diagnostic's arg when they have the same name args.
Remove the deprecated unstable `concat_idents!` macro
In [rust-lang/rust#137653], the lang and libs-API teams did a joint FCP to deprecate
and eventually remove the long-unstable `concat_idents!` macro. The
deprecation is landing in 1.88, so do the removal here (target version
1.90).
This macro has been superseded by the more recent `${concat(...)}`
metavariable expression language feature, which avoids some of the
limitations of `concat_idents!`. The metavar expression is unstably
available under the [`macro_metavar_expr_concat`] feature.
History is mildly interesting here: `concat_idents!` goes back to 2011
when it was introduced with 513276e595f8 ("Add #concat_idents[] and
#ident_to_str[]"). The syntax looks a bit different but it still works
about the same:
let asdf_fdsa = "<.<";
assert(#concat_idents[asd,f_f,dsa] == "<.<");
assert(#ident_to_str[use_mention_distinction]
== "use_mention_distinction");
(That test existed from introduction until its removal here.)
Closes: https://github.com/rust-lang/rust/issues/29599
[rust-lang/rust#137653]: https://github.com/rust-lang/rust/pull/137653
[`macro_metavar_expr_concat`]: https://github.com/rust-lang/rust/issues/124225
In [137653], the lang and libs-API teams did a joint FCP to deprecate
and eventually remove the long-unstable `concat_idents!` macro. The
deprecation is landing in 1.88, so do the removal here (target version
1.90).
This macro has been superseded by the more recent `${concat(...)}`
metavariable expression language feature, which avoids some of the
limitations of `concat_idents!`. The metavar expression is unstably
available under the [`macro_metavar_expr_concat`] feature.
History is mildly interesting here: `concat_idents!` goes back to 2011
when it was introduced with 513276e595f8 ("Add #concat_idents[] and
about the same:
let asdf_fdsa = "<.<";
assert(#concat_idents[asd,f_f,dsa] == "<.<");
assert(#ident_to_str[use_mention_distinction]
== "use_mention_distinction");
(That test existed from introduction until its removal here.)
Closes: https://www.github.com/rust-lang/rust/issues/29599
[137653]: https://www.github.com/rust-lang/rust/pull/137653
[`macro_metavar_expr_concat`]: https://www.github.com/rust-lang/rust/issues/124225
Rollup of 10 pull requests
Successful merges:
- rust-lang/rust#142458 (Merge unboxed trait object error suggestion into regular dyn incompat error)
- rust-lang/rust#142593 (Add a warning to LateContext::get_def_path)
- rust-lang/rust#142594 (Add DesugaringKind::FormatLiteral)
- rust-lang/rust#142740 (Clean-up `FnCtxt::is_destruct_assignment_desugaring`)
- rust-lang/rust#142780 (Port `#[must_use]` to new attribute parsing infrastructure)
- rust-lang/rust#142798 (Don't fail to parse a struct if a semicolon is used to separate fields)
- rust-lang/rust#142856 (Add a few inline directives in rustc_serialize.)
- rust-lang/rust#142868 (remove few allow(dead_code))
- rust-lang/rust#142874 (cranelift: fix target feature name typo: "fxsr")
- rust-lang/rust#142877 (Document why tidy checks if `eslint` is installed via `npm`)
r? `@ghost`
`@rustbot` modify labels: rollup
completely deduplicate `Visitor` and `MutVisitor`
r? oli-obk
This closesrust-lang/rust#127615.
### Discussion
> * Give every `MutVisitor::visit_*` method a corresponding `flat_map_*` method.
Not every AST node exists in a location where they can be mapped to multiple instances of themselves. Not every AST node exists in a location where they can be removed from existence (e.g. `filter_map_expr`). I don't think this is doable.
> * Give every `MutVisitor::visit_*` method a corresponding `Visitor` method and vice versa
The only three remaining method-level asymmetries after this PR are `visit_stmt` and `visit_nested_use_tree` (only on `Visitor`) and `visit_span` (only on `MutVisitor`).
`visit_stmt` doesn't seem applicable to `MutVisitor` because `walk_flat_map_stmt_kind` will ask `flat_map_item` / `filter_map_expr` to potentially turn a single `Stmt` to multiple based on what a visitor wants. So only using `flat_map_stmt` seems appropriate.
`visit_nested_use_tree` is used for `rustc_resolve` to track stuff. Not useful for `MutVisitor` for now.
`visit_span` is currently not used for `MutVisitor` already, it was just kept in case we want to revive rust-lang/rust#127241. cc `@cjgillot` maybe we could remove for now and re-insert later if we find a use-case? It does involve some extra effort to maintain.
* Remaining FIXMEs
`visit_lifetime` has an extra param for `Visitor` that's not in `MutVisitor`. This is again something only used by `rustc_resolve`. I think we can keep that symmetry for now.