In rustc it doesn't really matter what the order of the witnesses is, but I'm planning to use the witnesses for implementing the "add missing match arms" assist in rust-analyzer, and there `true` before `false` is the natural order (like `Some` before `None`), and also what the current assist does.
The current order doesn't seem to be intentional; the code was created when bool ctors became their own thing, not just int ctors, but for integer, 0 before 1 is indeed the natural order.
This does not yet handle the case of mixed deref patterns with normal
constructors; it'll ICE in `Constructor::is_covered_by`. That'll be
fixed in a later commit.
Clean up a few minor refs in `format!` macro, as it has a performance cost. Apparently the compiler is unable to inline `format!("{}", &variable)`, and does a run-time double-reference instead (format macro already does one level referencing). Inlining format args prevents accidental `&` misuse.
This section of code depends on `rustc_apfloat` rather than our internal
types, so this is one potential ICE that we should be able to melt now.
This also fixes some missing range and match handling in `rustc_middle`.
never patterns: suggest `!` patterns on non-exhaustive matches
When a match is non-exhaustive we now suggest never patterns whenever it makes sense.
r? ``@compiler-errors``
pattern analysis: remove `MaybeInfiniteInt::JustAfterMax`
It was inherited from before half-open ranges, but it doesn't pull its weight anymore. We lose a tiny bit of diagnostic precision as can be seen in the test. I'm generally in favor of half-open ranges over explicit `x..=MAX` ranges anyway.
pattern_analysis: rework how we hide empty private fields
Consider this:
```rust
mod foo {
pub struct Bar {
pub a: bool,
b: !,
}
}
fn match_a_bar(bar: foo::Bar) -> bool {
match bar {
Bar { a, .. } => a,
}
}
```
Because the field `b` is private, matches outside the module are not allowed to observe the fact that `Bar` is empty. In particular `match bar {}` is valid within the module `foo` but an error outside (assuming `exhaustive_patterns`).
We currently handle this by hiding the field `b` when it's both private and empty. This means that the pattern `Bar { a, .. }` is lowered to `Bar(a, _)` if we're inside of `foo` and to `Bar(a)` outside. This involves a bit of a dance to keep field indices straight. But most importantly this makes pattern lowering depend on the module.
In this PR, I instead do nothing special when lowering. Only during analysis do we track whether a place must be skipped.
r? `@compiler-errors`
pattern_analysis: Gracefully abort on type incompatibility
This leaves the option for a consumer of the crate to return `Err` instead of panicking on type error. rust-analyzer could use that (e.g. https://github.com/rust-lang/rust-analyzer/issues/15808).
Since the only use of `TypeCx::bug` is in `Constructor::is_covered_by`, it is tempting to return `false` instead of `Err()`, but that would cause "non-exhaustive match" false positives.
r? `@compiler-errors`
Since the only use of `TypeCx::bug` is in `Constructor::is_covered_by`,
it is tempting to return `false` instead of `Err()`, but that would
cause "non-exhaustive match" false positives.
Exhaustiveness: simplify empty pattern logic
The logic that handles empty patterns had gotten quite convoluted. This PR simplifies it a lot. I tried to make the logic as easy as possible to follow; this only does logically equivalent changes.
The first commit is a drive-by comment clarification that was requested after another PR a while back.
r? `@compiler-errors`
Make exhaustiveness usable outside of rustc
With this PR, `rustc_pattern_analysis` compiles on stable (with the `stable` feature)! `rust-analyzer` will be able to use it to provide match-related diagnostics and refactors.
Two questions:
- Should I name the feature `nightly` instead of `rustc` for consistency with other crates? `rustc` makes more sense imo.
- `typed-arena` is an optional dependency but tidy made me add it to the allow-list anyway. Can I avoid that somehow?
r? `@compiler-errors`